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Abstract

We present an evaluation of retransmission strategies over local area networks. Expressions are derived
for the expectation and the variance of the transmission time of the go-back-n and the selective repeat pro-
tocols in the presence of errors. These are compared to the expressions for blast with full retransmission on
error (BFRE) derived by Zwaenepoel [Zwa 85]. We conclude that go-back-n performs almost as well as
selective repeat and is very much simpler to implement while BFRE is stable only for a limited range of
messages sizes and error rates. We also present a variant of BFRE which optimally checkpoints the
transmission of a large message. This is shown to overcome the instability of ordinary BFRE. It has a sim-
ple state machine and seems to take full advantage of the low error rates of local area networks. We
further investigate go-back-n by generalizing the analysis to an upper layer transport protocol, which is
likely to encounter among other things, variable delays due to protocol overhead, multiple connections,
process switches and operating system scheduling priorities.

1. Introduction

With the advent of diskless workstations, network file systems and distributed virtual memory, there
is an ever growing set of applications requiring quick response times for large data transfers over a local
area network. In this paper we present some analytical results of the performance of different protocols

over local area networks, characterized by low error rates and high bandwidth.

Degradation of performance could result from a number of factors. It could be caused by flow con-
trol (for example, the outstanding window size could be very small), or by the host to network interface, or
it could be caused by the choice of retransmission strategy in case of errors. Our focus in this paper is on
this last issue. The principle retransmission strategies considered are the stop-and-wait protocol, the blast
protocol with full retransmission on error ( henceforth referred to as BFRE), the go-back-n protocol and
the selective-repeat protocol. Zwaenepoel, [Zwa 85], presents an analysis of the stop-and-wait and BFRE.
He also presents simulation results for the go-back-n and selective-repeat protocols, which suggest go-
back-n as the strategy of choice for local area network environments. Our main contribution is an analytical
evaluation of the go-back-n and selective-repeat retransmission strategies in the local area network
environment. Our results corroborate those of Zwaenepoel: BFRE becomes unstable much faster with
respect to message size than go-back-n or selective-repeat. However, BFRE has a very simple state
machine and makes other design issues much simpler and efficient. See for example the network inter-

face design of Kanakia and Cheriton [Kan 88]. It also seems ideally suited for an environment where host



processing time is a significant amount of the total time, precisely because the amount of "work™ to be done
by the host is reduced. This is the motivation for our optimal blast protocol which performs well for both

large and small message sizes.

Previous analyses of go-back-n and selective-repeat assume low nodal processing times, high error
rates and high link delays, see for example [Ana 86], [Bru 86], [Moe 86] and [Moh 87]. The principal
focus of those studies is on maximization of channel throughput, given assumptions of packet arrival rates
and distributions. While that clearly is a viable goal for some environments, it is not the main focus for file
accesses over networks, where response times determine workstation performance. Towsley [Tow 79] pro-
vides an interesting analysis of the go-back-n and stop-and-wait retransmission strategies, deriving formu-
las for individual packet delays under general assumptions of the distribution of packet arrivals at the send-

ing site. This analysis is more suitable for the nodes in store and forward networks.

Our study focuses on the statistics of the time to complete a multi-packet message transfer. We
address both processing and transmission times. Most related work in this area, with the exception of [Zwa
851, ignore processing time as a negligible component of the delay. Measurements on local networks have

shown that this delay is in fact significant.

The rest of the paper is organized as follows. Section 2 presents the model and its assumptions and
the protocol definitions. Sections 3 and 4 present the analyses of go-back-n and selective-repeat respec-
tively. Numerical results comparing these protocols are presented in Section 5. We shall see that the perfor-
mance of BFRE is very sensitive to message size. In Section 6, we propose and evaluate the Optimal Blast
Protocol which increases the range of operation of BFRE. Until Section 6, we assume that all processing
times are deterministic, similar to [Zwa 85]. This assumption is relaxed in Section 7, where we consider the
second order effects of the variation of the processing times on the go-back-n strategy. Section 8 presents

our conclusions and Appendices A and B fill in some of details omitted in Sections 3 and 4 respectively.
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2. Preliminaries

2.1. The Model

Figure 2.1 represents a typical network interface architecture. To transmit a packet, a station copies
the data from host memory to interface memory and then transmits it onto the network. When a packet
arrives at a station, it is first put in interface memory from where it is copied to the host’s memory. Mes-
sages are assumed to be comprised of fixed size data packets. The time to copy a data packet between host
memory and interface memory is assumed to be a constant C. The time to transmit a data packet is assumed
to be a constant T. The corresponding times for acknowledgement (ACK) packets are Ca and Ta respec-
tively. Propagation delays are assumed to be negligible. C and Ca are limited by the DMA rate of the host
bus. T and Ta are limited by the network’s speed. In the analyses of Sections 3 and 4, we assume that
there is just one send buffer. In case of multiple send buffers, the timing diagrams used in these analyses
will change, but the method of analysis and the relative performance of the different protocols will not. In
fact, we do generalize the analysis of go-back-n in Section 7 to handle arbitrary timing sequences. The
focus here is on the relative performance of different retransmission schemes. We feel our analysis should

be straightforward to extend to newer, faster interfaces of the future.

Figure 2.2 shows the timing diagram of a simple sliding window protocol. We have assumed that the
window size is large enough so that it does not close. The horizontal axis represents time. The upper, mid-
dle and lower lines correspond to sending station, network and receiving station activity respectively. In
this diagram, we show each packet being separately acknowledged. The sender first copies a packet from
its memory to its interface. This takes C time units. The network transmission of this packet takes T time
units. The data is then copied at the receiving end taking another C time units. Simultaneously, the sender
transmits the next packet. Every packet is separately acknowledged. Copying of the ACK packet to the
interface takes Ca time units and its network transmission takes Ta time units. Figure 2.3 shows the
corresponding timing diagram of the Blast protocol. Here, the receiver transmits an ACK only at the end.
In both these timing diagrams, it is assumed that there is one interface buffer for sending and one for
receiving, and that the interface processes one packet at a time. This makes it possible, for example in Fig-

ure 2.2, for the the sender’s data transmission to overlap with its processing of an acknowledgement, i.e.,

.
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data can be transmitted onto the network while an ACK packet is being copied into host memory. How-
ever, copying of data to the interface from the host cannot be overlapped with transmission of the data onto
the network. The actual timing diagram will depend on the implementor’s choice of signals and when they
are masked off or turned on. It would also depend on the number of send buffers provided. However, the
analysis we present in the next section would still remain valid if the time parameters chosen were suitably
modified. In fact our analysis can be extended in a straightforward manner to the faster interfaces that are

currently being designed [example Son 88, Kan 88].

The next important parameter of the model relates to packet error rates. Error rates in local networks
are extremely low. If one out of every n bits are in error due to electrical noise, the probability of a packet
of size b bits failingis 1~(1~1/n Y = b/n+ o(b/n).If data is transmitted as packets of 1K bytes
each then the probability of a data packet failing is 8K/n. The corresponding packet failure rate for an
ACK packet of say 64 bytes, is 512/n. For a bit error rate of one in 10® to one in 1010 or less, these values
are extremely low. We are not aware of any authoritative report on the actual bit error rates on local net-
works. However, they seem to be sufficiently low, not to warrant any concern for performance degradation
just by themselves (as we shall see in Section 5). The advent of optical fibers reduces errors to even lower
rates. However, although collisions (in case of random access protocols) are rare, the increased use of
remote file servers and other distributed applications are likely to increase their frequency. In addition,
various studies, [Son 88, Zwa 85], have reported significant error rates at network interfaces generally
resulting from unavailability of buffers. Indeed Zwaenepoel suggests that packet error rates caused by
interface errors are in fact somewhere in the range of one in 10* to one in 10° [Zwa 85]. Since this dom-
inates network errors caused by random noise, we assume in our analysis that all packets have the same
probability of failing, irrespective of packet size. This probability, which we denote by p,, is an important

parameter in our model. We further assume that packet errors are statistically independent as in [Zwa 85].

2.2. The Protocols

The protocols we are interested in are essentially retransmission strategies. We distinguish here
between transmission and retransmission strategies. Briefly, the time when the receiver sends an ACK

determines the transmission strategy (for example Blast and Sliding-Window are two different transmission
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strategies). A retransmission strategy, on the other hand, determines which packets are retransmitted in

case of errors.

In BFRE, all the packets are retransmitted, irrespective of which packets were in error. We have
chosen to associate Blast as the transmission strategy along with it. A Sliding-Window version with full
retransmission seems to make less sense, because packets which have already been ACKed may then be

(unnecessarily) retransmitted.

If the transmission strategy is Sliding-Window, the go-back-n and selective-repeat retransmission
strategies work as follows: when a packet successfully reaches the receiver, it is always ACKed if it is "in-
sequence”. In case of selective-repeat, the receiver may also ACK out of sequence data. In both cases an
error is detected at the sender by either a timer interrupt or by a NACK from the receiver. At this point, if
the sender backs up to the first packet in error and restarts the transmission, the strategy is referred to as
go-back-n [Tan 81]. If, on the other hand, the sender retransmits only those packets which are in error, the
strategy is called selective-repeat. In go-back-n, buffering and reassembling of the message at the receiver

is much simpler than in selective-repeat, but at the potential cost of retransmitting many more packets.

The mechanisms for go-back-n and selective-repeat are similar if the transmission strategy is Blast.
For a N-packet transfer, the first N-1 packets are transmitted unreliably (i.e. with no corresponding ACKs).
The last packet is transmitted reliably, i.e. it is retransmitted periodically until an ACK is received. This
ACK indicates the first packet in error in case of go-back-n, and all the packets in error in case of
selective-repeat. The receiver can also be armed with the NACK capability to flag an error immediately

when it detects it ( especially in the case of go-back-n retransmission strategy ).

3. Go-Back-N Retransmission Strategy

In the go-back-n retransmission strategy, the sender retransmits all packets from the first packet in
error. The receiver does not buffer out of sequence data. This simplifies the state machine, but at the poten-
tial cost of multiple retransmissions of successful packets. However, as we shall see, more sophisticated

protocols cannot really improve on the performance of this protocol for realistic error rates.
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3.1. Notation
C : time to copy a data packet between host memory and interface memory
T : time to transmit a data packet onto the network
Ca : time to copy an acknowledgement (ACK) packet between host memory and interface
memory
Ta: time to transmit an ACK packet onto the network
T, :C+ T, time between the initiation of two successive data transmissions
Teng - 2C + T + 2Ca + Ta, time taken (as seen by the sender) to transmit the last packet and
receive its acknowledgement.
T getecs - The time to detect an error at the sender given that an error has occurred. In this section,

we assume Ty, is a constant. We examine it in more detail in Appendix A.

3.2. Analysis

This subsection presents the analysis of the expected time and the variance of the time to transmit N
packets in the presence of errors. We assume deterministic processing times (C, Ca) and transmission times
(T, Ta) and ignore queueing delays. We also assume that the sender can always send (i.e., if there is a win-
dow, it never closes), an assumption justified in light of our previous assumption of deterministic delays

and no queueing.

Our analysis assumes a sliding window transmission scheme. A packet transmission fails when
either the data packet or its corresponding acknowledgement is lost or is corrupted. Note that the failure of
an acknowledgement does not necessarily mean a failed packet transmission, if for instance the ack-
nowledgement for the next packet arrives before the sender times out. So this assumption gives a bound on
the performance of go-back-n. As stated in the previous section, we assume that packet failures are
independent of their size and are statistically independent. We denote the probability of packet failure by
Pn- Given these assumptions, the probability that a packet transmission fails is:

p=1-(-p,)*
If, instead, we use the blast protocol in conjunction with go-back-n, then p = p, . We have determined that

this version performs similar to the sliding-window version for practical error rates, and we therefore
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present only the analysis of the latter.

Now, suppose that the first failure occurs after r packets are successfully sent. The time to send the r

packets and detect the error at the sender’s site is :
Te(r)=rT{ + Typen 0<r<N-1

where T indicates a failed transmission. For simplicity, we denote ¢ =1 —p. In go-back-n, the failure
of a packet transmission marks a regeneration point of a stochastic process because all the packets starting
from this point onwards have to be retransmitted. The probability of a regeneration occurring after r pack-
etsisq’p.

The last packet sequence transmitted will have no errors. We denote the time for this transmission by

T, (r), where 1 is the number of packets transmitted in this last sequence.

T,(r)=0-DT{+T,y 1<r <N
Its probability distribution is ¢ .
Let the total time to successfully transmit N packets with the go-back-n strategy be Ty . If there are k
regenerations (retransmission sequences), then the time taken (denoted by T(N | k) )is:

k
TN LE)=Te(r)+Tp(r)+ - +Tp () + TS(N—-El r;)

where r; is the number of packets transmitted during the i th tetransmission. The above equation simplifies
to

TN VEY=(N =—DT 1+ Topg +k Types
Let p; be the probability that there are k regenerations given N packets. Since the last transmission always

carries at least one packet successfully, the number of ways in which k regenerations can occur given N
s | N4k-1 . . .
packets is k . To see this, note that this problem can be mapped to the problem of finding all pos-

sible integer solutions to the equation

X1+X2+"‘ +Xk +Xk+1=N
where X; 20 for i =1,2, k and X3,y 2 1. Now, let X;,;{" =Xj41—1, so that X; ;" 20. Then the

previous problem is analogous to finding all possible integer solutions to

X1+X2+“‘ +Xk +Xk+1'=N -1
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which is [N +llcc—l} . Then p, is given by

N+k—1
Pk=[ b ]p"q” [(3.1]

The expected time to transmit N packets successfully is now easily obtained:

. E[Ty]=Y TWNIk)p,
k=0
- - - [N+k-1] _
=[(N ‘1)T1+Tend] > [N+,If 1}1)"(1” + Taetees 3, [ p Jp"q”
k=0 k=0
Now,
< [N+k— -
)Y [ p 1Jp"q’”=(1—p)"’q"’=1
k=0
and

= +k—1 - O [N+k-1
Zk[Nk }p"q”=q"’p2-—[ s Jp"
k=0

k=0 op
- N, 0 O [N+k—IJ k
= 14
TPHEL K

=q"p -f—(l—p I
p

and noting that ¢ = 1 — p, this becomes N f{l Thus E [T ] is given by

EMTy]=|(V = DT+ T + [Tde,ec, N%] B2)

Equation 3.2 has an obvious intuitive appeal. If p =0, E[Ty]=(N — )T + T, is the time for an error

free transmission (see Figure 2.2 ). For every failure, there is a cost of Ty, to detect the error. The aver-

age number of errors is the expectation of the distribution given by equation 3.1 and is equal to N ‘S—

We next compute the variance of the transmission time with the go-back-n strategy.

var(Ty) = 3, (TQV 1 &) = E(Ty1 7 [N pr?
k=0

2
- +k -1
=Tdelec12 > {k "'NE [N ’Icc }Pk‘IN
k=0 q
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=T gotect { T k2 [N+k 1}1) q¥ N%

Now, noting that k2 =k (k — 1) + k

3 k2 [N+11:—1kaq Z Kk —1) {N+k I]quN*“Z k[N+llCc l]pqu
k=0

The first term on the right hand side can be derived in a manner similar to the derivation of equation 3.2,

except that we need to work with the second derivative now:

}_;k(k-l) [N+k 1] KN _ 2N ji[N+k—l]pk

pq9 =pq
/c=05P2 k

2 o
= n2,N o [N +k—1] k
7 &p? {/Eo k)P
_ NWV+D)p?
= qz
The second term is equal to N~ 1‘; as derived before. These finally give

2
var(Ty) = Tdetec12 N(N-*;I) + —IYE_ - 'NE
q g | q
=Tdm2Nfg [3.3]

Equation 3.3 shows that the variance of the transmission time is proportional to the variance of the number
of regenerations. The proportionality constant, T .. 2, is (as we shall see from Appendix A) small com-
pared to the entire transmission time. Acknowledging every packet (or at least NACKing packets in error),
reduces the time to detect an error. This is the only overhead loss of go-back-n per error. In case of com-
plete retransmission on error, all the packets transmitted so far (possibly successfully) add to the overhead.

‘We postpone further discussion on this until Section 5.

4. Selective Repeat.

In this section we present the analysis of the selective repeat protocol. Several variations of this pro-
tocol have been proposed. Most assume that packet error rates are very high. Since this is not true in the

LAN environment, we choose the following simple version. The sender transmits all N packets in the first
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round. The receiver sends an acknowledgement at the end of the round with a bit vector indicating the
packets in error, which are retransmitted in the next round. This procedure continues until all packets have

been successfully transmitted and received.

If there are k packets transmitted in a round, then the time taken is KTy + T4, where T =C + T
as before, and T, is the overhead per round. We assume in the following analysis that the ACK sent by
the receiver is never in error. This assumption is strictly not necessary, but makes the results more intuitive
and understandable. The analysis resulting from this simplification should favor selective repeat. Our
main motivation in this section is to show that selective repeat cannot do very much better than go-back-n

for practical error rates, so we choose to favor intuitive understanding over rigor.

To motivate the analysis, the reader is referred to Figure 4.1. We have broken the time line, as
viewed by the sender, into rounds. In each round, all outstanding packets are transmitted. Correctly
received packets are indicated by a (/) while those requiring retransmission are indicated by an ( x ). The
time line can be seen to consist of the sum of two random variables X and Y, where X is the sum of all the
Ty’sand Y the sum of all the T, ’s. The time to complete transmission of N packets is

T(N)=X +Y

and therefore,

E[Ty]=E[X]+E[Y]

and

var(Ty)=var(X)+var(Y)+2Cov(X,Y)
where Cov (X ,Y') is the covariance of X and Y and is given by [Tri 82]

Cov(X.Y)=E[XY]1-E[X]E[Y]

The covariance term is not zero because the number of packet failures and the number of rounds are related

(for example, the number of errors is at least equal to one less than the number of rounds).

4.1. Distribution of X

Each packet ransmission takes a slot of duration T';. Let us now consider a possible sequence of
correct and erroneous transmissions which take N + k slots (of size Ty each), k=0. Clearly, the (N +k )k

slot is always a correct transmission. Hence, the total number of ways of distributing the k errors is
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[N+Ilcc—1] .

The probability of an error in a slotis p = p,, . This gives us

Prix =V + 60T 1= [V prg

Therefore, .

EX1=T; 3, (N +k) [N+,’§"1Jp" "
k=0

which simplifies to (as in equation 3.2 )

=T, |N+N £
q
and using ¢ = 1—p, we finally get
EX]=T, %J- [4.1]

The variance of X is given by:

o

var(X)=T* 3,
k=0

2
N| [N+k-1) & N
N+k—;—} [ k }p q

k-NE
q

We know the result of this sum from the derivation of equation 3.3:

=T Y,

k=0

2
N+k-1
( h ]pquv

var(X) = le%f— [4.2]

4.2. Distribution of Y

For every round, we have a fixed overhead T,,;;. So Y =T, * #rounds . Now, the distribution of

the number of rounds is given by
N . ry r _ Y r_ _
Pr{#rounds £k 1= Z ’{V pr‘qN T Z r] p"2q’1 2. Z rk 2 prk—lquz-Z Ti-1 qrg-1
r=0 1 r=0 2 re=0 | k-1
which simplifies to

Pr[ #rounds <k 1=(1- p* )" [4.3]
To see this, note that the ¢’s can be grouped together from the right to the left without much ado and
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T2 r
. k= —
become g”. Now, let us concentrate on the rightmost ¥, . We have ¥ { r. 2] p™", which becomes
’k-l=0 -

(1 +p)™*. This along with the next inner ¥ gives [ 1l+p(1+p )] " and so on. Finally, after the left-

most Y is evaluated, we have

g¥ (L+p+p () =)

=qN ( 1+p +p2+ +pk—l)N
which simplifies to equation 4.3. Viewed another way, since the total number of rounds is < k, each packet
is transmitted successfully in at most k attempts. The probability of this eventis (1 — pk ). Since there are

N packets, all of them encountering errors independently of each other, we get equation 4.3.
The expected cumulative overhead £ [Y ] is now given by

E[Y]=T,, * E[ #rounds

=T e * E:Pr[#rounds >k]}
k=0

= ahd*[i[l—(l—p")”]}

k=0
For Np << 1, this last expression can be approximated by

Tohd{ 1+ZNpk
k=1

and this yields

E[Y]=T0M{ 1+N % [4.4]

The variance of Y is given by:

var(¥)=Tyg? 3 kz{( 1-p* W - (1-p*! )”} - E[Yp?
k=0

Alternatively, the variance of Y can be obtained as follows:

wr)=tat § [i=[1+22] | (1-0-p7] - 1-a-p2y)

Now using the formula for summation by parts, and assuming Np <<1, we can approximate this as follows:

e]2e-




2 2

ar®) 1Mol 5 L e 22l et 22 (g pey]
T b q P q 1

2

122 s |2+ 1-2) 14 22| Npt
q k=1 q
and this finally yields
var(Y)-To,,dz—I\{—fw 1-—%’?— [45]

Equations 4.4 and 4.5 along with the covariance term from Appendix B give the variance of the transmis-

sion time of selective repeat. The results are presented in the next section.

5. Numerical Results.

This section compares the mean and variance of the transmission times of the go-back-n, selective-
repeat and the BFRE protocols. The curves for BFRE are obtained from the analysis of {Zwa 85]. The
results for go-back-n and selective-repeat are obtained from the derivations in Sections 3 and 4. We use
the measured values of C, Ca, T and Ta reported in [Zwa 85] (Table 5.1). These values are getting progres-

sively smaller with faster networks and interfaces, but we expect the relative times to be the similar at least

in the near future.

Parameter Value
C 1.35 msec
Ca 0.17 msec
T 0.82 msec
Ta 0.05 msec

Table 5.1 : Parameter Values
Figure 5.1 shows the expected time to transfer N packets for the different protocols, for N = 64 and N =

512. For N=64, all three protocols have almost the same expected time for a packet error rate of 107 to

1073 (the error range that we can expect in a local area network environment). As N increases, BFRE
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starts performing poorly. Go-back-n however fares almost as well as selective repeat even for N = 512,

An estimate of a parameter could be misleading without an estimate of its error. We therefore plot
the standard deviation of the transmission times in Figure 5.2. The curves are for N = 64. The curve for
BFRE assumes that the receiver has the NACK capability so that the sender can detect a failed transmis-
sion early. Go-back-n can be seen to have almost as low a standard deviation as selective-repeat for the
error range of 10~ t0 1075, Selective-repeat does better for error rates of 1072 and higher but that portion
of the curve is insignificant from a practical standpoint. The key point here is that go-back-n has a simpler

state machine than selective-repeat and performs almost as well.

In Figure 5.3, we have plotted the standard deviation curves for N = 512. This shows that even for
large N, go-back-n is still a viable protocol. This figure clearly demonstrates that for large messages, the
BFRE protocol, if adopted, should be decomposed into multiple BFRE’s. We shall address this point in the
next section in more detail. Figure 5.4 gives the expected time to transmit N=1024 packets to show the
effect of a 1 Mbyte transfer, assuming 1 Kbyte packet size. Transmitting a 1024x1024 image with 1 byte
per pixel will result in a 1 Mbyte transfer. Go-back-n performs very well even for such a large N. These
figures indicate that go-back-n is relatively stable for a wide range of message sizes and packet error rates.
Since its state machine is considerably simpler than selective repeat, it seems to be a good retransmission
strategy for local area network environments. In the next section we show that for large messages, adding a

checkpointing mechanism to BFRE at the right places is also a good alternative.

6. Optimal Blast Protocol.

The Blast protocol with full retransmission on error ( BFRE ) is aesthetically simple and seems to
take full advantage of the low error rates and high bandwidth of local area networks. However, its perfor-
mance, especially the variance of the time to transfer large messages degrades considerably as message
sizes increase. To avoid the performance penalties, without sacrificing much of the simplicity of the BFRE
protocol, transmission of a large message can be decomposed into multiple BFRE’s. The number of pack-

ets in each BFRE could be fixed apriori or could be variable, with the latter enjoying the obvious
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advantages:

(i) Dynamic adjustability to changes in observed network error rates.
(ii) Tuning according to each individual sender’s performance objectives.

The first point is obvious, especially if the error rates fluctuate with time (provided, of course, they
can be estimated accurately). The second point emphasizes that the optimization criteria of different com-
municating pairs need not be the same. In the following discussion, we choose not to minimize the
expected time to transmit a message because it is almost equal to the error free transmission time for prac-
tical error rates. Instead, we propose to constrain the standard deviation of the time to transmit the packets
to some constant times the expected time to transmit the packets successfully. That is, the standard devia-
tion, which we interpret as the error in the estimate of the mean, is constrained by the following equation:

o(Ty) < rE[Ty] O<r7 <oo 6.1)
Typically, we would like r to have a very small value. Equation 6.1 says that we are less willing to accept
large deviations for smaller messages than for larger messages. Also, we want the standard deviation to be
smaller than some constant times the expected time to transmit the entire message. We shall see the conse-

quence of this criterion shortly.

To achieve this desired standard deviation, for an M-packet-transfer, we propose to "checkpoint” the
{(blast) transmission by requiring a mandatory ACK from the receiver after every N packets, where N is
chosen such that equation 6.1 is satisfied. This means that we have approximately M/N BFRE'’s in series,

each of N packets. We call N the optimal blast size.

Let each BFRE be of size at most N packets. Let n = -%? Then, ignoring the end effects of trunca-
tion and assuming that successive BFRE’s are statistically independent, we have

var (Ty) =n var(Ty) 6.2)

and

E[Ty]l=n E[Ty] 6.3)

The constraint in equation 6.1 can then be rewritten as

n var(Ty) Sr’E(Ty1? = r’n’E[Ty]? (6.4)
Now, if the receiver NACKs on errors, [Zwa 85] shows that the variance of the time to transmit N packets
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using BFRE is

1+
var (Ty) = to(N )2 E~(—;51-’——)~ 6.5)
where ¢((N) represents the time to transmit N packets with no errors, p is the probability of a BFRE failing

and g = 1-p. The expected time to transmit the N packets is

to(N)

E[Ty]=- 6.6)
From equations 6.4, 6.5 and 6.6 we get
o P(14p)
r2
and since n = M/N, we have
2
<M 6.7
p(l+p)

The probability of a BFRE failing, p, is of course dependent upon N. It is the probability that at least one of
the N packets that are transmitted fail, and is given by

p=1-(Q-p,)"* (6.8)
Given M, r and p,,, we can obtain N by solving equations 6.7 and 6.8 iteratively to obtain the optimal blast
size which satisfies equation 6.1. In Figures 6.1 through 6.3, we show the optimal blast size for error rates
between 107 and 107, for different message sizes, M. Both the axes are in units of number of packets. It
is interesting to see how the optimal blast size drops rapidly with increasing r and p. In figures 6.4 and 6.5,
we show a comparative performance of the optimal blast protocol and the normal BFRE protocol. The
optimal blast protocol in these figures uses the optimal blast size for any particular M, r and p. In Fig. 6.4,
we have plotted the ratio of the expected times of the optimal blast protocol and BFRE. This value is close
to unity. However, in Fig. 6.5, we see the very sharp improvement in the standard deviation of the time,
which essentially means that we have increased the confidence in the estimate of the mean almost for free.
The reason is that the expected time is almost equal to the error free transmission time for practical error
rates, but the standard deviation can still be large for large message sizes. We however see one problem
with the optimal blast protocol: for small M, the ratio of the two expected times is greater than unity, espe-
cially as r gets smaller. This is because in our optimal blast, the sender waits for an ACK of the previous

packet group before it starts transmitting the next packet group. This causes the pipeline to empty out and
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fill up again for each sub-blast. The delay resulting from this dominates over the expected time of a simple
BFRE for smaller message sizes because the probability of a retransmission is extremely low. Smaller
values of r increase the number of sub-blasts (see figure 6.3) exacerbating the problem. However, as M
increases, one of the properties of constraint 6.1 is that it increases the sub-blast size even though p, and r
are the same. The pipeline does not empty out as often as before. In addition, the probability of a
retransmission increases for the simple BFRE. These factors pull the ratio of the expected times below
unity as the total number of packets, M, increases. The standard deviation to the transmission time

improves for all M, though it is more pronounced for large M.

To prevent the degradation in the expected transmission time for small M, we propose the following
modification to the protocol:

(1) The sender determines the optimal blast size, N, for the given message.
(ii) It then transmits packets 1 through N-1 in the current BFRE without requesting an ACK from
the receiver.
(iii) It transmits packet N with the REQUEST_FOR_ACK hbit set.
(iv) Without waiting for the ACK, it continues with the next blast using steps (ii) and (iii).
(v) The receiver ACKs the packets which have their REQUEST _FOR_ACK bit set, provided it has
received all the packets with sequence numbers greater than the previously ACKed packet and less
than the current one. It can also NACK packets in error. Dropped packets however will have to be
detected by the sender’s timeout mechanism.
(vi) In case of an error (either a NACK or a timeout), the sender retransmits the whole "window"
of outstanding BFRE’s not yet ACKed. This leads to a go-back-n retransmission across sub-blasts,

although each smaller sub-blast is still fully retransmitted!

We note that the sender does not have to negotiate the sub-blast size with the receiver in advance. In a win-
dow based flow control scheme, there has to be space for the packet when it arrives at the receiver, but flow
control and error control are orthogonal functions here. One bit in the packet could serve as
REQUEST_FOR_ACK/NO_ACK, and could be set whenever the sender wants an ACK. Thus the size of
a sub-blast could change with time even between the same communicating pairs. This could happen, for

instance, if the sender’s effective window size drops because it senses congestion. [Jai 86] and [Jac 88]
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claim that packet errors are a good indicator of congestion, and-their congestion control protocol shrinks
the effective window size to deal with it . The window is slowly increased after that. Their scheme fits in
harmoniously with the sender’s choosing the optimal blast size independent of the receiver. All that the
sender has to do is to set the sub-blast size as min{N, congestion_window, flow_window}, where N is the

optimal blast size from equations 6.7 and 6.8.

7. Generalized Analysis of Go-back-n

We now generalize the go-back-n results by removing the deterministic time constraints under which
the results were obtained in Section 3. We begin with some notation and definitions. Denote the time from
the beginning of the transmission of packet i to the beginning of the transmission of packet i +1 by the ran-
dom variable X;, if the packet transmission was successful, i.e. both the data packet and its ACK were
successful. This corresponds to T’y in Section 3. The time corresponding to T, is denoted as X,,;. Thus
X,nq4 is a random variable denoting the time from the beginning of the transmission of the last packet until
its ACK is received, given that the transmission is successful. Similarly let T, ; be the time to detect
the ith error if one occurs. It is easy to see that the time to transmit N packets given that k regenerations
have occurred is

N-1 k
T(N I k)= z Xi +Xend -+ ZTdelect,i k =0, 1, 2,

i=] i=l

We assume that the X;’s are independent and identically distributed random variables with mean E [X ]
and second moment E [X 2]. Also let their common Laplace transform be X (5 ). Likewise we assume that
EX.pal, E[X,5q%] and Xena(s) are the mean, second moment and Laplace transform of X,,;, and
ET soect )s E 1T gorees 2] and T jetect (s) are the mean, second moment and Laplace transform of T,
respectively (of course, we are assuming the T e ; to be i.i.d. random variables too). Then the Laplace

transform of T(N) which we denote by T (5 ) is given by

76)= % [V 5 0¥ X 6P Kea ) ot 7
k=0
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@V XN T X (5)
[1- P Tdelect (S) ]N

[7.1]

Taking the natural logarithms of both sides of equation 7.1, we get
In(T(s))=NIn(q )+ N-1)In(X(s)) +In(X,py(s)) =N In(1-p Ty, (s))  [72]
Now, we note that E[X ] = —-—-d—X ) dE[X?¥ = —CLZ—X )l nd similarly for the other ran-
) i s=p 2D =2 = and similarly

dom variables. Thus differentiating the left hand side of equation 7.2 once and putting s = 0 gives E [Ty ]

and differentiating it twice and evaluating it at s = 0 yields var (T ). The resultant equations are :

E[Tyl=(N = DE[X]+E [Xens) +E (Tanteet] N{ZI- (7.3]

and
N \
var (Ty) = (N = 1) var (X) +var (Xong) + E [Tiezeet ';13’3‘ +N —’3 var (Tge) — [14]

For the deterministic case in Section 3, E[X]=Ty, ElXpgl =Tonas E[Taereer ] = Tgereer and
var (X)) =var (X,,q) = var (T .. ) = 0. As one would expect, the equations are then the same as equa-
tions 3.2 and 3.3. Equations 7.3 and 7.4 are independent of the actual distribution of the X;’s and
T jetece ;'S » but depends only on their mean and variance. It is clear that the variance of the time to success-
fully transmit N packets will increase linearly with the variance of the protocol processing and transmission
times and the time to detect errors. Also, equations 7.3 and 7.4 are more general in the sense that they fac-

tor in various unaccounted for "random delays.”

We do not have any real-life data on the variance of packet processing times and transmission times.
In real implementations, there is likely to be a variation in packet processing times by the two stations. The
variance of the transmission times could also be caused by network load, which, although usually low, can
occasionally be quite high{Gus 87]. It is our surmise that packet processing and transmission times will be
normally distributed about their mean, but this needs empirical verification. Equation 7.4 is valid only if the
random variables X;, X,,; and the Ty, ;s are independent of each other. It should apply to protocols
implemented at the transport level or below, where correlations among consecutive packet transmission
times are likely to be weak. The results of this section provide a means of isolating the communication of a

pair of nodes from all other traffic. To some extent we have an expression for the mean and the variance of
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the delay for a bulk data transfer under a multiple-sender/multiple-receiver assumption. The results also
apply to multiple hop transmissions, provided that windows never close at intermediate stations. The main
problem that remains is to determine the mean and the variance of the X;’s and X,,,;. The latter is likely to

be more important as the number of hops increase and/or load from the other connections increase.

8. Conclusions and Future Work.

We have presented analytical results for the expectation and the variance of transmission times for
different retransmission strategies over local area networks. For small messages (i.e., small number of
packets per message), BFRE, go-back-n and selective-repeat, all perform well. However, as the message
size increases, BFRE shows larger mean and variance than go-back-n while the latter does almost as well
as selective repeat. These conclusions are based on an estimate of the packet error rate between 107* and
1073, More reliable network interfaces will likely reduce error rates on local area networks. Under such
conditions, BFRE will perform almost as well as the others, and given its simplicity, will be a more attrac-
tive protocol. For error rates which we observe today, go-back-n and the optimal biast protocol will be

more viable alternatives since any protocol has to deal with a wide range of message sizes.

The analysis of the selective repeat protocol shows that it is only marginally better than go-back-n
for practical error rates. The derivation of the joint distribution of the number of errors and the number of
rounds in Appendix B is interesting in its own right. We see the application of a number of simple

mathematical tools to capture a rather complex phenomena.

‘We have also extended the analysis of go-back-n to handle the second order effects of variable pro-
cessing and transmission times. We assumed a general distribution of delays, instead of a deterministic one
and showed how they affect the expected time and the variance of the transmission time of large messages.
Possible application of this model will be datagram oriented transport protocols with associated protocol
processing overhead, variable delays due to multiple connections, and variable transmission times due to
network load. We showed that for go-back-n the variance of a message transmission time increases
linearly with the variance of individual packet transmissions in addition to the that contributed by errone-

ous fransmissions.
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This study can be extended in many directions. We are currently investigating the incorporation of
windows. Characterizing how workload affects the distribution of the X;’s in Section 8 ( example: are

they normally distributed? If so, what is their mean and variance ? ) is also a very interesting problem.
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Appendix A

This section presents the analysis of T, . Given M+1 packets, of which the first packet has failed,
we are interested in the time the sender takes to detect the error. We are assuming that errors due to electri-
cal noise are much lower than errors due to packet losses at the interface. In a single hop LAN, all packets
are received in the order sent. Therefore the receiver can detect a dropped packet with sequence number s
if it receives any packet with sequence number of s+1 or greater. It then NACKs sequence number s, If
the NACK gets through successfully, the error is detected at the sender; otherwise, a NACK from a future
packet is needed for error detection. Ultimately, if there are no packets left (i.e., all M packets or their
NACKs failed), the sender times out after T}, time units. So error detection at the sender is upper

bounded by Tyie0u -
Now let
q, = (1-p,), the probability that a packet does not fail.
u=1-gq, 2, the probability that a packet exchange fails
Then,

A-wu' 0<isM-1

uM =M ATl

Prii failures to detect] ={

Distribution of time to detect
In the following discussion, C and T are defined as before. T, is the time to transmit a NACK packet, and
Cn is the time to copy it from (to) the interface memory to (from) the host memory. We assume that
Cn <T. Let

Toare =C +T

T,d®=(C +T)+(C +Cn)

Tod@=(C +T)+(Cn +T,)

Tppa®=(C +Cn)+(Cn +T,)

Then the time to detect the error after exactly i failures, T is
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r

Toare + Tong P+ G +1)(C +T) 0<isM -3

7. =4 Lstart T Tena @ 4 (+1)C+T) i=M-2 Az
‘ Tstart + Tona &+ (+INC+T) i=M-1

Tlimeout i=M

N

The interested reader is urged to verify these equations by drawing the appropriate timing diagrams.

The mean time to detect the error given M+1 packets is now easily obtained from equations Al and A2:

M-1 X M-3 .
Toteteet MHD = Tyiary 3, (=it + Topg @ 3, (1)t + Ty ® (1t )uM 2 4 Ty @ (A )uM =1+
i=0 i=0
M-1 i
(CHT) Y, (1=t)u’ G+1) + Tyipmgone 4™
{=0

which simplifies to
T gptecs M A1) = Tygpe A=teM) + Ty O0=uM2) 4 Ty @ (1= )M 2 + T, D1 )M +

1—M+DuM + MuM+1

- + Timeou 4 [A3]

(C+T)

Equation A3 gives the mean time to detect an error if the receiver NACKSs an erroneous packet. We
have found that the time to detect an error is small and is almost a "constant". Low packet loss rates make it
extremely unlikely that consecutive errors will occur. Most of the time, a NACK will arrive almost
immediately. Thus recovery of go-back-n in case of an error is quick if M is large. It is almost independent
of the timeout Ty;,,..,» because of the feedback control provided by the NACK. Blast protocols with
NACK and complete retransmission on error have also been shown to be independent of Ty, [Zwa 85].
Tuning Ti;peon 10 2 very low value to reduce the time to recovery is another possible solution, but it is a

feedforward control and can lead to needless retransmissions.

Appendix B

In this appendix, our goal is to compute the covaraince of the random variables X and Y, where X
and Y represent the total number of errors and the total number of rounds respectively to complete the
transmission of N packets using selective-repeat. Since we have to compute E[XY], we are interested in the

joint distribution of the random variables X and Y. If Y=R+1, R20 and X =k, then the k errors are
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distributed as ky, k5, -+, kg, such that

N2k12k22 ZkR >0 (B.1)
Note that the last (strict) inequality stresses the fact that all the k;’s are greater than zero. The joint proba-
bility distribution of X and Y is given by

N| | k1 kpl x N
PriX=k,Y=R+1]= Y pkgq B.2)
{kvtkyt - - thg=k} [kJ [kz} [ kr }

where the ;s satisfy the constraint in equation B.1.

Claim :

ki
ko

N
kq

kR4
kr
{k1+k2+ e +kk=k}

is equal to the coefficient of x* in (1 +x +x2+ -+ xR )N provided N 2k 1=k, -+ 2kp 20 (note that we

are allowing the k;’s to be zero here).

Proof : By the binomial theorem,

N
(1+xM =3 m x*
k=0
Substituting x ;(14x,) for x in the above equation, we get

N k
At ()N =3 3 { }C"l] {:1] PR e ®.3)

k=0 k=0 2
and putting x| = X, = x we have

ky
(A +x(l+x) )V = % ! {}c"] {21} xlithe

k=0 k=0 " Y (2
The left hand side of equation B.4 equals (1+x+x2)N . Continuing this way, we can expand x, in equation

B.3 to x,(1+x3) and so on. This proves our claim.

In the above derivation, we have allowed the k;’s to be zero. This gives us Pr{X=k, Y<R+1]. Let us

define A(k,R)=Pr[X=k,Y<R+1]and P (k, R )= Pr[X=k,Y=R+1]. Then

Pk ,R)y=Ak ,R)-A(k ,R-1) R=0,1,2, --- ,k B.5)

Now,
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N
l_xR+l
(I+x+x2+ - +xR)N=L————]—

(1-x)V

N+l-1
- z:(—w (M a5 (MY #
1=0
N [N o [NH-1] _1+@)) (B.6)
-zev (3 £ (WaY = '
j=0 =0
Now putting k=/[+(R +1)j and interchanging the order of summation, we have

o min(N,[k/(R+1)]-)
(+x+x2+ - +x0)V =3 )Y [N”“"'(R*{l)f J m * @)

k=0 Jj=0
where [k/(R+1)]_ is the largest integer less than or equal to k/(R +1). If we denote the coefficient of x*

in equation B.6 as C (k,R ), then

Ak,R)=Ck R)p*q" (B.8)
Equations B.5 and B.8 finally give the probability of exactly R+1 rounds and k errors. Now we can com-
pute
EXYl=3% ¥ (R+Dk P(k,R) (B.9)
R=0 k=0

The covariance of X and Y is given by

CoviX,Y)=E[XY]-E[X]E[Y] (B.10)
E[X] and E[Y] have already been computed in section 4. Equation B.9 can be simplified as follows. We

define Q (XY, z, R) as follows:
N . oo _ ,
oar,z, =31y [N 5 (M) oyeeeny
j=0 =0

N
sy () 3 (WY o ®1)
j=0 1=0

Comparing equation B.11 with equation B.6 we can see that

QQY,z,R)=(1+@z)+ @zl ++@z)R W — (1+@z)+ @zl +- + @z}
N N
-1 [[1-@)’”‘] ~ {1-@::)’*} ] (B.12)

(1-pz)¥
On the other hand, from the definition of P (k, R ), and from equations B.6, B.7, B.9 and B.11 we can see

by inspection that
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EXrl=¢" 5 ®R+)2oxr,.r) |
R=0 bz

=gV "8%,?50 ®R+DQXY,2,R) |, ®.13)

Using equation B.12, the inner sum on the right hand side becomes

3 ;z)N 5 (R+1)[ [1-[1_(,,2)“]”} . {1__{1_@2),;]1\;} J

Applying the formula for summation by parts to this expression, we get

o & (1= (1-er)]
(1-pz)N §%
Thus equation B.13 simplifies to

o & i 5 (-1 |

Np & A < RV g
=—=2|1-|1-p + NYR|1l-p p (B.14)
9 Rr=o R=0
The first term in equation B.14 can be seen from section 4 to be equal to E[X ]E[Y]. Hence, from equa-

tions B.14 and B.10, we have

oo N-1
Cov&.1)=NE R [1-pF]" pF ®.15)
R=0
For Np <1, we can approximate this as

Cov(X.Y)~N (1-p)¥1p
and finally, putting ¢ = 1—p we get

Cov(X,Y)~N qN'1 p (B.16)
Thus, as N gets large, Cov (X ,Y )—0 because g <1. Intuitively, this means that as the number of packets

become very large, the relationship between the total number of errors and the total number of rounds

becomes weak for any fixed q.
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