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ABSTRACT 

The performance of a compiler is usually measured in 
terms of the execution efficiency of compiled code and the 
speed of compilation. For an APL compiler, we are also 
concerned about its relative performance with respect to the 
interpreter: C/I, the ratio of the speed of compiled code over 
interpretation. We give performance data on 4 groups of 
examples of moderate size: i) scalar style code where an 
interpreter does poorly and the C/I ratio is very high, ii) 
good APL style code where interpreter still does poorly due 
to inherent iterativeness or recursion, and the C/I ratio is 
high, and iii) good APL style code where the interpreter is 
very efficient on large data, and the C/I ratio is low, and iv) 
some particular primitives. These examples include neural 
net simulation, machine simulation, network routing, signal 
processing and mathematical computations. The APL370 
compiler not only speeds up applications of iterative nature, 
but also gives good performance to codes utilizing APL’s 
strength such as boolean selection and boolean data 
manipulation. 

1. INTRODUCTION 

A prototype copy of the APL370 compiler has been 
released on the APLTOOLS disk for IBM internal use. The 
APL370 compiler compiles an essential subset of APL, which 
includes recursion, directly into 370 assembly code. The 
compiled code can run independently of any interpreter or be 
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called from APL2. This version does not yet include the 
option of directly generating vector instructions for the IBM 
3090 vector facility (we shall release the vector version later). 
Hence, the performance data we discuss here is that of the 
released sequential version, not the experimental vector 
version we reported in C 11. Also, the interpreter we 
compare to is APL2 release 2 (it has no vector option). 
However, the compiler in the released form needs APL2 
release 3 to run because it uses the package feature of release 
3 to avoid possible name conflicts. 

Since an APL interpreter provides excellent programming 
environment for APL program development, an APL 
compiler is not a replacement of the interpreter. The 
APL370 compiler is designed for execution efficiency, 
interpreter independent execution and ease of compilation. It 
is intended to help the following APL users: 

whose APL application program has an inherently 
iterative component, 

who need to write a module in APL implementing 
complex algorithms for a non-APL-based system where 
no APL interpreter is present during execution, 

who have no time, patience or experience to write their 
APL program in an elegant fashion so as to save 
interpretation time. 

Despite current implementation limitations and remaining 
bugs in the compiler, we believe our compiler already can be 
of good help to many APL users to gain the speed and/or 
convenience of interpreter independent execution. Moreover, 
it is important to demonstrate that an efficient APL compiler 
is possible without imposing requirements alien to APL style 
programming and/or need to rely on other programming 
language processors for execution performance. 

There are two components in the measurement of a 
compiler performance: First, the execution speed of the 
compiled code, and the second, the compilation time. We 
note that even though the second component is less important 
in comparison with the first, it is by no means negligible. 
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This is because in real life a successful compilation is usually 
not the end of the story. People naturally asks if any change 
can make the compiled code run even faster. Since this 

question cannot be settled by running on the interpreter, 
recompilation of a modified program becomes necessary. 
Hence, slow compilation speed is tolerable but very slow 
compilation speed is intolerable. 

As for a the measurement of compiled code efficiency, a 

simple way is to measure how much time is required for the 
execution of each primitive. This can be quickly seen as 
ineffective for measuring the overall performance. For an 
interpreter is likely to outperform a compiler on the code for 
many/most primitives, but still be beaten by a compiler on 
whole examples. On the other hand, we can always cook up 
examples of triple loops which occur rarely in real life APL 
programs to show a speedup of, say 200 times. The real 
performance of an APL compiler is the speedup it can 
provide on codes it is likely to encounter in real life 
applications. Since there is no good way to assemble a 
sample of APL programs which all agree as representative, 
we decided to use a collection of varying characteristics to 
measure the performance of the compiler. Hence we called 
this an empirical study of the compiler performance. 

Seasoned APL programmers typically develop an intuitive 
criterion as whether an APL program is of good APL style. 

Usually, such APL programs execute faster (under 
interpreter) than equivalent but less well thought out 
programs. Our informal definition is that an APL program is 
of good APL style if it uses high level primitives and avoids 
loops whenever possible. We note that such a definition is 
only possible for a language of very high level where usually 

exist very different implementations of any particular 
computation task. 

An APL compiler is of limited value if all it can speedup 
(with respect to the interpreter) are FORTRAN style 
programs. It must be able to help programs of good APL 

style in performance so that the efficiency of the compiled 
code is better than interpretation and is comparable to that 
produced by an optimizing FORTRAN compiler from 

corresponding FORTRAN programs. In the case of the 

APL370 compiler, this is indeed true and the compiled code 
actually executes faster then FORTRAN if powerful APL 
features such as bit-manipulations are involved. The 
compiled code in general executes no slower than the 
interpreter in stand-alone mode where no copying of data to 
and from an interpreter environment is involved. In order to 
prove our point, we collected a group of examples, some are 
simple and some are from users’ real life applications. We 
group them into four different categories and measured their 

performance. All the performance data is obtained from 
running on a single proctwo r scalar machine of IBM 3090 
model. The numbers are in cpu secona% for the table of 

compilation and in cpu milliseconds for the tables of execution 
time of compile code. 

One important feature of compiler performance not 
discussed in this paper is that of space utilization. We only 

mention that the APL370 compiler currently does not 
provide a garbage collector at run-time, but it does have 

features to save space as to minimize the need of a garbage 
collector. 

Finally, we remark that the current version of the APL370 

compiler does not have any particular optimization other than 
in certain isolated but frequently occurring cases like + p , 

pp, [..I..], . . p 0 . It is not that we regard such 
well known optimization technique like ‘drag-along and 

beating’ to combine primitive operations as not desirable; 

rather, we feel this is less important than the efficient 

implementation of certain frequently used primitives such as 
boolean compress when constrained with limited resource. 

We certainly will include streaming in our newer version of 

the compiler later to further improve the compiler 

performance. 

2. COMPILATION TIME 

We divide the compilation time in that of the front end 
and that of the back end. The front end time includes 

parsing, data flow analysis, type shape analysis and data 
dependency analysis. The back end time includes generation 

of 370 assembly code from the parse trees produced by the 
front end and the actual writing of code characters onto the 

output file. We can see that the back end spends more time 
than the front end. Part of the back end time is in writing 

files (about a quarter), and this part can be substantially 
reduced when we later use the block write feature of APL2. 
No discernible improvement can be expected of the front end 
where no output process is involved, unless substantially 

more efficient new data analysis algorithms become available. 
On the other hand, since both the compiler is written entirely 

in APL (VS APL) and essentially confined to the compilable 
subset, a speedup naturally will follow when we compile the 

compiler. The back end compilation speed depends very 
much on the density of the source code defined as the ratio of 

corresponding assembly code and its APL source code (a 
scalar style code is much less dense than an equivalent 
program using many high level primitives, i.e. code of good 

APL style). Hence, the usual line/set. measure of 

compilation speed used in FORTRAN and PASCAL 
compilers is not really comparable, just as an APL 

programmer’s productivity cannot be measured with the same 
lines/day accounting used for FORTRAN programmers. 
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Compilation Time 

Example Fns Lns Front Back Total Lns/sec 

PRIME4 1 10 0.5 2.11 2.61 3.84 
QSORT 2 25 0.99 3.36 4.35 5.75 
HEBB 2 63 2.07 9.85 11.92 5.28 

PRIME5 1 6 0.37 2.11 2.48 2.42 
PRIME3 1 7 0.44 3.23 3.67 1.64 
QSOR l 4 0.29 3.23 3.52 1.14 
CHOLESK 2 15 0.96 5.38 6.34 2.37 
WAIMEE 4 51 2.06 9.27 11.33 4.5 

DAVID 1 25 2.08 12.1 14.18 1.76 
COLORK 2 30 2.07 11.78 13.85 2.17 
FFOT 1 41 3.17 28.93 32.1 1.28 
BFRANK 1 15 0.72 5.38 6.09 2.46 

SSOLVE 6 85 5.3 37.5 42.8 1.99 
NIH 4 124 5.37 19.12 24.49 5.06 

We note that back end time dominates and it roughly 
corresponds to the amount of 370 assembly code generated. 
Hence, the lines per second measure confirms our intuition of 
the denseness of a piece of APL code. 

The compilation speed of the APL370 compiler is much 
faster than other APL compilers we are aware of. For 
example, it is mentioned in Wiedmann [ 2 1 that it takes 34 
hours for the STSC’s compiler to analyze and speedup an 
electronics design application. In our case, we recommend 
users to compile as large a unit as possible because our 
compilation time is not prohibitively expensive and compiled 
code is mostly no worse than the interpreter. This saves the 
effort to pinpoint a function which is an execution bottleneck 
for compilation. 

Even though the issue of compilation speed is less 
important than that of the execution speed of compiled code, 
it is not some unimportant issue to be brushed aside. Indeed, 
for mature compiler technology on scalar languages such as 
FORTRAN and PASCAL where the difference between the 
execution speeds of compiled code produced by different 
compilers is less pronounced, compilation time is a major 
criterion for compiler performance. While APL programmers 
use the interpreter to developed their programs, after the 
code is compiled, they inevitably wonder whether they can do 
better. And this question can only be answered by 
recompilation and execution of a changed program. 
Prohibitive compilation cost will discourage such 
experimentation. 

3. EXECUTION TIME OF COMPILED CODE 

We group our examples into four groups: i) sequential 
style code, ii) APL style code with strong iterative or 
recursive components, iii) good APL style code already 
efficient on the interpreter and iv) some primitives. The 
speedup our compiler can provide are certainly different for 
each of these groups. An APL compiler can remove the 
severe performance penalty the interpreter exacts from naive 
APL users on their scalar style code; but it is more important 
for an APL compiler to reassure its users that they would not 

be penalized when writing good APL style code by the 
compiler. That is, the compiler should not perform worse 
than the interpreter on good style APL code. We also remark 
that even though the speedup the compiler provides on group 
i) is greater than that on other groups, the compiled code 
actually performs a bit better when an APL program is 
written in good APL style (compared with its scalarized 
counter part). So there is no incentive to write scalar style 
code when using the compiler. On the contrary, soon there 
should be strong incentive to write good style APL code 
when we make the vector code version of the compiler 
available (data on experimental results have already been 
presented in C 1 I). And work on progress on automatic 
multi-tasking of APL programs has already convinced us that 
to write good APL style code is even more important for the 
parallel execution on IBM 3090 style multi-processors since 
the use of high level primitives in APL provides suitable 
granularities for parallel processing. The execution time 
excludes output display time (both for interpreter). The 
compiled code time is measured in stand alone mode which is 
indistinguishable from the time measured when called from 
APL2 except the example BFRANK where there is a 
noticeable difference most likely due to getting input data 
from its APL2 environment to the compiled module (We are 
looking into this peculiar problem for very large character 
inputs). BFRANK is also the only workspace in our 
collection where for certain inputs the compiled code is 
running slightly slower than the interpreter. We have 
evidence that this is not due to the fact we didn’t do 
combining on primitives. We suspect the reason to be that 
some of our primitives are still not implemented as efficiently 
as possible. 

Only PRIME4 has a hand translated FORTRAN for 
comparison. This is because PRIME4 is of FORTRAN style 
(hence its translation is straightforward). It would be 
interesting to see how compiled APL code compares with 
FORTRAN on other examples. Unfortunately, to write the 
FORTRAN counterpart for other examples is not easy task 
and we do not have access to automatic translation at 
present. 

Group Z 

PRIME4 
N Interpret. Compiled Speedup FORTRAN 
10 10 0 0 

100 212 4 53 3 
500 2069 59.1 

1000 5544 ii; 62.3 ;i 
2000 14908 233 64 148 

5000 55614 847 65.6 522 

QSORT 
size Interpreter Compiled Speedup 

75a 88 0.63 139.9 
75b 103 0.72 144.05 

HEBB 
size Interpreter Compiled Speedup 

L 2x6 25 1.22 20.49 
R 73 
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We note that PRIME4 is not exactly a scalarized version of 
PRIMES below because it has boolean short circuit testing 
built into it. Hence it is more efficient algorithmically, but 

under interpreter it is slower because its' scalar style. 

QSORT is the scalar version of quick sort, which is the literal 
translation of the PASCAL program 2.10 on page 79 of 
Wirth C 3 1 while QSO is basically an APL one-liner. HEBB 
is a program in the area of neural network. WAIMEE is a 
program doing simulated annealing for machine design. We 
only used lOO-th size of real input because the interpreter 
takes too long time. It is these type of programs a compiler 
becomes a necessity since interpretation takes too long while 
rewrite in FORTRAN consumes valuable time of the 
designer. SSOLVE is the mathematical kernel of a package 
for interactive chip design available from IBM (this is the 
same program mentioned in C 2 1 as an application in 
electronic design). Specifically, SSOLVE solves sparse 
matrix by the Gauss elimination methods. 

NIH is a code from the National Institute of Health. The 
main function calls a function OPTD in a loop. The function 
OPTD is very iterative (its’ flow graph is shown in the 
Appendix) and calls other 2 functions, both having only one 
basic block, inside loops. This is the only code which is not 
compiled as given. We made three modifications. First, the 
code was written in APL2 using nested arrays. We wrote an 
equivalent VS APL version which does not use nested arrays. 
Second, we rearranged parameters to the main function so 
that all integer inputs are grouped in the left argument and all 
floating point inputs are grouped in the right argument. 
Third, we insert code to initialize several variables a certain 
size to save heap space. We note that the vectors created 
during the execution of the code are rather small, so vector 
facility of IBM 3090 and vector code does not give much help 
in this example. 

Group ZZ 

PRIME5 

N Interpreter Compiled 

10 7 1 

100 85 8 

500 549 87 

1000 1250 248 

2000 2903 706 

5000 8944 2906 

PRIME3 

N Interpreter Compiled 

1000 14 1.47 
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Speedup 

7 
10.6 

6.3 
5.04 

4.11 

3.08 

Speedup 

9.52 

90 

QUICKSOR 

size Interpreter Compiled 

100 24 2.14 

CHOLESKY 

size Interpreter Compiled 

100 4 0.15 

WAIMEE 

size Interpreter Compiled 

L 2x12 106179.2 8065.61 

R84x84 

Group ZZZ 

DAVID 

Speedup 

11.21 

Speedup 

26.67 

Speedup 

13.12 

size Interpreter Compiled Speedup 

L 12x2 29 2.3 12.6 
R 62x4 

COLORK 

size Interpreter Compiled Speedup 

L33iR33x33 117 14.4 8.13 
L64/R64x64 358 79.13 4.52 
Ll0D/Rl00xl00 993 293.82 3.38 

FFOT 

size Interpreter Compiled Speedup 

8x8 7 0.37 18.91 
32x32 14 1.08 12.96 

128~128 27 3.67 7.36 
1024x1024 98 30.4 3.22 

BFRANK 

size Interpreter Compiled Speedup 

L1041x8/Rlx8 5 4.4 1.14 
L1041x4/R4x4a 16 8.37 1.91 

L1041x4/R4x4b 15 8.43 1.78 
L 804~4/R4~4 12 5.61 2.14 
L 823~8/R4~8 16 14.4 1.11 

L 886~8hlx8 4 3.7 1.08 
L 798x8/R4x8 14 11.96 1.17 

L 665x8/~ 4x8 12 9.81 1.22 
Lll39xl4/Rlxl4 7 8.29 0.84 
L 701x2/R 2x2 3 1.49 2.01 

L 701x4/R 5x4 7 3.27 2.14 

SSOLVE 

size Interpreter Compiled Speedup 

Ll62xRl80 117.45 20.37 5.76 
(25 equations) 

NIH 

Outer iters Interpreter Compiled Speedup 

20 384 73.27 5.24 
90 792168 153498.8 5.16 

We have seen from the above that a compiler which is not 
very efficient on computation intensive primitives has no 
advantage over the interpreter in good APL style code when 
data arrays become quite large. Hence, it is very important 
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for a compiler to generate very efficient code for computation 
intensive primitives. We give some sample below: 

Function 
size Interpreter 

10x10 10 

50x50 296 
100x100 2307 

Function 
size Interpreter 

10x10 6 

50x50 290 
100x100 2331 

Function Z+A+.xB 
size Interpreter Compiled Speedup 

10x10 4 1 4 

50x50 216 100 2.16 

100x100 1770 812 2.18 
Function Z+A+.;B 

size Interpreter Compiled Speedup 

10x10 5 2 2.5 

50x50 323 191 1.69 

100x100 2622 1566 1.67 

Group IV 

Z+BA 
Compiler Speedup 

2 5 
128 2.31 

1019 2.26 

Z+ABB 
Compiler Speedup 

2 3 
137 2.12 

1090 2.14 

4. CONCLUSION 

We have presented performance data of the APL310 
compiler on a variety of examples. We see that the compiler 

not only speedup scalar type code, but also provides good 
performance on most good style APL code. Moreover, the 
compilation time is reasonable and can be further reduced 

with improved output method. 
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APPENDIX 

V P+PRIMES M;I;J 
Cl] R Print first M primes. OIO=l 
E21 P+MpO 
c31 PCI+J+ll+2 

c41 WHILEO:+(I>M)/O 
c51 wl:+(v/o=( (rI*o.5) tP) IJ+J+~)/w~ 

C61 P[I+I+1J+J 
c71 +WHILEO 

V 

V P+PRIME4 M;I;J;IROOT 
Cl1 P+MpO A print first M primes 

c21 PCI+J+11+2 c1 OIO=l 
C31 WHILEO:+(IzM)/O 
c41 IROOT+rI*O.S 
C51 LOOPB:K+l 
C61 J+J+2 
c71 LOOPA:+(O=PCK]JJ)/LOOPB 
181 ~(IROOTU+K+l)/LOOPA 
c91 PCI+I+ll+J 
Cl01 +WHILEO 

V 
V PZ+PRIME3 X;NP;E;S 

Cl1 P+Xpl 
c21 E+(S+LX*0.5)pPCll+O 

C31 RPT:+(S<NP+Pll)/END 
c41 P+P>Xp(-NP)tl 
c51 EC NPl+l 

C61 +RPT 
c71 END:PZ+(E/lS),P/tX 

V 

V PQSO V;B;W 
Cl] +(l<pV)/S A OIO+l 
c21 2+-v 

c31 *o 

[4lS:Z+(QSO(-B)/W) ,I’Cll,QSO(B+W2IfC1l)/W+l+~ 
V 

V L+CHOLESK A;N;I;C;J 
CllnCholesky decomp of sym. posi.def.matrix 
c21 N+(-1+((1+8xpA)*O.5))+2 
c31 L+AC11*0.5 

c41 I+1 
c51 S2:+(N<I+l+J+I)/O 
C61 C+L LTRl(Jt(L((I-l)xI)+2)+A) 
c71 L+L,C, (ACL(IxI+l)t21-C+.xC)*O.5 

C81 +s2 

V 
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v L+A0 LTRI XO;N;I;A;X 
Cl1 nCalc. elements below the main diagonal 
c21 X+,X0 

[31 A+,AO 

C41 Sl:N+(-1+((1+8xpA)*O.5))+2 
CSI I+1 

CSI L+,X[lliA[ll 
c71 S2:+(N<ltl+l) /o 

C81 L+L, (iACJ+II) xXCI1 

-Ac(JcLlxJI2)+~Jl+.x(~~~-l)4~ 

c91 +s2 
V 

Cl1 

c21 

r.31 

c41 

c51 

C61 

c71 

C81 

V C+ZAP COMADJ A;I;J;N;M 
N+lfpA FlOIO+O 
M+-ItpA 
C+(2pN) PO 
I+0 

~o:CCJ;J~~~+CCJ;J~AC;~~/~N~ 

+(M>l+I+l)/LO 
+(O=ZAP)/O 
C+Cx-A 
V 

V R+MEM COLORK A;B;C;IO;JO;NS;Wl;W2;W3;Y;Z 
Cl1 X+Cl+l COMADJ A 
c21 co+,c1 

c31 COC (l+B) xtB+ltpAl+O 

c41 C+(PA)PCO 

C51 NS+(ltpC)pl 

C61 Ll:a(O>B+r/,C)/L2 

171 B+(,C) IB 

C81 JO+(tO)p (l4pC) IB 
c91 I0+(10)pLBt14pC 

Cl01 Y+ACJ0;1+2xACIO;I 

Cl11 Wl+(Y=l)/1pY 

Cl21 W2+(Y=2)/1pY 

Cl31 W3+(Y=3)/1pY 

Cl41 Z+(-AC;J0l)~+/AC;Wll 

Cl53 AC;IOl+AC.TO;l+ACIO;lVACJ0;3 

Cl61 CCW3;W3l+CCW3;W31-1 

Cl71 C[W2;Wll+QCCWl;W2l+CCWl;W2l+-ACWl;W2l 

Cl81 C[;lOl+CCI0;l+CClO;l+Z~-ACIO;I 

Cl91 MEMC(MEM=MEMCJO~)/~PMEM~~MEMCI~~ 
[201 c[Io;Wll+ccWl;Iol+ccJo;l+c~;e7ol+AcJo; 

+AC;JOl+NSCJOl+O 

c211 +Ll 

C22lL2:R+MEM 
V 
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V &&RTMP DAVID M-CROSS.Jh.Lh.P~-KA.MID -1-----,--,--,__,__,___ 
Cl1 QV+RTMPCl 2 ;I 

C21 SM+ 2 0 +RTMP 
C31 MM+@ 
c41 ~~C;~l~~~~C;~l~o)~&~vC1;2l 

c51 ~~~1=14PkBE~~~/L~~C1;21=~~~~;21)/0 

[61 CQ&SM++\SMC;llx2-SMC;21 
c71 LB-+ 2 4 po 

C81 Le'ir+/Mc;4lo.>LEvc;il --- 

c91 ~MC~P/~l~P~;ll~H~~C(rpcMC;13+0)/hP;21 

Cl01 c~~ss~(~~l+~~~,o~~~p~~l~~~),-lt~~)/~p~~ 

Cl11 J~"'PPCRoss 

Cl21~QQE:+(J~=O)/O 

Cl31 Y~+Ci$QS8C~~l 

Cl4lI??:MIQ+" PL~ECLPCl+EPl+(~~C~P;41> 

uucKp+1;41);11 

Cl51 E~~~lMMC~P;41-~~~)~l~~c~~:41-~~c1~~~:41 

Cl61 k4C1+~~I~~~Cl+~~l+~~BCKpl-LpCyp+ll 

Cl73 E9C;11~L~ECL~C1+~~1;21,0 

Cl81 EBC; 2 3 41+(2 3 p@MCKe;l+131) 

(2PPhJ0. x-fM&Cl 0 +KP;1+131 

Cl91 MM+MMCIYP;I,Cll EP,ClI(YP,o)c&M 
[201 T&l+(CU@SMXff)ll A WAS rh **** 
C211 SMC~~l;ll+SMC~~1;l3+l+SMC~~l;2l=l 
~221 ~(LBci+E8l~ir+/H~Ec;il~~~c~~;43)/BE 

[233 eJA+JP-1 
c241 +mo_p 

V 

V E+Al BFRANK A2;I;IT;ROW;CT;A2V 
Cl1 R Bill Frank's version, 9/87 
[21 +(-I*‘ cA2)/LO R Branch if no * in arg 
c41 A2V+,A2 
L-51 A2VC (,A2=‘*‘)/1pA2tJl+’ ’ 

L-61 A2+(pA2) pA2v 

[71 LO:+('-' cA2)/Ll A Branch if there are _ 
C81 E+,v/Alh.=QA2 A do simple inner prod -+O 
c91 +o 

ClOlLl:l+~-ItpAl A Indices of data 
Cl11 ROW+l+pA:! a Loop counter & limit 

Cl21 CT+1 
Cl31 B+(lSpAl)pO n Initialize results 
[14lL2:IT+( '-'*A2[CT;I)/I 
Cl51 e+EvAlC;ITlh.=A2CC~;IT1 Afind the match 
Cl61 +(ROW>CT+CT+l)/L2 

V 
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V W+FFOT XO;Z;Xl;I;R;U;RO;X 
cl] R CQMEUZE_S FFT O_F A_ R_E_A_L_ FN WITH 2*N PTS -- ---- --- 
5;; R I_NVERSE I_S FTI. (pW)=(2,1+(2*N)-1) 

~((2apxo)+r2epxo)/o 
C61 X+( (RO+(oXO) 1 .l)PXO 

Figure I. Flow Graph of OPTD in NIH 

c71 Z+XCILRti;l,XCR+'IL(R+L(lfpX)s2)I2;3 
C81 X+(XCR+~R;I,XC(~~R)+IR+LR~~;I) 
c91 Z+Z+.x 2201111 
t1o1 
Cl11 
Cl21 
Cl31 
Cl41 
Cl51 
Cl61 
Cl71 
El81 

x+x+.x 2 2 b 1 1 1 -1 
W+(Rp 1 O)t((R,2)4Z), 
WC-l+2xt~;ll+WC-l+2~l 
W[-l+2~~~;31+WC-l+2~~ 
WC2x~~;2l+-XCtR;21 
X+((R+L(0.5xR)),0)tX 
Z+((2d?)p 1 O)i((R,O) 
zc-1+2xIR;ll+zc-1+2~l 
Z[-1+2xtR;31+2[-1+2x1 

(B+L0.5xR) 
R_;ll+XCtI7; 
R;31-XCtR_; 

4ZC;ll 
II 
II 

tz) ,R+ZC;ll 
R;1I+XCtR;ll 
R;31-XC1R;11 

Cl91 ZC2x1R;2l~-XCtR;21 
c201 u+ 2 1 ~.oo2x(-(-l+IL1+ROt2)IRO) 
c211 I+3 
c221 +(1=14pZ)/O 
C231 X+Z[-1+2x1!?;] 
c241 Z+ZC2xtR;l 
C261LOl:X+X, 0 1 t$X 
C271 Z+Z,- 0 1 t$Z 
[281 X1+Xx(pX)pU[1;1+(LR0~2*1)~-1+~L1+2*1-11 
c291 X+Xx(pX)pUC2;1+(LR0t2*1)~-1+111+2*~-11 
[301X1+X1-Z~(pX)pU[2;1+(LR0~2*1)~-1+1L1+2*1-11 
c311 X+X+zx(pX)pu[l;l+(LRo~2*~)x 1+1L1+2*1-11 
C321 Z+ 0 0 p0 
c331 Xl+X1+WC-1+2xtR;1, 0 1 t~WC-l+2xtR;l 
c341 XtX+WC2xtR;l,- 0 1 J~WC2xtR;I 
~351 w+(2 I rpxl)po 
C361 WC-1+2~1L(ltpW)+2;l+Xl~1L(l4pW)+2;1 
c371 xl+((Lo.5~l4pw),o)tx1 
C381 WC2xlL(ltpW)s2; l+XC~l (lfpW)+2; 1 
:g; ;+~/L0.5xlfPW),O)tX 

c 
c411 I+I+l 
C421 R+LR+2 
[431 +(0=14pX)/O 
[441 +LOl 

V 
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