
On Data Synchronization for Multiprocessors

Hong-Men Su Pen-Chung Yew

Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

Abstract

As the grain size becomes smaller, more parallelism can
be found in most programs. However, to exploit smaller grain
parallelism, more efficient synchronization primitives are
needed to reduce the increased synchronization overhead. The
granularity of parallelism that can be exploited on a multipro-
cessor system depends heavily on the type and the efficiency of
the synchronization supported by the system, For medium-
grain parallelism, ordered dependences such as data depen-
dences and control dependences need to be enforced in order to
guarantee the correctness of the parallel execution. Hence,
data synchronization is one of the major sources of synchroni-
zation overhead in the program execution.

In this paper, we classify the synchronization schemes
based on how synchronization variables are used. A new
scheme, the process-oriented scheme, is proposed. This
scheme requires a very small number of synchronization vari-
ables and can be supported very efficiently by simple hardware
in the system.

Keywords: data dependences, data synchronization and
parallelizing compilers.

1. Introduction

In shared-memory multiprocessor systems such as the
Cray X-MP, the Alliant FX/8, the IBM 3090, the Cedar sys-
tem [15] and the RP3 [21], speeding up the execution of a sin-
gle job (as opposed to the improvement of system throughput)
is of primary concern. In many scientific applications, getting
good performance out of these systems has proven to be a non-
trivial task. It requires exploiting all levels of parallelism in
algorithm, program and machine architecture. It has been
known for many years through Amdahl’s Law that a small
portion of serial code in a program can severely limit the
speedup that can be obtained from parallel processing. Blindly
adding more processors to a system without considering

Permizzion to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct conuner-
cisl advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copyiug is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific pcrmi~zioo.

0 1999 ACM Ol384-7495/89~0000~0416$01.50

software issues will contribute very little to the system perfor-
mance, and may actually be harmful due to the requirement of
bulky interconnection schemes.

Exploring parallelism in algorithms and user programs
has become a major thrust in parallel processing. Many

compiler techpiques, have been developed to detect and
enhance parallelism. Several successful parallelizing compilers
such as VAST from Pacific Sierra, KAP from Kuck and Asso-
ciates, Inc., University of Illinois’ Parafrase [13], Rice
University’s PFC [2], IBM’s PTRAN [l], to name a few, have
been developed over the years. Empirical data have shown
that parallelism can be exploited quite successfully in many
applications on multiprocessor systems (14,161. It has also
been found that as the granularity of the parallelism becomes
smaller, more parallelism can be found in most of the pro-
grams.

The trend of exploiting lower-level parallelism can be
witnessed by Gray’s moving away from large-grain macro-
tasking to support medium-grain microtasking in the Cray
X-MP. However, aa lower-level parallelism increases, more
synchronizations become necessary. The overhead of these
synchronizations determines the granularity of parallelism
that can be exploited effectively. The more efficiently a sys-
tem can support these synchronizations, the smaller the
granularity (and hence, the more parallelism) can be exploited
on the system. The data-flow eomputation model represents
one extreme in which the granularity of parallelism is
exploited down to the individual arithmetic operation level.
Drastic architectural change is needed to support such sys-
tems.

In most scientific applications, loops (such as DO loops in
Fortran) usually contain most of the computation in a pro-
gram and are the most important source of parallelism [14].
Each loop often contains a large number of iterations with
comparable running time in each iteration. The structure of
these loops is very well defined, making it relatively easy to
schedule them on a large number of processors.

Very often, the iterations of a loop are independent of
each other and no interaction is needed when they are exe-
cuted on different processes (they are called Doall loops in
(251). Many techniques have been developed to identify paral-
lel loops and to transform a serial loop into a parallel loop
[25]. However, even more prevalent is the case where the
result produced in one iteration is used in a later iteration, or
data fetched in one iteration is updated later in another itera-

Thin work ia supported in part by National Science Foundation under Grant
No.US NSF ~-8410110, NASA NCC Z-559, the U.S. Department of Energy under
Grant No. US DOE DE-FGOZ-ZSER25001, and IBM Corporation.

416

http://crossmark.crossref.org/dialog/?doi=10.1145%2F74925.74972&domain=pdf&date_stamp=1989-04-01

tion (see Fig.2.1.a). This data access order is called data
dependence [13]. Data dependence has to be enforced in order
to preserve the semantics of a program. One way to enforce
data dependences is to execute the loop sequentially which, of
course, is very undesirable. However, if synchronization
schemes are provided to aliow those data dependences to be
enforced among processes, all of the loop iterations can be
executed concurrently (such loops are called Doacross loops
in (81). Of course, depending on the amount of time a proces-
sor haa to wait for another processor to satisfy the data depen-
dence, it may not be desirable to run a loop concurrently. A
compiler is required to perform thorough data dependence
analysis on the loop to determine which loop should be a
Doacross loop. These issues have been studied quite exten-
sively [1,4,8,25] and are beyond the scope of this paper.

Recognizing the importance of these low-level synchroni-
zations in the exploitation of medium-grain parallelism, many
recent multiprocessor systems are beginning to provide archi-
tectural support for such functions. The Cray X-Mp has a set
of shared semaphore registers [17], the HEP has a full/empty
bit associated with each memory word [22], the Alliant FX/8
has a concurrency control bus and a set of ‘synchronization
instructions (31, and the Cedar system has a key/data scheme
and a synchronization processor in each global memory
module [26], etc.

In this paper, we first examine the issue of data depen-
dences in section 2. In section 3, the existing synchronization
schemes for enforcing data dependences are classified based on
how synchronization variables are used. The advantages and
the disadvantages of these schemes are also discussed. We
then propose in section 4 a new synchronization scheme to
eliminate most of the shortfalls discussed in section 3. Several
examples of how to use this new scheme to exploit parallelism
in programs are shown in section 5. In section 6, the hardware
support needed to implement such a synchronization scheme is
described. Section 7 contains our conclusions.

2. Dependence6 and Synchronization

2.1. Data Dependence

The dependence8 of programs consist of data and control
dependences. Control dependence is caused by conditional
branches. It can be handled by the methods similar to those
for data dependences [l&26]; hence, we will only concentrate
on data dependence here.

Data dependence includes (1) flow dependence (read-
after-write), (2) anti-dependence (write-after-read); and (3)
output dependence (write-after-write). These data depen-
dences are extremely important in detecting parallelism and
program restructuring. They imply a sequential order on
accessing a data element, and need to be enforced in that
order for correct data values. Hence, they can limit the
amount of parallelism in a program.

According to their effects on program execution, the
dependence relations can be categorized into two types [ZO]:
the ordered dependence and the aceem dependence (or
the unordered dependence). An accem dependence
occurs when several processes are trying to access a critical
region. Each time only one process is allowed in the critical
region. However, the order that those processes can enter the
critical region is not restricted. It appears in many
transaction-type operations and in barrier synchronization.
Monitors 1121, Fetch&Add [IO], P’s and V’s operations or the

like can be used effectively for this type of synchronization.
Since maintaining access dependence only needs mutual exclu-
sion, a hardware cache coherent scheme can be easily extended
to enforce it [S]. Most synchroniration research of the past
has concentrated on enforcing this type of dependence.

In this paper, we focus on the ordered dependence
which occurs most frequently in numericai programs, and
which often determines the amount of parallelism that can be
exploited. An ordered dependence exists when the order of the
accesses to an object is to be enforced. A data dependence
analysis can be performed on a program to obtain a data
dependence graph using any of the schemes proposed in
[2,4,25]. A data dependence graph is a directed graph. Each
node in the data dependence graph is an executable statement,
and each arc represents a data dependence between two nodes.
The node at the tail of the arc is the ao~tce, and the node at
the head of the arc is the sink of the data dependence. Since
all three types of data dependences specify some kind of access
order, there is no need to differentiate them when we are just
trying to enforce the access order.

To simplify our discussion, we will assume that only one
level of nested DO loops is to be executed in parallel. Each
iteration of the loop is a process which can be scheduled on a
processor. The idea can be extended to multiply-nested loops
as well. In Fig.P.l.a, there is a loop with 4 statements: Sl, S2,
S3, S4 and S5. Its data dependence graph is in Fig.2.1.b.
There are flow dependences SL--rS2, Sl-&3 and S4+S5;
anti-dependences S2-+S4 and S3-&4; and the output depen-
dence S1-84. Notice that by enforcing dependences S1-63
and S3-&4, the dependence SldS4 can be covered. In
Fig.2.l.c, we expand the loop to show data dependences which
are to be enforced between loop iterations. Each iteration is a
process scheduled on a processor, and synchronization inatruc-
tions are needed when these processes are accessing data ele-
ments of the array A. We call this type of synchronization
data aynchroniration.

Data dependence distance is a very useful concept in
data synchronization. In Fig.B.l.c, the flow dependence
~1-&2 occurs in processes two iterations apart, i.e., the result
stored in Sl of iteration i is used in S2 of iteration i+b The
data dependence distance between Sl and S2 is thus 2, and is
shown next to the corresponding dependence arc in Fig.2.1.b.
This data dependence distance can be easily computed by sub-
tracting the subscript expressions of the two array references.
The rest of the data dependence distances are shown in

DO X=1, N
Sl: A[I+3]= . . .
52: . ..= A[I+l)
s3: . ..= A[I+2]
S4: A[I]= ..I
s5: . . = AII-l]

END DO

(b). (c)-
Fig.2.1 (a) A loop with ordered dependences. (b) Its .dependence

graph. (c) Its expanded dependence graph rhowing only dependencss
around A/ii-S]. (Dashed liner: execution order within iterations;

Solid her: cross-iteration depcndences.)

417

Fig.Z.1.b. All of the data dependence8 in Fig.2.1.a have a con-
stant distance.

a.2. Data Synchroniration

All data dcpendences must be enforced by synchroniring
processes when they are accessing those shared data items. As
shown in Fig.2.1, one statement can be the source or the sink
of several data dependences. The following requirements must
be met in order to perform correct data synchroniaation:

(1)

(2)

The process which executes the source statement of a
data dependence can signal the completion of its execu-
tion to the process which executes the sink of the data
dependence only after the effect of its execution can be
observed by that process. For example, in a flow depen-
dence, the process which updates a value in its private
cache must wait until the updated value is reflected in
the shared memory, or reflected in a coherent cache state
before it can signal the completion of its execution [Q].

A process executing a statement which is the sink of
several data dependences (e.g. S4 in Fig.2.1.e) must wait
until all of the source statements have completed before
it can proceed:

Any synchroniration requires some information to be
transmitted between synchronizing processes. In data syn-
chronization, this information can be stored in full/empty bits
in the HEP, the synchroniration registers in the Cray X-MP
and in the Alliant FX/8, or the key/data pair in the shared
global memory of the Cedar system. To facilitate our discus-
sion, we use synchronization variables to represent this infor-
mation. Different data synchronization schemes can incur
different amount of overhead. Schemes such as HEP’s
full/empty bits, or Cedar’s key/data pair require large
amount of storage for synchronisation variables in shared glo-
bal memory. They are suitable for large scale multiprocessor
systems. In thii paper, we propose a scheme which requires
smaller amount of storage for synchronization variables and is
more suitable for small scale multiprocessor systems such ss
the Cray X-MP, the Alliant FX/8, the Encore Multimax, etc.

-3. Data Synchronization Schemes

Constant-distance dependence occurs very frequently in
numerical programs 1251 and, due to its 8xed dependence dis-
tance, can be enforced by very efficient mechanisms. Various
data synchronisation schemes can be characterized by the way
synchronisation variables are used.

8.1. Data-Oriented Schemes

In this type of schemes, at least one dedicated synchroni-
sation variable (called a key) is associated with each datum
on which access order is to be enforced. A datum can be a
scalar or an element of a structure, such es an array. A
datum and its key(s) are usually stored in the same memory
module, BO that a data accesa and its related synchronization
operation can be done efficiently by the memory controller.
This type of scheme usually requires a large number of keys.
Initialiring these keys can result in significant overhead unless
the number of processors in the system is large.

Based on different programming models, two types of
schemes have been proposed: the reference-based schemes,
and the inmtance+based schemes. We use the program in
Fig.2.1 as an example to illustrate these schemes. Fig.3.1
shows how accessing array element A[i+3] is synchronized
among processes using these schemes.

I=

Sl:

S2:

53:

54:

SK:

i i+l i+2 i+3 i+4
0 0 0 0

:o 0 1 0 0

N

0 0 0 0

000 30

0 0 0 0 4
I J

(a) key: Ra

synchronisation operations:

0 0 0

(b) keys: la, Ib and Ic

Q : write N copies of data;
set all keys to full.

0 : wait until key>N; 0
read/write data; ++key.

: wait until key=full;
read data.

Fig-g.1 Synchronization activities of Fig.2.1 under
(a) The referencobased scheme (b) The instance-based scheme.

.

*Reference-Based Schemes. Each data element is asso-
ciated with a key. In Fig.B.l.a, each number in the circles
indicates the access order which is to be compared with the
key when accessing the data element. The key is initialized to
0, and after each access the key is incremented (see the
instruction in Fig.3.l.a). The way the access order is checked
in Fig.3.1.a allows data fetches in S2 and S3 to be performed
in any order. Cedar synchronization instructions can be used
to perform these operations very efficiently in a global
memory module 1261.

*Instance-Based Schemes. Each updated value of a
data element is assigned a different memory location and a
different key to allow read operations after the update to
proceed in parallel (see Fig.3.1.b). It is similar to the single-
assignment rule in the functional languages, where no output
dependences and anti-dependences exist in the program. The
full/empty bit in Denelcor’s HEP machine (221, where each
key only assumes two values (0 for empty and 1 for full), is
very suitable for this scheme. Variable renaming is needed
during compile time to remove output and anti- dependences.
Multiple copies of an updated value are also needed if there
are multiple reads for the updated value.

3.2. Statement-Oriented Schemes

In this class of schemes [3,18), each statement Sa is
assigned a synchronization variable ac (called statement
counter or SC) shared among all instances of data depen-
dences in which So is the source (Fig.3.2.b). It enforces a
sequential order such that, after process i completes its execu-
tion of Sa, it waits until sc=i-1 before it increments SC to i.
Hence, when sc=i, all of the process j, j<i, must have com-
pleted the execution of Sa. Initially, UC is set to k-l if the first
iteration is k. For process i to execute a sink statement Sb
(Fig.3.2.a), it has to check if each of its corresponding sources
has completed, i.e., for each Sa with Sa+Sb, it checks if
SC&D, where D is the distance of Sa-db. If a statement is
both a source and a sink, it must behave as a sink first. The
Alliant FX/8 uses this scheme to execute Doacross loops with
the support of a concurrency control bus and Advance/Await
instructions [3]. Statementoriented schemes are fairly simple
to implement, but they force the updating of the SC associ-

418

I= i-2 i-l i

Sk nglo

52: r q “r$D

s3: Liq$)

s4:

jD

q ltif-J
s5: q d‘

(a) sink activities

i i+l i+2

Q
1 Cl Cl

2 q

k 3 6” cl

Q
4

q “o q
(b) source activities

n
synchronization operations for node

0
U

N - = Advance(N)
= wait until SC~=I-1;

set SC[N] to I.

MA-O =Await(d,N)

= wait until SCM>I-d.

Fig.S.2 The statement-oriented scheme for Fi.2.1.

ated with each source statement to a sequential order, result-
ing in some loss of parallelism. For loops with many data
dependences, statement-oriented schemes are also not suitable
(see Example 1 in section 5).

4. A Proccrr-Oriented Scheme

In this section, we propose a new scheme which only
requires a small number of synchronization variables. There
exists a duality between this scheme and the statement-
oriented scheme. The main idea is that, instead of assigning
one synchronization variable to each datum or each statement,
each process (i.e., each iteration) is assigned one synchroniza-
tion variable, called a process counter (PC). The PC can
only be updated by the process itself. A PC can be viewed as
part of the state of a process which contains two pieces of
information: the procese id and the step. The step of a PC is
updated after the completion of each source statement (see
Fig.4.1). The maximum step for a PC is the total number of
the source statements in each iteration. The execution of a
sink statement requires it to check the PC’s of all of its
corresponding source statements (see Fig.4.1).

The number of iterations in a loop is usually very large.
Assume we only have X PC’s in the system. The loop needs
to be folded to share X PC’s, and each process needs to
acquire a PC before it can update the PC. The process id of a
PC is thus used to designate the otuncr of the PC. PC’s can
be arranged so that processes i, X+i, 2X+& etc. share the
same process counter PC[i], where l<iQE. Process X-ti can --
update PC[i] only after process i releases it (by executing

release-PC as explained later in Fig.4.2.a). However, a process
can start its execution without obtaining a PC as long as it
need not update the PC. Note that initially PC(i] should be
assigned to process i, where l<ig.

Several useful primitives are needed in the process-
oriented scheme (please refer to Fig.4.2.a): (1) set-PC which
updates the step of the PC after the completion of a source
statement (except the last one); (2) release_PC which gives
the PC to the next process after the completion of the last

I= i-2 i-l i

sl: a.pp

52: 02i$~

53:

L

4 &o

s4: ci ;-@?I

s5: q d‘
(a) sink activities (b) source activities

synchronizstion operations for node
- 0
o- E set-PC(N)

set PC[I] to N.

i&b” -0 s waitPC(d,N)

E &it imtil PC[I-d]>N.

Fig.4.1 The process-oriented scheme for F&.2.1.

i: the number of the iteration being executed.
X: number of process counters used.
mod: modulus operation.
PC’s format: <owner, step >, and

<w,x>><y,r> iff w>y, or w=y and ~2%.
Initially, PC[iJ=<i,O>, l<i<x.

l setJ’C(eurrcnf&cp): /* update PC to current step. l /
PC[i mod X].step c currentstep.

l releamePC(): /* release PC for process i-!-X to use. */
PC[i mod x] - <i-f-X, O>.

l wait_PC(dist, step): /* i-&t: pid of the source. */
while(PC((i-disf) mod Xj -z <i-dirt, rtepr).

l get_PC(): /* get the ownership of PC. */
waitPC(0, 0). - (4 -

doacrosa i=l, N
Sl(i);
getPC(); /* wsit for the PC to be available. */
setPC(1); /* completion of Bource 1. */
waitPC(2, 1); /* until process i-2 completes source l.*/
S2(i);
setPC(2);
waitPC(1, 1);
S3(i);
seLPC(3);
waitPC(1, 2);
;$PC(2, 3);

relerr&PC(k /* complete last source and release PC. */
waitPC(1,4);
S5(i);

end doacross - (b) -

Fig.4.2 (a) The primitives for the process-oriented scheme.
(b) The Doacross loop tranzformed from the loop in Fig.2.1.

source statment; (3) waitJ’C which, before execution of a
sink statement, spin waits until the corresponding source is
completed; and (4) get-PC which waits for acquiring the own-
ership of a proper PC. Fig.4.2.b shows the code needed to syn-

419

myPC: the index to the owned PC.
owned: a flag denoting if a process haa got its PC.
-w&PC, get-PC, set-PC, releasePC: same as before.

slasd..index(pid):
myPC c pa; /’ me pid M index to PC. */
owned= FALSE. /* Initially, PC is not owned. ‘/

l markPC(currentstcp):
if(not owned and PC[myPC mod X].owner < myPC)
/* not previously owned and not transferred, don’t change PC. ‘/

return;
setPC(currenLutcp);
owned= TRUE.

.transferPC():
it(not owned) get_PC();
releaaeSC(). /* give ownership to next process. ‘/

Fig.4.8 The improved primitives for the process-oriented scheme.

chronize the loop in Fig.2.1. The transfer of the ownership is
accomplished by process i executing releaae_PC on the com-
pletion of its last source statement, and by process X+i exe-
cuting get-PC before it first updates the PC.

Notice that in the statement-oriented scheme, the owner-
ship of a SC is shared in turn by all instances of the same
source statement. Since different instances of the same source
statement very often can be executed simultaneously as in
Fig.2.1, such “horizontal” sharing introduces unnecessary
delay due to waiting for ownership. In other words, the pro-
cess i must wait for process i-l to release the ownership of
each SC, implying that process i must wait for the completion
of all the processes before it. If for some reason one process
delays its release of the SC (e.g. executing a longer branch), all
later processes will be affected. In the process-oriented
scheme, a PC is shared by all source statements in the same
process. Since statements are assumed to execute sequentially
within a process, this ‘vertical” sharing of a PC can never
result in such delay. In the folded version, the delay due to
waiting for ownership of a PC currently belonging to process i
can happen only in processes X+i, 2X+& etc. However, this
occurs less frequently than in the statement-oriented scheme if
X is large enough.

Actually, if we study it more carefully, the requirement
of acquiring a PC before executing the first source statement
as in Fig.4.2.b can be further relaxed. We can have an
improved scheme based on the new primitives in Fig.4.3. On
completion of each source statement (except the last one), a
process tests the ownership of the PC. If it owns the PC, then
a new state is marked; otherwise, it proceeds without waiting
for the availability of the PC. This is done by executing
mark-PC. However, to signal the completion of all its source
statements and to transfer the ownership of the PC to the
next process, it must execute transfer2’C after the
completion of the last source statement. Executing
transferJC guarantees that a process has owned a PC and
has the right to transfer the PC to the next owner. In Fig.4.3,
another primitive load-index is also introduced. It saves the
index of a PC in an internal variable myPC to be used by oth-
ers primitives and resets the flag owned. In the improved
scheme, the new primitives mark-PC and transferSC
replace the set_PC and the release-PC, respectively; while
the loedjndcx can substitute the get-PC. (In fact,
loadindex can be the first statement of the loop body.)

5, Applications

Because the process-oriented scheme uses only one syn-
chronization variable per iteration for all of its dependences, it
can handle much more complicated cross-iteration depen-
dences, especially when a Doacross loop contains other serial
loops or procedure calls, and when loop boundaries need to be
considered.

*Example 1. a Doacross loop enclosing a serial loop:
DO I=2, N doacross i=Z, N

load-Index(i);
DO J=2, N do k=2, N, G

waitPC(l,k);
do j=k, k+G-1

St: A(I,J]=A[I-I,J] SW);
+A[I,J-l] end do

mark-PC(k);
END DO end do

transferPC();
END DO end do

(a) The original loop. (b) The Doacross loop.

-1

1=2x3,4.6., ,nk2 processes 1

J=3 ,k?-

(d) Asynchronous pipelining

Fig.5.1 Synchroniring a Doacross loop enclosing a serial loop.

Fig.5.1.a is a simplified four-point relaxation code. Fig.5.l.c
depicts the well known wavefront method which requires
loop index transformation. A barrier synchronization is
needed between two consecutive wavefronts. However, the exe-
cution of a barrier requires that processors be busy-waiting at
the barrier until all of the processors arrive. An alternative is
to use an asynchronous pipelined method as shown in
Fig.5.l.d, in which we serialize the inner loop as a process and
execute the outer loop as a Doacross loop. The two methods
will have the same number of parallel steps; however, the
efficiency and the processor utilization is much better in the
asynchronous pipelined method.

Since there are N-l synchronization points between two
consecutive processes (Fig.S.l.d), this implies that N-l SC’s
are needed to get the maximum parallelism if we use the
statement-oriented scheme. However, in practice, N is very
large which makes the statement-oriented scheme perform
poorly when the number of SC’s is limited. By using the
process-oriented scheme, we are able not only to synchronize
the loop with a small number of PC’s, but also to exploit the
parallelism very effectively. We can also reduce the amount of
synchronization needed between successive iterations of I by
grouping G iterations in the J loop as shown in Fig.5.I.c.
(Assume (N-1)/G is an integer.) Some extra delay will be
incurred between the successive iterations of the I loop; how-
ever, the amount of synchroniration can be reduced

420

significantly due to the increase of granularity.

l Example 2. A multiply-nested Doacross loop:
DO I=l, N doacross i=l, N

DO J=l, M doacross j=l, M

loaUndex((i-l)*M+j);

Sl: A[I,J]= . . . WJ);
msrkPC(1);

S2: B[I,J]= A[I,J-1] . . . wait_PC(l,l);

s%j);
transferPC();

53: . . . = B(I-l,J-I] wait_PC(M+l,2);

4id;
END DO end do

END DO end do

(a) The original loop (b) The Doacross loop

I=1 I=2 I=3

J=l 2 3 4 5 1 2 3 4,5 12345

Ipid= 1 2 3 4 5 6 7 8 910 11 12 13 14 16

0 : write A[1,5j @ : read A[2,0]

(c) The expanded dependence graph with M=5.

Fig.6.2 Synchronizing a multiply-nested Doacross loop.

One of the major problems in data-oriented schemes is that
they are quite awkward in handling loop boundaries when
there are multiple loop nestings. As shown in Fig.5.2.c, at
loop boundaries (when J=l), A(I,J-l] in S2 and B[I-l,J-2] in
S3 do not depend on any source ea shown by dashed lines.
Whereas, in the rest of the iterations, A[I,J-l] in S2 depends
on A[I,J] in Sl, and B[I-l,J-2) in S3 depends on B[I,J] in S2 ss
shown by solid lines. These boundaries need to be handled
explicitly by a lot of extra code and overhead.

Using the proces-riented scheme, these loop nestings
can be implicitly coalesced to obtain a linearized proceez id
(Lipid) as the index to the PC. When loop index set is equal to
(i,j), the lpid is (i-l)‘M+j. After that, the loop can be exe-
cuted as a singly-nested loop without worrying about loop
boundaries (Fig.5.2.b). However, implicit coalescing can intro-

duce extra dependences (shown as dashed lines in Fig.5.2).
Some parallelism may be lost from these extra dependences,
but the complexity Jf detecting boundaries is avoided. That
overhead can be O(r d) per iteration, where r is the number of
occurrences of an array variable and d is the depth of the
nested loop 1241.

Note that data-oriented schemes still have the boundary
problem even after the loop is linearized. This is because, in
those schemes, synchronizations are done on each data ele-
ment. The number of times each data element is accessed (or
synchronized) in a loop is fixed, and may be different for those
data elements referenced at the loop boundaries. Lineariza-
tion cannot change the number of times a data element is
accessed. Furthermore, introducing extra accesses for those
data elements at the boundaries to make the number of syn-

chronizations the same for all data elements requires the test-
ing of boundaries anyway. It is not as easy as in our process-
oriented scheme.

*Example 3. Dependence sources in branches:

Fig.68 Synchroniring depcndences with sources in branches.

When there are conditional branches, some of the data depen-
dences may not exist because a branch may not be taken. One
solution is as follows: if a synchronization primitive changes a
synchronization variable in one path, the synchronization vari-
able must also be changed in all other paths to allow the effect
to be the same no matter which branch was taken.

In Fig.5.3, Pl executes tranefer-PC before it completes
its execution. Every aink of Pl eventually can proceed. How-
ever, Pl should inform the sinks to proceed as soon as possi-
ble. So in Fig.5.3, after Sd in branch C, markJC(3) is exe-
cuted Instead of mark_PC(2); and markSC(3), though not
required, is added as the first statement in branch B.

-Example 4. Implementing a butterfly barrier:

@ @-procensor id
i=l

i=2

i=3

0 : setPC
A : waitPC

wx 1 whiie(P&id xor 2$tep <i:

(a) The computation graph (b) The corresponding code

FIg.6.4 Implementing a butterfly barrier.

A butterfly barrier (Fig.5.4.a), which can remove the hot-spot
effect, performs better than a counter-based barrier even in a
small bus-based system [6], and it needs no atomic operation.
Using the process-oriented scheme, it requires fewer synchron-
ization variables and operations than those needed in (61. Pro-
cedure b-barrier0 in Fig.5.4.b is called by each processor with
different pid, where P, the number of processors, is a power of
2 and xor is a bitwise exclusive-or operation. Since each pro-
cess corresponds to a processor in this case, no folding is
needed. Thus the computation involved in obtaining the own-
ership can be eliminated. The while statement in Fig.5.4.h is a
modified version of wait_PC. Note that with a minor
modification, b-harrier0 can work even when P is not a power
of 2 [Ill.

421

l Example 5. Executing phases of computation with local
communication:

fft(p&f, P): /* p&f, P: same an in b_barrier(). */
load-bdex(pid);
do i=l, log(P)

BA!HCEFT(pid, i, P);
m&PC(i); .
nhie(PC[pid xor 2’].step < i);

end do.

The example shown here is an FFT. If we partition the data
used in the FFT into chunks equal to the number of proces-
sors, the computation pattern is the same as a butterfly bar-
rier in Example 4, except that an additional BASICJ’FT() is
performed in each stage. However, since communication only
takes place between two processors in each stage, there is no

need for a global barrier as in [7]. Instead, in each stage, after
each processor completes its computation in BASIC-FFT(), it
only waits for another processor with which it exchanges data.
Procedure fft() is intended to be called in the same way as
bbarrier() in Example 4. In fact, the process-oriented scheme
is very suitable for code with many phases of computation.
After each phase, a limited amount of communication is
needed in each sub-group. Another example is the discretiza-
tion method for solving partial differential equations [19], in
which a process only needs to synchronize with processes com-
puting its neighboring regions.

Several comments can be made about the process-
oriented synchronization scheme. First, it can be incorporated
into a concurrentizing compiler using algorithms similar to
(IS]. Second, it can also be used sa a new paradigm in parallel
programming. Only one synchronization variable is needed in
each process to handle all ordered dependences. Third, it fits
very well in dynamic scheduling schemes such as processor
self-scheduling [24], where better load balancing among pro-
cessors can be achieved. As a matter of fact, dynamic schedul-
ing is assumed in all of the examples shown above.

6. Hardware Considerations

Notice that because we are trying to support medium-
grain parallelism, it is not efficient to use context switching
whenever a synchronization operation needs to wait. Busy-
waiting is more appropriate in this case. A good scheduling
policy such as proposed in [23] can reduce such busy-waiting
even further.

Excluding busy-waiting, each access to the source or the
sink of a data dependence requires only one extra access to its
corresponding PC. The extra traflic incurred is small, but the
parallelism obtained can be very significant. The PC’s could
be incorporated in a hardware-maintained coherent cache sys-
tem, even though they may be purged out of a cache.

To reduce the access time of a PC and the impact of
busy-waiting traffic, we can use a dedicated synchronization
bus and some synchronization registers to store the PC’s as in
Alliant FX/8. Each processor keeps an image of all PC’s in its
local synchronization registers. Whenever a PC is updated in
one processor, the new value is broadcast via the bus to all of
the other processors so that the local image of the PC in each
processor can be updated. Notice that, since a PC needs to be
updated only after the source statement is completed, the
amount of such traffic is no worse than that in the main data
bus. Busy-waiting operations can then be performed on the
local copies of the PC’s without introducing extra traffic to

the synchronization bus. Also, since the process id is used
quite frequently in our synchronization primitives, a special
register myPC for each processor can be used to store its
value. A local status bit owned is also helpful to indicate if it
has already owned its corresponding PC. Owned is set when
a process updates its PC in ma&PC, and is reset in
loadindex. The proposed scheme works best if the number of
PC’s (i.e., X) equals to a power of 2 and is a small multiple of
the number of processors. The modulus operation needed in
computing the index of a PC can then be done easily by taking
the lower bits of a process id.

It is worth noting that the primitives need not be
atomic, because each PC is monotonically incremented by.
only one processor at sny time and waitPC waits for the PC
to exceed (not stay at) a certain value. This makes the primi-
tives much easier to implement. Also, the two fields in a PC,
i.e., owner and step, need not be updated simultaneously
(this can reduce the bus width). There are two reasons for
this. First, in our scheme, it is impossible for two processes to
update the same PC at the same time. Second, the read of a
local PC (by w&PC) and the update of the PC (by a
mark-PC or transfer_PC) can proceed in any order without
changing the desired synchronization behavior. Assume the
value of the PC is <i,jl>. An update will change it to either
<i,j2> where j2>jl (by a mark-PC), or <i+X,O> (by
transfer-PC). In the former case, a read either gets <i,jl> or
<i,jZ>. If retried, it will eventually get the value <i,jZ>.
In the latter case, if step is updated first, then the transition
of the PC’s values is <i,jl>+<i,O>-+<i+X,O> which
again will not cause any undesired side effect.

Further reduction in the broader& transactions (i.e.,
writes) is possible because a PC is updated by the sequence of
mark-PC(l), mark-PC(a), and transfer-PC from the same
process. Each later write covers all previous ones. However,
individual information should be provided as soon as possible.
As seen in section 4, a ma&PC need not update the PC if the
ownership has not been obtained. However, its ownership is
guaranteed by the final transfer-PC in each process. This can
reduce the number of global synchronization operations and
unnecessary waiting. A similar improvement can also be
applied to hardware. For example, an issued write need not
be sent out if a second write to the same PC arrives before the
former has gained the bus access, thus avoid the extra bus
traffic.

The above proposed implementation is similar to the
concurrency control bus in the Alliant FX/8. However, by
allowing a synchronization variable (PC) to be indexed by a
variable’ (Le., pid needed in the primitives is stored in regis-
ter myPC), it significantly improves the functionality of our
proposed primitives. Hardware and software reduction of syn-
chronization and waiting operations also become easier in our
scheme.

The advantages of the processariented scheme can be
summarized as follows: (1) It eliminates the use of barrier syn-
chronization to implicitly enforce data dependence6 when the
latter is not suitable (Example 5). Memory contentions (i.e.,
the hot-spot effect) and the inefficiency caused by waiting for
the last processor to complete in a barrier synchronization can
be avoided; (2) Compared to the statement-oriented scheme,
it eliminates unnecessary serialization of consecutive iterations

’ The index to P #ynchronis+tion register xcawd by Alli+nt’s Advance and
Await must be a constant.

422

and can handle loops with many dependenees more efficiently
(Example 1); and (3) It can handle multiply-nested loops
without the overhead of checking loop boundaries as needed in
data-oriented schemes (Example 2). It also reduces the
number of synchronization variables and the overhead aszoci-
ated with initializing these variables very substantially.

7. Conclusiona

In exploring low-level parallelism, efficient synchroniza-
tion schemes are needed. Ordered dependences are very impor-
tant in exploring medium-grain parallelism. They require syn-
chronization mechanisms which are very different from the
transaction-type of synchronization such as maintaining the
exclusive usage of a critical region. To enforce ordered depen-
dences, efficient data synchronization is essential.

We have identified issues which are important in data
synchronization. By the method of exchanging synchroniza-
tion information, several synchronization schemes are categor-
ized and compared. A new process-oriented scheme which
requires only a small number of synchronization variables is
proposed. It can be supported by very simple hardware in the
system. Several applications of this scheme are presented to
show its advantages over the previously proposed schemes.

References:
[l]. F. Allen, M. Burke, P. Charles, R. Cytron and J. Ferranta. An Ooeruiew

of thr PTRAN Anal@ Sgrtrm for Multiproccrring. Int. Conf. on
Supcrcomputi~g (June 1987).

I2l.R. Allen and K. Kennedy. ‘PFC: A Program to Convert Fortran to
Parallel Forms”, Rep. MAX-TR82-6, Rice Univ., 1982.

[3]. Allient. FX/Series Architect.urc Manual. Alliant Computer Systems
Corp., 1986.

[4].U. Banerjoo. “Speedup of Ordinary Programs”, Ph.D. Thesis, Univ. of
Illinois st Urbana-Chsmpsign, DCS Report No. UIUCDCS-R-79-989,
1979.

[5]. Bitsr and A. Denpain. Multiproccsnor Cache Synclrranizofion: lasucs,
Innovations, Erolufion. Int. Symp. on Computer Architecture
(June 1986) pp. 424-433.

[B].E.D.Brooks III. The Butterfly Barrier. Int J. of Parallel Program-
mlng (1986) vol. 15-4, pp. 295-307.

[7]. Z.Cvetanovic. Performonce Anolyair of the FFT Algorithm on u
Shored-Memory Paraflef Architecture. IBM J. Rer. Develop. (July
lQS7) pp. 435-451.

18). Ron Cytron. Doacrors: Beyond Vcctorization for Mulfiproceasorr. 1980
ht. Conf. on P~rdlel Proeesh~g (Aug. 1986) pp. 836-845.

[9]. M. Dubois, C. Scheurich and F. Briggs. Synchronization, Coherence, and

Event Ordering in Mulfiproccrrors. Computer (Feb. 1988) pp. 9-21.
[lO].A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliRe, L. Rudolph and

M. Snir. The NYU Ultrocomputcr -- Dertgning on MIMD Shared
Memory Parallel Computer. IEEE Trmng. Comp&. (Feb. 1983) pp.
175-189.

[ll].D. Hensgen, R. Finkel md U. Manber. Two Algorithms for Burrier Sgn-
chroniration. Int. J. of Parallel Progrmmmlng (1988) vol. 17-1, pp.
l-17.

[lZ].C.A.R Hooars. Moniforo: An Operating System Strucfuring Concept.

CACM (Oct. 1974) pp. 549-557.
[13].D. Kuck, R. Kuhn, D. Padun, B. Loazure znd M. Wolfe. Dependence

Gropha ond Compiler Optirnizoiionr. ACM Symp. on Prlnelple~ of
Programming Llngurgca (July 1881).

ll4l.D. Kuck, A. Suneh, R. Cytron, A. Veidenbaum, C. Polychronopouloe,
G. Leo, T. McDuaiol, B. Leosure, C. Beckman, J. Davies and C.
Kruokel. The Bfleetr of Program Restructuring, Algorithm Change, and
Architecture Choice on Program Performance. 1984 Int. Conf. on
Pmmlltl Proeemdng (Aug. 1984).

(151.D. Kuck, E. Davidson, D. Lswrie and A. Sameh. Parallel Supercomput-
ing Today and the Cedar Approach. Science (Feb. lQ88) vol. 231, pp.
907-974.

]lE).M. Kumar. Eflect of Storage Allocofion/Rcclomofion Mefhodo on Poral-
felism and Sforage Requiremrn~r. int. Symp. on Computer Archi-
tecture (June lQ87) pp. 187-205.

(17j.J. Larson. Multitasking on the Crag X-MP-S Mulfiprocerror. Com-
puter (July 1984) pp. 62-69.

~18).Samusl Midkiff and David Psdur. Compiler Algorithm8 for Synehrani-
mfion. IEEE Trana. Comput. (Dec. lQ87) pp. 1485-1495.

(19].DMNicoI and F.H.Willard. Problem Size, Parallel Architecture, and
Optimal Speedup. Int Conf. Prrallel Processing (Aug. 1987) pp.
347-354.

]BO].Anita Ostihaug. Guide to Pwallel Programming on Sequent
Computer Syetemm. Sequent Computer Systems, Inc., 1986.

1211.G. Pfister, W. Brmtloy, D. George, S. Harvey, W. Kleinfolder, K.
McAulifle, E. Melton, V. Norton and J. Weiss. The IBM Reaeorch Parof-
lel Proceraor Prototype (RPJ): Introduction and Architecture. 1986 Int.
Conf. on Parallel Procerring (Aug. 1985) pp. 784-771.

I22j.B. J. Smith. A Pipelined, Shored rcsourcc MIMI Computer. 1978 Int,
Conf. on Pwallel Procersing (Aug. 1978) pp. 8-8.

(231.P. Tang, P. C. Yew and C. Q. Zhu. Impact of Self-Scheduling Order on
Per/ormancc of Mulfiprocesror Sgsfcmr. 1988 Int. Conf. on Super-
computing (July 1988) pp. 593-803.

[24).Peiyi Tang. “Self-Scheduling, Data Synchronization and Program
Transformations for Multiprocessor Supercomputers”, Ph.D. Thesis,
CSRD Report #8OQ, Univ. of Illinois, Urbana-Champaign., 1988.

125j.M. Wolfe. “Optimizing Supercompiler for Supercomputers”, Ph.D.
thesis, Rep.82-1105, DCS, Univ. of Illinois at Urbana-Champaign,
1882.

(26jChuan Qi Zhu and Per&hung Yew. A Scheme to Enforce Ddo Depen-
dence on Large Multiproeerror Sgrfcmr. IEEE Tranm. Software Eng.
(he 1987) pp. 728-739.

423

