
An Empirical Study of the Performance of the APL370 Compiler

WAI-MEE CHING, RICK NELSON AND NUNGJANE SHI

IBM T. J. Watson Research Center
Yorktown Heights, NY. 10598 USA

ABSTRACT

The performance of a compiler is usually measured in
terms of the execution efficiency of compiled code and the
speed of compilation. For an APL compiler, we are also
concerned about its relative performance with respect to the
interpreter: C/I, the ratio of the speed of compiled code over
interpretation. We give performance data on 4 groups of
examples of moderate size: i) scalar style code where an
interpreter does poorly and the C/I ratio is very high, ii)
good APL style code where interpreter still does poorly due
to inherent iterativeness or recursion, and the C/I ratio is
high, and iii) good APL style code where the interpreter is
very efficient on large data, and the C/I ratio is low, and iv)
some particular primitives. These examples include neural
net simulation, machine simulation, network routing, signal
processing and mathematical computations. The APL370
compiler not only speeds up applications of iterative nature,
but also gives good performance to codes utilizing APL’s
strength such as boolean selection and boolean data
manipulation.

1. INTRODUCTION

A prototype copy of the APL370 compiler has been
released on the APLTOOLS disk for IBM internal use. The
APL370 compiler compiles an essential subset of APL, which
includes recursion, directly into 370 assembly code. The
compiled code can run independently of any interpreter or be

Permission to copy without fee all or pat of this nuteri.4 is granted provided that
the mpies am not made or dimibuted for dimct commrdal advantsgc, the ACM
copyright notice and the title cd the publicatton and its date appear, and nuke LS
@‘en that copying Is by pem-dsskm of the Aasocdion for Ccmputtq Machinery.
To copy otherwise, or to republish, requires a fee and/or spedfic permisalon.
Copyright 1989 ACM 0-87971-3W-2/0038/wB7 $1.50

called from APL2. This version does not yet include the
option of directly generating vector instructions for the IBM
3090 vector facility (we shall release the vector version later).
Hence, the performance data we discuss here is that of the
released sequential version, not the experimental vector
version we reported in C 11. Also, the interpreter we
compare to is APL2 release 2 (it has no vector option).
However, the compiler in the released form needs APL2
release 3 to run because it uses the package feature of release
3 to avoid possible name conflicts.

Since an APL interpreter provides excellent programming
environment for APL program development, an APL
compiler is not a replacement of the interpreter. The
APL370 compiler is designed for execution efficiency,
interpreter independent execution and ease of compilation. It
is intended to help the following APL users:

whose APL application program has an inherently
iterative component,

who need to write a module in APL implementing
complex algorithms for a non-APL-based system where
no APL interpreter is present during execution,

who have no time, patience or experience to write their
APL program in an elegant fashion so as to save
interpretation time.

Despite current implementation limitations and remaining
bugs in the compiler, we believe our compiler already can be
of good help to many APL users to gain the speed and/or
convenience of interpreter independent execution. Moreover,
it is important to demonstrate that an efficient APL compiler
is possible without imposing requirements alien to APL style
programming and/or need to rely on other programming
language processors for execution performance.

There are two components in the measurement of a
compiler performance: First, the execution speed of the
compiled code, and the second, the compilation time. We
note that even though the second component is less important
in comparison with the first, it is by no means negligible.

APL QUOTE QUAD Ching, Nelson and Shi

http://crossmark.crossref.org/dialog/?doi=10.1145%2F75145.75156&domain=pdf&date_stamp=1989-07-01

This is because in real life a successful compilation is usually
not the end of the story. People naturally asks if any change
can make the compiled code run even faster. Since this

question cannot be settled by running on the interpreter,
recompilation of a modified program becomes necessary.
Hence, slow compilation speed is tolerable but very slow
compilation speed is intolerable.

As for a the measurement of compiled code efficiency, a

simple way is to measure how much time is required for the
execution of each primitive. This can be quickly seen as
ineffective for measuring the overall performance. For an
interpreter is likely to outperform a compiler on the code for
many/most primitives, but still be beaten by a compiler on
whole examples. On the other hand, we can always cook up
examples of triple loops which occur rarely in real life APL
programs to show a speedup of, say 200 times. The real
performance of an APL compiler is the speedup it can
provide on codes it is likely to encounter in real life
applications. Since there is no good way to assemble a
sample of APL programs which all agree as representative,
we decided to use a collection of varying characteristics to
measure the performance of the compiler. Hence we called
this an empirical study of the compiler performance.

Seasoned APL programmers typically develop an intuitive
criterion as whether an APL program is of good APL style.

Usually, such APL programs execute faster (under
interpreter) than equivalent but less well thought out
programs. Our informal definition is that an APL program is
of good APL style if it uses high level primitives and avoids
loops whenever possible. We note that such a definition is
only possible for a language of very high level where usually

exist very different implementations of any particular
computation task.

An APL compiler is of limited value if all it can speedup
(with respect to the interpreter) are FORTRAN style
programs. It must be able to help programs of good APL

style in performance so that the efficiency of the compiled
code is better than interpretation and is comparable to that
produced by an optimizing FORTRAN compiler from

corresponding FORTRAN programs. In the case of the

APL370 compiler, this is indeed true and the compiled code
actually executes faster then FORTRAN if powerful APL
features such as bit-manipulations are involved. The
compiled code in general executes no slower than the
interpreter in stand-alone mode where no copying of data to
and from an interpreter environment is involved. In order to
prove our point, we collected a group of examples, some are
simple and some are from users’ real life applications. We
group them into four different categories and measured their

performance. All the performance data is obtained from
running on a single proctwo r scalar machine of IBM 3090
model. The numbers are in cpu secona% for the table of

compilation and in cpu milliseconds for the tables of execution
time of compile code.

One important feature of compiler performance not
discussed in this paper is that of space utilization. We only

mention that the APL370 compiler currently does not
provide a garbage collector at run-time, but it does have

features to save space as to minimize the need of a garbage
collector.

Finally, we remark that the current version of the APL370

compiler does not have any particular optimization other than
in certain isolated but frequently occurring cases like + p ,

pp, [..I..], . . p 0 . It is not that we regard such
well known optimization technique like ‘drag-along and

beating’ to combine primitive operations as not desirable;

rather, we feel this is less important than the efficient

implementation of certain frequently used primitives such as
boolean compress when constrained with limited resource.

We certainly will include streaming in our newer version of

the compiler later to further improve the compiler

performance.

2. COMPILATION TIME

We divide the compilation time in that of the front end
and that of the back end. The front end time includes

parsing, data flow analysis, type shape analysis and data
dependency analysis. The back end time includes generation

of 370 assembly code from the parse trees produced by the
front end and the actual writing of code characters onto the

output file. We can see that the back end spends more time
than the front end. Part of the back end time is in writing

files (about a quarter), and this part can be substantially
reduced when we later use the block write feature of APL2.
No discernible improvement can be expected of the front end
where no output process is involved, unless substantially

more efficient new data analysis algorithms become available.
On the other hand, since both the compiler is written entirely

in APL (VS APL) and essentially confined to the compilable
subset, a speedup naturally will follow when we compile the

compiler. The back end compilation speed depends very
much on the density of the source code defined as the ratio of

corresponding assembly code and its APL source code (a
scalar style code is much less dense than an equivalent
program using many high level primitives, i.e. code of good

APL style). Hence, the usual line/set. measure of

compilation speed used in FORTRAN and PASCAL
compilers is not really comparable, just as an APL

programmer’s productivity cannot be measured with the same
lines/day accounting used for FORTRAN programmers.

Performance of the APL370 Compiler 88 APL89

Compilation Time

Example Fns Lns Front Back Total Lns/sec

PRIME4 1 10 0.5 2.11 2.61 3.84
QSORT 2 25 0.99 3.36 4.35 5.75
HEBB 2 63 2.07 9.85 11.92 5.28

PRIME5 1 6 0.37 2.11 2.48 2.42
PRIME3 1 7 0.44 3.23 3.67 1.64
QSOR l 4 0.29 3.23 3.52 1.14
CHOLESK 2 15 0.96 5.38 6.34 2.37
WAIMEE 4 51 2.06 9.27 11.33 4.5

DAVID 1 25 2.08 12.1 14.18 1.76
COLORK 2 30 2.07 11.78 13.85 2.17
FFOT 1 41 3.17 28.93 32.1 1.28
BFRANK 1 15 0.72 5.38 6.09 2.46

SSOLVE 6 85 5.3 37.5 42.8 1.99
NIH 4 124 5.37 19.12 24.49 5.06

We note that back end time dominates and it roughly
corresponds to the amount of 370 assembly code generated.
Hence, the lines per second measure confirms our intuition of
the denseness of a piece of APL code.

The compilation speed of the APL370 compiler is much
faster than other APL compilers we are aware of. For
example, it is mentioned in Wiedmann [2 1 that it takes 34
hours for the STSC’s compiler to analyze and speedup an
electronics design application. In our case, we recommend
users to compile as large a unit as possible because our
compilation time is not prohibitively expensive and compiled
code is mostly no worse than the interpreter. This saves the
effort to pinpoint a function which is an execution bottleneck
for compilation.

Even though the issue of compilation speed is less
important than that of the execution speed of compiled code,
it is not some unimportant issue to be brushed aside. Indeed,
for mature compiler technology on scalar languages such as
FORTRAN and PASCAL where the difference between the
execution speeds of compiled code produced by different
compilers is less pronounced, compilation time is a major
criterion for compiler performance. While APL programmers
use the interpreter to developed their programs, after the
code is compiled, they inevitably wonder whether they can do
better. And this question can only be answered by
recompilation and execution of a changed program.
Prohibitive compilation cost will discourage such
experimentation.

3. EXECUTION TIME OF COMPILED CODE

We group our examples into four groups: i) sequential
style code, ii) APL style code with strong iterative or
recursive components, iii) good APL style code already
efficient on the interpreter and iv) some primitives. The
speedup our compiler can provide are certainly different for
each of these groups. An APL compiler can remove the
severe performance penalty the interpreter exacts from naive
APL users on their scalar style code; but it is more important
for an APL compiler to reassure its users that they would not

be penalized when writing good APL style code by the
compiler. That is, the compiler should not perform worse
than the interpreter on good style APL code. We also remark
that even though the speedup the compiler provides on group
i) is greater than that on other groups, the compiled code
actually performs a bit better when an APL program is
written in good APL style (compared with its scalarized
counter part). So there is no incentive to write scalar style
code when using the compiler. On the contrary, soon there
should be strong incentive to write good style APL code
when we make the vector code version of the compiler
available (data on experimental results have already been
presented in C 1 I). And work on progress on automatic
multi-tasking of APL programs has already convinced us that
to write good APL style code is even more important for the
parallel execution on IBM 3090 style multi-processors since
the use of high level primitives in APL provides suitable
granularities for parallel processing. The execution time
excludes output display time (both for interpreter). The
compiled code time is measured in stand alone mode which is
indistinguishable from the time measured when called from
APL2 except the example BFRANK where there is a
noticeable difference most likely due to getting input data
from its APL2 environment to the compiled module (We are
looking into this peculiar problem for very large character
inputs). BFRANK is also the only workspace in our
collection where for certain inputs the compiled code is
running slightly slower than the interpreter. We have
evidence that this is not due to the fact we didn’t do
combining on primitives. We suspect the reason to be that
some of our primitives are still not implemented as efficiently
as possible.

Only PRIME4 has a hand translated FORTRAN for
comparison. This is because PRIME4 is of FORTRAN style
(hence its translation is straightforward). It would be
interesting to see how compiled APL code compares with
FORTRAN on other examples. Unfortunately, to write the
FORTRAN counterpart for other examples is not easy task
and we do not have access to automatic translation at
present.

Group Z

PRIME4
N Interpret. Compiled Speedup FORTRAN
10 10 0 0

100 212 4 53 3
500 2069 59.1

1000 5544 ii; 62.3 ;i
2000 14908 233 64 148

5000 55614 847 65.6 522

QSORT
size Interpreter Compiled Speedup

75a 88 0.63 139.9
75b 103 0.72 144.05

HEBB
size Interpreter Compiled Speedup

L 2x6 25 1.22 20.49
R 73

APL QUOTE QUAD 89 Ching, Nelson and Shi

We note that PRIME4 is not exactly a scalarized version of
PRIMES below because it has boolean short circuit testing
built into it. Hence it is more efficient algorithmically, but

under interpreter it is slower because its' scalar style.

QSORT is the scalar version of quick sort, which is the literal
translation of the PASCAL program 2.10 on page 79 of
Wirth C 3 1 while QSO is basically an APL one-liner. HEBB
is a program in the area of neural network. WAIMEE is a
program doing simulated annealing for machine design. We
only used lOO-th size of real input because the interpreter
takes too long time. It is these type of programs a compiler
becomes a necessity since interpretation takes too long while
rewrite in FORTRAN consumes valuable time of the
designer. SSOLVE is the mathematical kernel of a package
for interactive chip design available from IBM (this is the
same program mentioned in C 2 1 as an application in
electronic design). Specifically, SSOLVE solves sparse
matrix by the Gauss elimination methods.

NIH is a code from the National Institute of Health. The
main function calls a function OPTD in a loop. The function
OPTD is very iterative (its’ flow graph is shown in the
Appendix) and calls other 2 functions, both having only one
basic block, inside loops. This is the only code which is not
compiled as given. We made three modifications. First, the
code was written in APL2 using nested arrays. We wrote an
equivalent VS APL version which does not use nested arrays.
Second, we rearranged parameters to the main function so
that all integer inputs are grouped in the left argument and all
floating point inputs are grouped in the right argument.
Third, we insert code to initialize several variables a certain
size to save heap space. We note that the vectors created
during the execution of the code are rather small, so vector
facility of IBM 3090 and vector code does not give much help
in this example.

Group ZZ

PRIME5

N Interpreter Compiled

10 7 1

100 85 8

500 549 87

1000 1250 248

2000 2903 706

5000 8944 2906

PRIME3

N Interpreter Compiled

1000 14 1.47

Performance of the APL370 Compiler

Speedup

7
10.6

6.3
5.04

4.11

3.08

Speedup

9.52

90

QUICKSOR

size Interpreter Compiled

100 24 2.14

CHOLESKY

size Interpreter Compiled

100 4 0.15

WAIMEE

size Interpreter Compiled

L 2x12 106179.2 8065.61

R84x84

Group ZZZ

DAVID

Speedup

11.21

Speedup

26.67

Speedup

13.12

size Interpreter Compiled Speedup

L 12x2 29 2.3 12.6
R 62x4

COLORK

size Interpreter Compiled Speedup

L33iR33x33 117 14.4 8.13
L64/R64x64 358 79.13 4.52
Ll0D/Rl00xl00 993 293.82 3.38

FFOT

size Interpreter Compiled Speedup

8x8 7 0.37 18.91
32x32 14 1.08 12.96

128~128 27 3.67 7.36
1024x1024 98 30.4 3.22

BFRANK

size Interpreter Compiled Speedup

L1041x8/Rlx8 5 4.4 1.14
L1041x4/R4x4a 16 8.37 1.91

L1041x4/R4x4b 15 8.43 1.78
L 804~4/R4~4 12 5.61 2.14
L 823~8/R4~8 16 14.4 1.11

L 886~8hlx8 4 3.7 1.08
L 798x8/R4x8 14 11.96 1.17

L 665x8/~ 4x8 12 9.81 1.22
Lll39xl4/Rlxl4 7 8.29 0.84
L 701x2/R 2x2 3 1.49 2.01

L 701x4/R 5x4 7 3.27 2.14

SSOLVE

size Interpreter Compiled Speedup

Ll62xRl80 117.45 20.37 5.76
(25 equations)

NIH

Outer iters Interpreter Compiled Speedup

20 384 73.27 5.24
90 792168 153498.8 5.16

We have seen from the above that a compiler which is not
very efficient on computation intensive primitives has no
advantage over the interpreter in good APL style code when
data arrays become quite large. Hence, it is very important

APL89

for a compiler to generate very efficient code for computation
intensive primitives. We give some sample below:

Function
size Interpreter

10x10 10

50x50 296
100x100 2307

Function
size Interpreter

10x10 6

50x50 290
100x100 2331

Function Z+A+.xB
size Interpreter Compiled Speedup

10x10 4 1 4

50x50 216 100 2.16

100x100 1770 812 2.18
Function Z+A+.;B

size Interpreter Compiled Speedup

10x10 5 2 2.5

50x50 323 191 1.69

100x100 2622 1566 1.67

Group IV

Z+BA
Compiler Speedup

2 5
128 2.31

1019 2.26

Z+ABB
Compiler Speedup

2 3
137 2.12

1090 2.14

4. CONCLUSION

We have presented performance data of the APL310
compiler on a variety of examples. We see that the compiler

not only speedup scalar type code, but also provides good
performance on most good style APL code. Moreover, the
compilation time is reasonable and can be further reduced

with improved output method.

Acknowledgement We thank Ralph Linsker, David Stein and

Dan Milch of IBM T.J. Watson Research Center, Leo Maissel
of IBM Poughkeepsie, Dan Chazan of IBM Israel Scientific

Center, Bill Frank of IBM Burlington, David Zein of IBM
East Fishkill and Richard Simon of the National Institute of

Helath for their interest in the APL370 compiler and for

providing us interesting real life examples.

REFERENCES

C 11 W.-M. Ching and A. Xu, A Vector Code Back End of
the APL370 Compiler on IBM 3090 and some Perfor-
mance Comparisons, Proc. of APL88 Conf., 69-76.

[2 I C. Wiedmann, Field Result with the APL Compiler,
Proc. of APL86 Conf., 187-196.

[3 1 N. Wirth, Algorithms+ Data Structures= Programs,

Prentice Hall, 1976.

APPENDIX

V P+PRIMES M;I;J
Cl] R Print first M primes. OIO=l
E21 P+MpO
c31 PCI+J+ll+2

c41 WHILEO:+(I>M)/O
c51 wl:+(v/o=((rI*o.5) tP) IJ+J+~)/w~

C61 P[I+I+1J+J
c71 +WHILEO

V

V P+PRIME4 M;I;J;IROOT
Cl1 P+MpO A print first M primes

c21 PCI+J+11+2 c1 OIO=l
C31 WHILEO:+(IzM)/O
c41 IROOT+rI*O.S
C51 LOOPB:K+l
C61 J+J+2
c71 LOOPA:+(O=PCK]JJ)/LOOPB
181 ~(IROOTU+K+l)/LOOPA
c91 PCI+I+ll+J
Cl01 +WHILEO

V
V PZ+PRIME3 X;NP;E;S

Cl1 P+Xpl
c21 E+(S+LX*0.5)pPCll+O

C31 RPT:+(S<NP+Pll)/END
c41 P+P>Xp(-NP)tl
c51 EC NPl+l

C61 +RPT
c71 END:PZ+(E/lS),P/tX

V

V PQSO V;B;W
Cl] +(l<pV)/S A OIO+l
c21 2+-v

c31 *o

[4lS:Z+(QSO(-B)/W) ,I’Cll,QSO(B+W2IfC1l)/W+l+~
V

V L+CHOLESK A;N;I;C;J
CllnCholesky decomp of sym. posi.def.matrix
c21 N+(-1+((1+8xpA)*O.5))+2
c31 L+AC11*0.5

c41 I+1
c51 S2:+(N<I+l+J+I)/O
C61 C+L LTRl(Jt(L((I-l)xI)+2)+A)
c71 L+L,C, (ACL(IxI+l)t21-C+.xC)*O.5

C81 +s2

V

APL QUOTE QUAD 91 Ching, Nelson and Shi

r:
: : “....

v L+A0 LTRI XO;N;I;A;X
Cl1 nCalc. elements below the main diagonal
c21 X+,X0

[31 A+,AO

C41 Sl:N+(-1+((1+8xpA)*O.5))+2
CSI I+1

CSI L+,X[lliA[ll
c71 S2:+(N<ltl+l) /o

C81 L+L, (iACJ+II) xXCI1

-Ac(JcLlxJI2)+~Jl+.x(~~~-l)4~

c91 +s2
V

Cl1

c21

r.31

c41

c51

C61

c71

C81

V C+ZAP COMADJ A;I;J;N;M
N+lfpA FlOIO+O
M+-ItpA
C+(2pN) PO
I+0

~o:CCJ;J~~~+CCJ;J~AC;~~/~N~

+(M>l+I+l)/LO
+(O=ZAP)/O
C+Cx-A
V

V R+MEM COLORK A;B;C;IO;JO;NS;Wl;W2;W3;Y;Z
Cl1 X+Cl+l COMADJ A
c21 co+,c1

c31 COC (l+B) xtB+ltpAl+O

c41 C+(PA)PCO

C51 NS+(ltpC)pl

C61 Ll:a(O>B+r/,C)/L2

171 B+(,C) IB

C81 JO+(tO)p (l4pC) IB
c91 I0+(10)pLBt14pC

Cl01 Y+ACJ0;1+2xACIO;I

Cl11 Wl+(Y=l)/1pY

Cl21 W2+(Y=2)/1pY

Cl31 W3+(Y=3)/1pY

Cl41 Z+(-AC;J0l)~+/AC;Wll

Cl53 AC;IOl+AC.TO;l+ACIO;lVACJ0;3

Cl61 CCW3;W3l+CCW3;W31-1

Cl71 C[W2;Wll+QCCWl;W2l+CCWl;W2l+-ACWl;W2l

Cl81 C[;lOl+CCI0;l+CClO;l+Z~-ACIO;I

Cl91 MEMC(MEM=MEMCJO~)/~PMEM~~MEMCI~~
[201 c[Io;Wll+ccWl;Iol+ccJo;l+c~;e7ol+AcJo;

+AC;JOl+NSCJOl+O

c211 +Ll

C22lL2:R+MEM
V

Performance of the APL370 Compiler 92

V &&RTMP DAVID M-CROSS.Jh.Lh.P~-KA.MID -1-----,--,--,__,__,___
Cl1 QV+RTMPCl 2 ;I

C21 SM+ 2 0 +RTMP
C31 MM+@
c41 ~~C;~l~~~~C;~l~o)~&~vC1;2l

c51 ~~~1=14PkBE~~~/L~~C1;21=~~~~;21)/0

[61 CQ&SM++\SMC;llx2-SMC;21
c71 LB-+ 2 4 po

C81 Le'ir+/Mc;4lo.>LEvc;il ---

c91 ~MC~P/~l~P~;ll~H~~C(rpcMC;13+0)/hP;21

Cl01 c~~ss~(~~l+~~~,o~~~p~~l~~~),-lt~~)/~p~~

Cl11 J~"'PPCRoss

Cl21~QQE:+(J~=O)/O

Cl31 Y~+Ci$QS8C~~l

Cl4lI??:MIQ+" PL~ECLPCl+EPl+(~~C~P;41>

uucKp+1;41);11

Cl51 E~~~lMMC~P;41-~~~)~l~~c~~:41-~~c1~~~:41

Cl61 k4C1+~~I~~~Cl+~~l+~~BCKpl-LpCyp+ll

Cl73 E9C;11~L~ECL~C1+~~1;21,0

Cl81 EBC; 2 3 41+(2 3 p@MCKe;l+131)

(2PPhJ0. x-fM&Cl 0 +KP;1+131

Cl91 MM+MMCIYP;I,Cll EP,ClI(YP,o)c&M
[201 T&l+(CU@SMXff)ll A WAS rh ****
C211 SMC~~l;ll+SMC~~1;l3+l+SMC~~l;2l=l
~221 ~(LBci+E8l~ir+/H~Ec;il~~~c~~;43)/BE

[233 eJA+JP-1
c241 +mo_p

V

V E+Al BFRANK A2;I;IT;ROW;CT;A2V
Cl1 R Bill Frank's version, 9/87
[21 +(-I*‘ cA2)/LO R Branch if no * in arg
c41 A2V+,A2
L-51 A2VC (,A2=‘*‘)/1pA2tJl+’ ’

L-61 A2+(pA2) pA2v

[71 LO:+('-' cA2)/Ll A Branch if there are _
C81 E+,v/Alh.=QA2 A do simple inner prod -+O
c91 +o

ClOlLl:l+~-ItpAl A Indices of data
Cl11 ROW+l+pA:! a Loop counter & limit

Cl21 CT+1
Cl31 B+(lSpAl)pO n Initialize results
[14lL2:IT+('-'*A2[CT;I)/I
Cl51 e+EvAlC;ITlh.=A2CC~;IT1 Afind the match
Cl61 +(ROW>CT+CT+l)/L2

V

APL89

V W+FFOT XO;Z;Xl;I;R;U;RO;X
cl] R CQMEUZE_S FFT O_F A_ R_E_A_L_ FN WITH 2*N PTS -- ---- ---
5;; R I_NVERSE I_S FTI. (pW)=(2,1+(2*N)-1)

~((2apxo)+r2epxo)/o
C61 X+((RO+(oXO) 1 .l)PXO

Figure I. Flow Graph of OPTD in NIH

c71 Z+XCILRti;l,XCR+'IL(R+L(lfpX)s2)I2;3
C81 X+(XCR+~R;I,XC(~~R)+IR+LR~~;I)
c91 Z+Z+.x 2201111
t1o1
Cl11
Cl21
Cl31
Cl41
Cl51
Cl61
Cl71
El81

x+x+.x 2 2 b 1 1 1 -1
W+(Rp 1 O)t((R,2)4Z),
WC-l+2xt~;ll+WC-l+2~l
W[-l+2~~~;31+WC-l+2~~
WC2x~~;2l+-XCtR;21
X+((R+L(0.5xR)),0)tX
Z+((2d?)p 1 O)i((R,O)
zc-1+2xIR;ll+zc-1+2~l
Z[-1+2xtR;31+2[-1+2x1

(B+L0.5xR)
R_;ll+XCtI7;
R;31-XCtR_;

4ZC;ll
II
II

tz) ,R+ZC;ll
R;1I+XCtR;ll
R;31-XC1R;11

Cl91 ZC2x1R;2l~-XCtR;21
c201 u+ 2 1 ~.oo2x(-(-l+IL1+ROt2)IRO)
c211 I+3
c221 +(1=14pZ)/O
C231 X+Z[-1+2x1!?;]
c241 Z+ZC2xtR;l
C261LOl:X+X, 0 1 t$X
C271 Z+Z,- 0 1 t$Z
[281 X1+Xx(pX)pU[1;1+(LR0~2*1)~-1+~L1+2*1-11
c291 X+Xx(pX)pUC2;1+(LR0t2*1)~-1+111+2*~-11
[301X1+X1-Z~(pX)pU[2;1+(LR0~2*1)~-1+1L1+2*1-11
c311 X+X+zx(pX)pu[l;l+(LRo~2*~)x 1+1L1+2*1-11
C321 Z+ 0 0 p0
c331 Xl+X1+WC-1+2xtR;1, 0 1 t~WC-l+2xtR;l
c341 XtX+WC2xtR;l,- 0 1 J~WC2xtR;I
~351 w+(2 I rpxl)po
C361 WC-1+2~1L(ltpW)+2;l+Xl~1L(l4pW)+2;1
c371 xl+((Lo.5~l4pw),o)tx1
C381 WC2xlL(ltpW)s2; l+XC~l (lfpW)+2; 1
:g; ;+~/L0.5xlfPW),O)tX

c
c411 I+I+l
C421 R+LR+2
[431 +(0=14pX)/O
[441 +LOl

V

APL QUOTE QUAD 93 Ching, Nelson and Shi

