
A HIRRARCHICAL AND FUNCTIONAL APPROACH TO SOJ?TWARR
PROCESS DESCRIPTION

Takuya Katayama

Department of Computer Science, Tokyo Institute of Technology

1 INTRODUCTION

Research into describing software processes (such as design, development,
maintenance and reuse) is attracting much attention in the software
engineering community. There are a variety of views, ranging from pessimistic
to optimistic, about whether it is possible to describe real and practical
software processes in such a way as to guide human users in performing
software activity: the process of software design, for example, is one of the
most creative of human activities, and it may not be possible to achieve a
complete formalisation of it at the present time. We are, however, justified
in working on software process description for several reasons: every
scientific study begins with description; software methods, on which a great
deal of work has been done, need to be described in some language so that they
can be better used and communicated; and the software industry needs some
means of process description to achieve better quality control over products.

One of the key software process issues is the choice of formalisms. In
general, they depend largely on the nature of the process, and there could be
a variety of choices. They should, however, satisfy common requirements if
they are to apply to real (not toy) software processes. They must provide a
clear and understandable description, which is readable by managers and
capable of evolving as a result of improvements over a long period of time by
many users. They must be able to describe hierarchical design processes, as
hierarchical problem decomposition is the most effective and commonly adopted
strategy for designing complex processes. They must be able to describe
concurrent processes, as software is usually designed by a group of designers
working together, whose activities might be performed concurrently. They must
also be able to represent nondeterminism or backtracking, as nontrivial design
processes will include some kind of design alternatives.

The purpose of this paper is to introduce a formalism for hierarchical and
functional software process description called HFSP, which satisfies the above
requirements. HFSP defines software processes through hierarchical activity
decomposition. Software activity is characterised only through its input and
output attributes. When the relationship between input and output is not
simple enough, the design activity is decomposed into subactivities together
with a set of definitions of their attributes. The basic principle of HFSP,
which it shares with the contractual approach taken by ISTAR [l], is to focus
on the product-base characterisation of activities and their hierarchical
decomposition.

O-X9791-314.0/88/0005/0087$1.50

87

http://crossmark.crossref.org/dialog/?doi=10.1145%2F75111.75124&domain=pdf&date_stamp=1988-04-01

2 A HIERARCHICAL AND FUNCTIONAL SOFTWARE PROCESS DESCRIPTION

HFSP is founded on two fundamental conc'epts, (1) design activity and (2)
activity decomposition, explained below. Its formalism is derived from
attribute grammars 121.

2.1 Activity

An activity is the unit of task in a software process. In HFSP it is assumed
to be completely characterised by its input and output attributes, which
denote, for example, requirement specification, design document, analysis
report, program code, or any other software product related to the activity
and stored in the object base. The activity may be simple, performed by a
designer using some tool, or it may be a complex task which has to be
decomposed into subtasks.
output attributes ~1,...~y~ is

Activity A with input attributes xl,...,xn and
denoted by

A (x19 . . . ,x n I Yy-9Ym)

where xl, . . . ,x n and y19y. denote objects in the object base. Execution

of A is performed functionally and it does not refer to or change any global
object. That is, the content of yl,...,ym after the execution of A does not

depend on any object other than XI, X and it does not n change the content

of any object other than yl,...,y,.

2.2 Activity Decomposition

If an activity is simple enough to be performed by invoking tools, its
execution is left to the human activity of doing the job by using the tools.
If it is not, however, the activity must be decomposed into sub-activities.
We proceed with this activity decomposition until every activity becomes a
primitive one performed by some tool, or performed by human mental activity
such as thinking, planning or decision making.

Activity decomposition must specify how an activity is decomposed into other
activities and what relationship holds among attributes of the activities
involved. Suppose an activity A is decomposed into sub-activities A1,...,Ak.

We have to associate a set E of attribute definitions and decomposition
condition C with this activity decomposition, and it is denoted as follows.

A => Al, . . . , Ak when C where E.

The set E of attribute definitions specifies which objects are the inputs of
subactivities and how to get the result of the main activity A when the
subactivities Ajs come up with their execution results. That is, E contains

the definitions for input attributes of sub-activities A j (j = l,...,k) and

88

output attributes of the main activity A. Every attribute definition is of
the form

a = f(al’a*,...)

where a is the attribute to be defined, al, a2, . . . are other attributes in

the decomposition, and f is a function which is usually executed by invoking
tools.

As an activity might be decomposed in different ways depending on the values
Of its input attribute objects, it is necessary to specify when this
decomposi tion can take place. It is expressed by the decomposition condition
C, which is a predicate of attributes of A, Al,

Ak’

2.3 Concurrency

Concurrency is essential for describing design processes for big software, as
such software design is usually performed by a group of designers working
together. Their activities have to be synchronised, and they have to access
the common object base. In HFSP, concurrency is expressed through attribute
dependency.

Consider the activity decomposition

A&Al, Ak when C where E.

When A is decomposed into sub-activities Al, . . . 9
Ak’ it does not mean that

they have to be executed in that order. Rather, they are allowed to be
executed as concurrently as possible. In general, an activity can be executed
as soon as its input attributes become available. Thus two activities A and
B can be executed concurrently if there is no data dependency among their
attributes. In contrast, if there is dependency among them, they have to be
executed in the order determined by the dependency.

2.4 Non-determinacy

Nondeterminacy is useful in describing design alternatives. HFSP expresses
it through decomposition conditions. Consider the activity decomposition

A => Ai,
Ak

when C where E.

The decomposition condition C = C(a1, ah) is usually specified in terms of

input attributes a 1 ,...,ah of the main activity A. This means that C can be

a9

evaluated before decomposition takes place, and decomposition proceeds
deterministically. However, if C is specified using some output attributes
of AorAi, C cannot be evaluated until A or Ai produces the output attribute

objects, and we cannot know the correctness of applying the decomposition
until it has been actually applied. If C turns out to be false, we have to
choose another decomposition whose C might be true.

Though HFSP can represent backtracking and nondeterminism elegantly as shown
above, they should be used cautiously as they will introduce a heavy revision
control problem in the object base.

2.5 Activity execution

Given a set D of activity decompositions, an initial design activity AC, and

its input attribute objects V, execution of AC with V starts with finding an

activity decomposition in D whose main activity coincides with AD and whose

decomposition condition C is true for V. If such a decomposition is found, AC

is decomposed into subactivities Ais and we repeat this process for each Ai.

If Ai is simple enough and does not need to be decomposed, it is executed by

invoking tools associated with it. Execution of AC ends when all the

primitive activities derived from AC have been finished by using tools, and

the output attributes of A G have been obtained. The entire process of

executing A0 can be seen as growing a tree representing the applied activity

decompositions and evaluating attribute values on the decomposition tree.

3 ACTIVITY EXECUTION MANAGEHENT

The biggest difference between usual program descriptions and software process
descriptions is, of course, that primitive operations in programs are usually
tiny operations and are executed automatically in the CPU, while software
process operations are big operations executed by human users invoking
software tools. This difference forces us to add one more aspect to HFSP.
This is activity execution management for the scheduling, execution and
monitoring of activities: it undertakes the following.

(1) Analyse dependencies among activities from activity decomposition
descriptions, to identify activities that could or must be executed in
serial or parallel.

(2) Initiate execution of activities. If they are primitive ones, and their
input attributes are all available? ask the user to execute them using
given tools. If they are not primitive and need to be decomposed,
select possible decompositions.

90

(3) Handle concurrency control if there are several activities which can be
executed concurrently.

(4) Handle backtracking control if there are several decompositions that
could be applied to a current activity. That is, after selecting a
decomposition, if the selection is found to be wrong, pick another
alternative. The trace of the wrong execution should not be discarded,
but should be recorded as a failed branch in the process decomposition
tree; as such it can be used for later process analysis.

(5) Keep track of the entire activity execution and show users the current
process status. This could be done by displaying the decomposition
tree, augmented for example by information on the status of activities,
failed decomposition choices and other managerial information.

(6) Interface with the object management system. When an activity is
initiated, it retrieves its input attributes from the object base, and
when execution is complete it stores output attributes in the object
base. Objects to be stored are specified in the activity decomposition

A => Al, . . . , Ak when C where E object 0.

0 is a list al, a n of output attributes of A, Ai which are to be

stored. These objects are stored, with their execution paths in the
decomposition tree as part of their identification.

Compared to conventional programming language interpreters, activity
management requires more flexible control during the execution of activities.
AI language researchers have recently introduced the concept of reflection,
which allows programs to refer to and change their execution state, and which
could provide flexible execution modes. This concept of reflection might be
useful in process description.

4 THE HPSP-BASED SOFTWARE DESIGN ENVIRONM?JUT AND ITS PROTOTYPING

An HFSP-based software process environment is being constructed using the
functional language AG and its environment SAGE, developed at the Tokyo
Institute of Technology 131. AG is designed to write functional programs for
hierarchical and structure-oriented problems, and is based on concepts of
modules and their decomposition. A module represents a function, and AG
performs computation by repeated module decomposition [4].

As typical software processes, JSP and JSD have been described in AG.
Activity decomposition descriptions are handled by AG’s module decomposition
capability with only slight modifications, though we needed additional modules
for window control, concurrency control and tool invocation (which are left to
the activity execution management system in HFSP). As we have not yet
constructed an object base, the Unix file system was used.

91

The purpose of the prototype is, in the first place, to make sure that HFSP is
suitable for process description and, in the second place, to try to prototype
the conceptual model of the entire software process environment including its
products, process and tool collection ,nodel [5], La]. Though the prototyping
effort is not complete, ire consider that the hierarchical and functional
approach could provide a good formalism for software process description.

XEPERENCES

ill

121

i31

I41

!51

t61

Dowson Fl. "ISTAR - an integrated project support environment".
Proceedings of the Software Engineering Symposium on Practical Software
Development Environments. 1987.

~Knuth D E. "Semantics of context-free languages". Mathematical
systems theory 2 (2), 1968, pp 127-145.

Shinoda P and Katayama T. "Attribute grammar based programming and its
environment". Proceedings of the 21st Annual Hawaii International
Conference on System Sciences, vol II, software track, 1988, pp 612-620.

btayama T. "HFP: hierarchical and functional programming".
Proceedings of the 5th International Conference on Software Engineering,
1981, pp 343-353.

Riddle W E. "Software Designer's Associates: a preliminary
description". Proceedings of the 20th Annual Hawaii International
Conference on System Sciences, 1987, pp 371-381.

Rishida K, Katayama T, Hatsuo H, Miyamoto I, Ochimitzu R, Saito N,
Sayler J H, Torii K, Williams L G. "SDA: a novel approach to software
environment design and construction". Proceedings of the 10th
International Conference on SoEtware Engineering, 1988.

92

