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Abstract 

A hardware based cache consistency protocol for multipro- 
cessors with multistage networks is proposed. Consistency 
traffic is restricted to the set of caches which have a copy 
of a shared block. State information is distributed to the 
caches and the memory modules need not be consulted for 
consistency actions. 

The protocol provides two operating modes: distributed 
write and global read. Distribution of writes calls for efficient 
multicast methods. Communication cost for multicasting is 
analyzed and a novel scheme is proposed. 

Finally, communication cost for the protocol is compared 
to other protocols, The twumode approach limits the uppcr- 
bound for the communication cost to a value considerably 
lower than that for other protocols. 

1 Introduction 

One of the main problems of shared-memory multiprocessors 
is the network traffic caused by several processors access- 
ing the global shared memory [14]. In order to increase the 
memory bandwidth, different interconnection networks can 
be used. One alternative for ,large-scale multiprocessors is 
to use a multistage network (e.g. as used by the RP3 [lo], 
or by the Butterfly 131 multiprocessors). However, private 
caches are needed to reduce the network traffic as shown in 
Figure 1. 

Private caches in a shared-memory multiprocessor intro- 
duce the cache consistency or cache coherence problem be- 
cause of the existence of copies of a memory block. 

The cache consistency problem has been extensively stucl- 
ied over the past years. There are two main approaches to 
attack the cache consistency problem: software and hardware 
methods. 
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Figure 1: An example multiprocessor with private caches and 
a multistage interconnection network. 

In the software approach, memory blocks are tagged as 
cacheable or noncach.eable depending on the access pattern 
to shared data. Read-only or non-shared data structures can 
always be cached because cache consistency is only an is- 
sue for shared read-write data structures. Several software 
schemes have been proposed [13,4,6]. They all suffer from 
high cache miss ratio for shared read-write data structures 
simultaneously accessed by several processors. Another dis- 
advantage is that the cache system as viewed by the software 
is not coherent; the user (or compiler) is responsible for tag- 
ging data with respect to cacheability. 

In the hardware approach, consistency is maintained by a 
hardware implemented cache consisrency profocol resulting 
in a coherent software view of the memory system. 

Several cache consistency protocols for bus-oriented archi- 
tectures have been proposed and are evaluated in 123. These 
are called snoopy cache protocols because modifications of 
the state of a cached block are broczdcast to all caches and 
each cache monitors the bus for consistency actions (typically 
invalidations or distributed writes). 

Broadcast operations are too expensive to make snoopy 
cache protocols feasible for multistage networks; consistency 
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traffic should be restricted to caches that have a copy of a 
block. In protocols based on this approach [5,16], a directory 
is typically stored at the memory level with one entry for each 
memory block. It contains state information for the block and 
a vector with one bit for each cache indicating which caches 
have a copy of the memory block. 

Reduction of network traffic is paid for by the size of the 
memory storing the state information, which equals O(NM), 
where N equals the number of caches and M equals the 
size of main memory. Another disadvantage is that the state 
information is not stored close to the caches which increases 
the network traflic. 

A cache consistency protocol based on the same approach 
but where the state information is distributed to the caches 
is proposed in this paper. The size of the state information 
memory in this case is 0( C( N f log N) + M log(N)), where 
C is the size of cache memory. 

A novel idea is that consistency of each individual block 
can be maintained by one of two operating modes: distributed 
write mode and global read mode, selected so as to minimize 
communication cost and set by the software. It should be 
emphasized that both modes maintain consistency. The sole 
difference is performance. We shall show that our choice of 
operating modes provides an upper limit of the communica- 
tion cost considerably lower than for other protocols. 

Other proposed protocols are either tuned to specific pro- 
gram behavior like Goodman’s write-once protocol 171 or 
Dragon’s distributed write protocol [9]. Other approaches 
are adaptive protocols specitically optimized for bus-oriented 
architectures [ll,l]. 

The distributed write mode calls for efficient implementa- 
tion of multicast operations in multistage networks. The net- 
work traffic caused by multicasting is analyzed and a novel 
scheme is proposed. Finally, the communication cost for 
the cache consistency protocol is evaluated and compared to 
other protocols. 

2 The Cache Consistency Protocol 

2.1 Definitions and Basic Mechanisms 

Cache memories are interconnected with each other by an 
N x N multistage network, given N caches, providing a 
path between every cache pair. The network also provides a 
path between each cache and memory module. 

A block is a logical unit of memory consisting of a number 
of words and with an identification. Each memory module 
stores a number of blocks. 

Copies of a block can reside in more than one cache. At 
most one cache 0wrr.r the block. The owner is the only one 
allowed to modify the block. 

Consistency of each individual block can be maintained in 
two ways, controlled by the owner. In distributed write mode, 
all writes are distributed to the caches that have a copy of the 
block. In global read mode, only one copy, the owner’s copy, 
is allowed. If a block is referenced by another processor than 
the one attached to the cache that owns the block, the data 

is read globahy from the owner instead of loading a copy of 
the block. 

The protocol is supported by the following states of a 
cached block: Invalid, Unowned, Owned Exclusively Dis- 
tributed Write, Owned Exclusively Global Read, Owned 
NonExclusively Distributed Write and Owned NonExclu- 
sively Global Read. All Owned states have an attribute 
Modified which determines whether the copy is consistent 
with the memory copy and eventually has to be written back. 

Invalid means that the cache line does not contain a valid 
copy and the requested data has to be retrieved globally. Un- 
Owned means that the cache contains a valid copy of the 
requested block. However; the block is not allowed to be 
modified. It also means that there exist other copies of the 
same block. If the copy is in one of the states denoted owned, 
it is allowed to be modified. State Owned Exclusively Dis- 
tributed Write, means that there is no other copy and the 
write can proceed locally. State Owned NonExclusively Dis- 
tributed Write means that the cache owns the copy but there 
exist other copies in the system which are updated if the block 
is modified. Owned Exclusively or NonExclusively Global 
Read means that there is only one copy, the owner’s copy. 
If a cache needs to load a copy, the owner will prevent it to 
do so by responding only with the data requested. 

Each cache contains a table consisting of a number of 
cache entries, each containing a data portion, a tag field, and 
a state field. The dam portion holds the copy of a block. The 
tag field holds the identification of the block that currently 
occupies the cache entry. The state field holds information 
used by the cache consistency protocol and which determines 
the action to be taken. 

In order for the cache controller to keep track of the state, 
the state field contains the following entities: A Valid bit 
(V) indicating whether the copy of the block is valid, an 
Ownership bit (0) indicating whether the block is owned, 
a Modified bit (M) indicating whether the copy is consis- 
tent with the copy in main memory, a Distributed Write bit 
(DW) which determines the operating mode, a vector of 
Present flags (PI 9.. . PN), one flag for each cache, indi- 
cating which caches (if any) have a copy of the block (in 
distributed write mode) or which caches have invalid copies 
of the block (in global read mode), and finally an owner 
identification (OWNER) occupying log, N bits. 

The present flag vector and the modified and distributed 
write bit are used only by the owner. The owner identification 
is used only if the state of the block is invalid and determines 
where to retrieve the block. 

The possible states for the copies and their meaning to- 
gether with the content of the state field are summarized in 
Table 1. 

Each memory module keeps track of the owner for each of 
its cached blocks by means of a data structure called block 
store containing one entry for each block. Each entry contains 
a valid bit (V) and an ID-field containing log2 N bits storing 
the identification of the owner for the block. 

In Figure 2, we show a situation where four private caches 
are used. Two copies of a block (block identification X) 
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State 

Invalid 
Unowned 

Description State field 

does not contain a valid copy. v=o 
contains a valid copy which is not allowed to be modified. v= l,O=O 
There exist other copies. 

Owned Exclusively The copy is owned and the only copy in the system. V=l,O= l,DW=l, 
Distributed Write Copies are allowed. P;=l, Pj=OVj#i 
Owned Exclusively The copy is owned and the only copy in the system. V=l,O=l,DW=O, 
Global Read Copies are not allowed Pi=l,Pj=OVj#i 

Owned NonExclusively The copy is owned and there exist other valid copies V= l,O= l,DW= 1, 

Distributed Write Pi = 1, Pj = 1 for any j # i 
Owned NonExclusively The copy is owned and there exist other invalid copies v= l,O= l,DW=O, 
Global Read Pi = 1,Pj = 1 forany j # i 

CACiEl 

CPMEZ 

CAM3 

cxaE4 

MEMORY 
YoDlJLE 

Table 1: States for cached blocks, their meaning, and the content of the state field for cache i. 

yl.I.I-I-I.]-I-1-I _ 

V OWNER 

p-pq 

Figure 2: An example of how status information is distributed 
among caches and the memory controller. 

are resident in cache 1 and 2. Cache 1 is the owner which 
means that its identification is stored in the block store. The 
content of the state field of cache 1 indicates that the copy 
is modified (i.e. inconsistent with the memory copy). The 
operating mode for this block is distributed write. The present 
flag vector indicates that cache 2 has a copy. Cache 3 has an 
invalid copy (the valid bit is 0) and cache 4 has no copy of 
block X (indicated by block identification Y occupying the 
cache entry). The OWNER field for cache 2 and 3 indicates 
that cache 1 is the owner creating a bypass directly to cache 
1 instead of communicating through the memory module. 

All actions taken by the protocol are a result of a memory 
read or a write operation issued by a processor. Therefore, 
the behavior of the protocol is described by making clear the 
actions taken (and state transitions) on the four results of a 
read or write operation, namely read hit, read miss, write hit, 
and write miss. We also make clear the actions taken when 
the operating mode for a block is changed. 

2.2 Protocol Behavior 

The following actions are taken depending on the result of 
a processor read or write operation. With hit we mean that 
the copy is valid. With miss we mean that the copy is either 
invalid or nonexistent in the cache. 

1. 

2. 

Read hit. The copy is consistent and the read operation 
can be carried out locally in the cache. 

Read miss. 

Copy is nonexistent 

A load request is sent to the memory module. Two cases 
are possible: 

There is no other copy. The block is loaded into 
the cache from the memory and the state for this 
block is set to Owned Exclusively Global Read. 
The identification of this cache is marked in the 
block store. 
There are other copies. The memory controller 
sends the load request to the owner (consulting the 
block store). The owner sets the present flag for 
the requesting cache. Two cases are possible: 

Mode=distributed write. The owner sends a 
copy of the block to the requesting cache. 
The state of the owner’s copy is set to 
Owned NonExclusively Distributed Write and 
the state of the requested copy is set to Un- 
Owned. 
Mode=global read. The owner sends only the 
requested datum and the owner identification. 
The requesting cache reserves a cache entry 
initialized to Invalid and sets the OWNER 
field to the owner’s identification. The state 
of the owner’s copy is set to Owned NonEx- 
elusively Global Read. 
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3. 

4. 

State=Invalid 

The load request is sent directly to the owner by using 
the OWNER field. IXvo cases are possible: 

(a) Mode=distributed write. The owner sends a copy 
to the requesting cache and the state for this is set 
to UnOwned. The final state of the owner’s copy 
is Owned NonExclusively Distributed Write. 

(b) Mode=global read. The owner sends only the re- 
quested datum. The final state of the owner’s copy 
is Owned NonExclusively Global Read. 

Possibly, a block must be replaced with the one that 
was loaded. Block replacement involves some protocol 
actions that are specified later. 

Write hit. Four cases are possible depending on the state 
of the copy: 

(a) Srate=Owned Exclusively (Distributed Write or 
Global Read). Since this is the only copy, the 
write operation is carried out locally in the cache. 
Tire modified bit is set. 

(b) State=Owned NonExclusively Distributed Write. 
The write operation is distributed to all caches 
which have a copy of the block (defined by the 
present flag vector). The modified bit is set. 

(c) State=Owned NonExclusively Global Read. Since 
no copies are allowed in global read mode, the 
write operation is carried out locally. The modified 
bit is set. 

(d) State=UnOwned. The block is not allowed to be 
modified and an ownership request is sent to the 
memory module. The memory module sends the 
request to the owner (consulting the block store). It 
also changes the corresponding entry in the block 
store to indicate the new owner. Two cases are 
possible: 

i. 

ii. 

Mode=distributed write. The old owner sends 
the content of the state field to the new owner. 
It changes the state of the block to Unowned. 
Mode=global read. The old owner sends a 
copy and the state field to the new owner. It 
distributes the new owner identification to all 
caches which have an invalid copy and inval- 
idates its own copy. 

The subsequent actions of the write operation are 
carried out in the way specified for the Owned 
states above. 

Write miss. A load with ownership request is sent to the 
memory module. Two cases are possible: 

(a) There is no other copy. The block is loaded from 
memory and set to state Owned Exclusively Global 
Read. The write operation is then carried out lo- 
cally and the modified bit is set. 

(b) There are other copies or state=Invalid. 
The request is sent to the owner via the memory 
module, which changes the corresponding entry in 
the block store to indicate the new owner. The old 
owner sets the present flag for the new owner. It 
also sends the copy and the state field to the new 
owner. If 

i. Mode=distributed’ write. The state of the 
owner’s copy is set to Unowned. 

ii. Mode=global read. The old owner distributes 
the new owner identhication to all invalid 
copies and invalidates its own copy. 

The subsequent actions of the write operation are 
carried out in the way specified for write hit for 
the Owned states. 

5. Block replacement. Three cases are possible depending 
on the state of the block to be replaced: 

(a) 

(b) 

(cl 

State=Owned Exclusively (Distributed Write or 
Global Read). A message is sent to the memory 
module excluding it from the block store by clear- 
ing the valid bit. If the modified bit is set then the 
copy is written back to memory. 
State=Owned NonExclusively (Distributed Write 
or Global Read). Ownership has to be transferred 
to another cache. An arbitrary cache marked in 
the present flag vector can be chosen. A request is 
sent to this cache. Upon reception, this cache ei- 
ther sends an acknowledgement back if it still has 
a copy or a negative acknowledgement if it has re- 
placed this block in the mean time. If the cache 
accepts the ownership, it requests the ownership 
according to the protocol described above. If the 
cache does not accept to receive ownership, then 
the old owner has to try another cache. 
State=UnOwned or Invalid. A request is sent to 
the memory module which retransmits the request 
to the owner. Upon reception, the owner clears the 
corresponding bit in the Present flag vector. 

6. Set mode=distributed write. This operation invoives ac- 
quiring ownership which is done according to the actions 
described above. The DW bit is then set. 

7. Set mode=global read. This operation also involves ac- 
quiring ownership and clearing DW. In addition, if state 
is Owned NonExclusively Distributed Write, an inval- 
idation to be is sent to all caches and the DW bit is 
cleared. 

3 Multicast Schemes 

Network trafk for the proposed protocol is mainly caused 
by distributing writes to all caches that have a copy of the 
block in distributed write mode. We shall therefore investi- 
gate the communication cost for some multicast schemes for 
multistage networks. 
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Figure 3: Paths from one node to all other nodes in an N x N 
omega network composed of 2 x 2 switches. 

A multistage network consists of a number of stages of 
switches. Given an N x N network composed of a x a 
switches, the number of stages is m = log, N and the num- 
ber of switches in each stage is N/o. Several topologies of 
multistage interconnection networks have been proposed [ 121. 
For the sake of simplicity, we shall restrict the discussion of 
possible multicast schemes to omega networks composed of 
2 x 2 switches even if the results can be generalized to other 
topologies of multistage networks with other switches. 

In an omega network [8] composed of 2 x 2 switches,.paths 
from a particular source to all destinations can be viewed as 
a binary tree (see Figure 3). where nodes represent switches, 
branches represent links, and leaves represent destinations. 
Stages are numbered i = 0, 1,. . , , m, m = log, N, where 
stage m denotes the destinations. Each switch has two out- 
puts denoted 0 and 1 in Figure 3. 

We will use a metric for network traffic that is as imple- 
mentation independent of the network as possible. The metric 
to be used, which we call communication cost, is the amount 
of information that has to pass each link summed over all 
links. Let Li be the amount of information that passes links 
to stage i, then the communication cost CC is 

CCk2Li (1) 
i=O 

3.1 Scheme 1 
A, routing scheme for omega networks has been proposed 
[8] which works in the following way. Let the destination 
address be D ==c &dl . ..d.,,-1 >. At stage i the output 
is determined by di; if di = 0 then the message is sent to 
output 0, and if di = 1 the message is sent to output 1. One 
bit is stripped off the routing tag at each stage. 

Assume that we want to send a message containing M 
bits to n = 2k destinations, then the communication cost for 
these n messages is calculated by summing up the amount 
of information that passes each link in one path and multiply 
this by n. Hence 

c, c, c, c, c. c, 5 c, 
Figure 4: An example of how a message is routed using 
scheme 2 and an omega network interconnecting N = 8 
caches. 

CC1 = r2fJrn - i + M) = n(m + l)(M + m/2) = 
i=O 

n(log N + 1)(2M + log N)/2 (2) 

The communication cost is proportional to the number of 
destinations. ‘Ibis scheme does not take advantage of that 
there might exist common links in the paths to the destina- 
tions. This could be utilized by sending the mcssagc only 
once over common links. WC shall invcstigatc a rrew schcmc 
that takes this into account and examine its communication 
cost. 

3.2 Scheme 2 
In this scheme, the present hag vector is used as a rout- 
ing tag and it works in the following way. The vector 
v =< voq . . . VN-I > contains one bit for each destination. 
Destination z receives a message iff v,: = 1. 

Consider switches at stage i and let y = 2”-‘. The fol- 
lowing operations then take place in each switch i, i = 
O,l,..., m- 1. 

1. The destination vector C =< COCJ . . . cy- 1 > is reccivcd 
from previous stage; 

2. C is divided into two subvectors A =< cocl . . . CT+-’ > 
and B =< c+c~+~ . ..cy-1 >; 

3. A is sent to output 0 iff there is at least one vector 
elementcj = l,jE {O,l,...$ - I}; 

4. B is sent to-output 1 iff thcrc is at least one vector 
elemenlcj = l,j E {s,!$ + l,..., y- 1). 

In Figure 4 we show how a message is routed from an 
arbitrary source to destinations 0,2,3, and 6, given an omega 
network interconnecting N = 8 caches. 

Let us derive an expression for the, communication cost. 
It should be clear that the communication cost very much 
depends on where the destinations are situated. The besr 
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care occurs when the destinations are neighbors. In this case, 
the vector will be divided and passed to one switch in the 
subsequent stage for the first m-k+ 1 stages. The worst case 
is when the destinations are situated so that the destination 
vector is sent to both outputs for the first L + 1 stages. We 
shall derive the communication cost for the worst case only: 

Communication cost for scheme 2 (worst case): 

In the table below we show the communication cost associ- 
ated with links to each stage. Given n = 2k and N = 2m 
we get 

Stage Communication cost 
0 MSN 
1 2(M i- N/2) 

i i”(M + N/2”) 

c+1 2k(M + N/2”+‘) 

m ik(M + N/2”‘) 
and hence 

CC2 = e2’(M + N/2’) + 2 2k(M + N/2’) 
i=o i=k+l 

and if we replace m and k with their definitions we get 

CC2 = N(logn + 1) + M(2n - l)+ 

nM(logN - logn) $ N -n 

which after reduction leads to 

CC2 = n(M 1ogN - M logn + 2M - l)+ 

‘N(logn+ 2) - M (3) 

Let’s compare the communication cost for scheme 1 and 
scheme 2. 

CC2 - CC1 = n(M(1 - logn)- 

log N( 1 + log N)/2 - 1) + N(logn + 2) - M (4) 

From equation 4 the following can be proved. 

l There exists an n 5 N such that scheme 2 results in 
less communication cost than scheme 1, for N 2 4. We 
call this number break-even between scheme 1 and 2. 

a Break-even will decrease when the message size (M) 
increases. 

l Break-even will increase when the number of caches 
(N) increases. 

In Figure 5, we show the communication cost for scheme 1 
and scheme 2 versus n for a multiprocessor containing 1024 
caches (m is 10) and the message size 20 (M is 20). In this 
case, break-even occurs when n is a small fraction of N. In 
Table 2 we can see break-even for the two schemes and how 
it is affected by the message size (M) and the number of 
caches (N). 

Table 2: Break-even for scheme 1 and 2 and how it is affected 
by the message size (M) and the number of caches (N). 

3.3 Scheme 3 

Scheme 1 and 2 have the main advantage that we can route 
messages to an arbitrary set of destinations. There exists, 
however, another multicast scheme, proposed in 1151 that 
has the restriction that the number of destinations must equal 
a multiple of 2, that is, nl = 2’, 1 = 0, 1, . . . , m and the 
hamming distance of the destination addresses must be less 
than or equal to 1. 

The routing tag, denoted bob, . . . b,-ldodl . . . dm-lr con- 
sists of 2m bits and is used in the following way. Bits bi 
and di are used by stage i; if bi is 1 then the message is sent 
to both outputs (broadcast). Otherwise it is routed the same 
way as by scheme 1, that is, the message is sent to the output 
specified by d;. b; and di are stripped off at stage i. 

We shall investigate the communication cost for this 
scheme given that the destinations are neighbors. In fact this 
is interesting if tasks that share a data structure are allocated 
to adjacent processors. 

Assuming nl = 2’) the communication cost at links to each 
stage is 

Stage Communication cost 
0 M+2m 
1 M+2(m- 1) 

m-l M+2( m - (m - I)) 

m-I+1 2(M + 2(1- 1)) 
. 
m 2’M 

and hence 

m-l I-1 
cc3 = C(M + 2( m - i)) + C 2’+‘(M + 2(1 - 1 - 

i=O i=O 

and if m and 1 are replaced by their definitions we get 

CC3 = (1ogN - lognl + l)(logN + lognl + M)+ 

2(M + 2(logni - l))(ni - 1) - 4(2 + nr(lognr - 2)) 

and hence 

CC3 = nl(2M +4) - lognl(lognI + M + 3)+ 

logN(logN+M+l)-M-4 (5) 
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3. I,! 
Q 

scheme 1 

Y 
D 

scheme 2 
(worst case) 

6r 
Nuder of deslina%ns (n) 

l 

Figure 5: Communication cost vs. number of destinations 
for scheme 1 and scheme 2 (worst case). 

3.4 A Combined Scheme 

Let’s assume that the maximum number of tasks in a parallel 
application is ni = 2’, where nr 5 IV, and that they are 
allocated on adjacently placed processors. At a given mo- 
ment, an arbitrary subset, say n < ni, of these processors 
will have a cached copy of a block of the shared data struc- 
ture. Our question is which of the schemes results in least 
communication cost. 

If scheme 2 is used, the worst case is no longer that of 
equation 3 because the destinations are among ni adjacently 
placed destinations. The worst case is now given by 

m-l-1 
cc; = x (M+ N/2’)+ 

i=o 

m-l+k m 

c 2’-(“-‘)(M + N/2’) + c 2yM + N/2’) 
i=m-l i=m-l+k+l 

which can be reduced to 

cc; = n(M logn, -Mlogn+2M-l)+nllogn+ 

M(logN - lognt - 1) + 2iv (6) 

It can easily be shown that there exists a break-even be- 
tween scheme 1 and scheme 2 (CC; according to equation 6) 
which has the same properties as before. We shall investigate 
break-even between scheme 2 and 3. 

We get 

cc3 - cc; = M(2(n* -n) + n(logn - logn*))+ 

n1(4 - logn) - 10gn1(10gn1 t 3)+ 

logN(logN+1)+n-2N-4 (7) 

The following can be proved from equation 7. 

l There exists an n 5 nl such that scheme 3 results in 
less communication cost than scheme 2. 

scheme 1 

scheme 2 

scheme 3 

Figure 6: Communication cost vs. number of destinations for 
scheme 1.2, and 3 for N = 1024, nl = 128, and M = 20. 

f 

Table 3: This table shows which scheme results in least com- 
munication cost for 1024 caches when the maximum number 
of destinations (ni) equals 128. l=scheme 1, 2=scheme 2, 
and 3=scheme 3. 

Break-even between scheme 2 and 3 will increase when 
the message size (M) increases. 

Break-even will decrease when the number of caches 
(N) increases. 

These observations are exemplified in Tables 3 and 4. 
Now, assume that N is 1024, nt is 128, and M is 20 and let’s 
investigate the communication cost for scheme 1, scheme 2, 
and scheme 3. In Figure 6 we show the communication cost 
versus the number of destinations according to equations 2, 
5, and 6. 

Scheme 1 is favorable for a small number of destinations, 
and scheme 2 for a moderate number and scheme 3 for a large 
number of destinations. We propose a combined scheme for 
which the communication cost is 

CC4 = min(CCi, CC& CC3) (8) 

In the last section, we shall discuss how to choose the 
scheme with least communication cost. 

4 Performance Evaluation 

Consider a pamlIe application where n tasks access a shared 
read-write data structure. For each block in the data structure 
we assume that exactly one task modifies it and all other tasks 
access it. The fraction of writes to the block is w. 
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Table 4: This table shows which scheme results in least com- 
munication when the message size (M) is 20 and the maxi- 
mum number of destinations (nt) is 128. 

Figure 7: State transition probabilities for write-once. 

We shall compare the average communication cost for each 
reference to the block if the block is stored at memory with 
the communication cost for some classical cache consistency 
protocols. We make the simplified assumption that the com- 
munication cost for a read is twice of that for a write. We 
will only take into account the consistency related network 
traffic (the cache is big enough for the data structure). 

In case the block is stored at memory, the mean commu- 
nication cost for each reference to this block is 

CCNC =(I-W)2ccI +Wccl (9) 

where CC1 is defined in equation 2 with n = 1. 
We now consider the write-once protocol [71. Each cache 

resident block can be in one of two global states; exclusive 
or shared, according to Figure 7. 

If the block is exclusive (only one copy), it will be shared 
if the next memory reference is a read operation. If the block 
is shared, it will be exclusive if the next reference is a write 
operation which lends to an invalidation sent to all caches. 
We model the global memory reference string as a Marcov 
process. Given that the probability of a write is 20, we get 
the transition probabilities according to Figure 7. 

From the state transition diagram, we can derive an expres- 
sion of the mean communication cost per memory reference 
as 

ccwo = w(1 - w)(CC4(n) + 2CC,) 5 

w(1 - w)(n + 2)CCl (10) 

where CC4 is defined in equation 8, since an invalidation 
has to be multicast to n caches on each transition from shared 
to exclusive, and the block has to be loaded on each transition 
from exclusive to shared. 

Next protocol we consider is the distributed write protocol. 
In this case we get 

Figure 8: Normalized communication cost versus fraction of 
writes, for write-once (dashed lines), the two-mode protocol 
(solid lines). The normalized communication cost when the 
block is stored at memory is shown as a reference (bold). 

CCDW = wCC4(n) 5 wnCCl (11) 

because all read operations are local. 
Finally, if consistency of the block is controlled by global 

read, the mean communication cost per memory reference is 

CCGR=(l--?.U)2CCI (12) 

because all read operations have to traverse the network 
twice. 

For simplicity reasons we assume that multicast scheme 1 
is used. From equations 9, 10, 11, and 12 we can prove that 
if distributed write mode is used when w 5 w i = 2/(n + 2) 
and else global read then the average communication cost per 
reference is 

l less than the communication cost without a cache, and 

0 the communication cost for write-once. 

In Figure 8, we show the normalized communication cost 
(communication cost divided by CCi) per memory reference 
for the different protocols. 

5 Discussion of Results 
A cache consistency protocol for multiprocessors with mul- 
tistage networks has been proposed in this paper. One of its 
advantages over previously proposed protocols is that state 
information is distributed to the caches, restricting the size 
of the state memory to be proportional mainly to the size 
of the cache memory. The state memory can be further re- 
duced by a split-cache organization, where only parts of the 
available cache supports shared read-write data structures. 

Since the present flag vector is used only by rhe owner, 
we could separate parts of the state memory from the cache 
directory and select an entry in the state memory using an 
associative memory scheme. The size of the state memory 
could then be reduced. 

The protocol is a type of ownership-protocol; a block must 
be owned before it is modified. For any application where 
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each block of its shared data structure is modified by at most 
one task, ownership will not change. This is true for many 

supercomputing applications such as algorithms based on ma- 
trix operations. However, for applications where several tasks 
can modify a block, or when tasks can migrate, ownership 
will change which increases the network traffic, 

We also analyzed some multicast schemes for multistage 
networks and found that communication cost can be reduced 
considerably if tasks are allocated on adjacently placed pro- 
cessors, employing different schemes depending on the num- 
ber of tasks as proposed in the combined scheme of equa- 
tion 8. In that scheme, break-even between scheme 1, 2, and 
3 only depends on the number of caches (N), the maximum 
number of tasks (nl) and the message size (M). It should 
be possible for the compiler to determine both the message 
size and the maximum number of tasks and consequently 
break-even. Break-even for a whole data structure could be 
stored in some registers. Hardware mechanisms could then 
use the contents of these registers together with the number 
of present flag bits that are set to determine which of the 
schemes to use. 

We also found that the upper-bound for the communication 
cost could be reduced considerably using fhe two-mode pro- 
tocol. We modeled the global reference string as a Markov 
process. This is justified for many algorithms based on matrix 
operations. However, communication cost for write-once can 
be much lower given locality in write operations. The point 
here was to show that write-once and distributed write can 
result in huge network traffic. By employing the two-mode 
scheme we can limit the upper-bound of the communication 
cost to a value lower than that without a cache. This is im- 
portant if the multiprocessor is to support general-purpose 
applications. 

By measuring the fraction of writes in the distributed write 
mode and the fraction of reads in the global read mode it 
should be possible to choose the mode with least commu- 
nication cost. This could be done by using two counters; 
one counter counts all memory references to a block, and 
the other all reads to this block in global read mode. The 
present flag vector reflects the number of tasks if the cache is 
assumed to have space for the whole data structure. Conse- 
quently, zu1 can be specified and the mode could be selected 
from these measurements. 
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