
Analysis Ca,pabilities for Requirements
Specified in Statecharts ’

Bonnie E. Melhart Matthew S. J&e
Nancy G. Leveson Hughes Aircraft Company

Dept. of Information and Computer Science Ground Systems Group

University of California, Irvine Fullerton, California

Abstract

This paper considers various types of analysis that are possi-
ble for formal requirements specifications in the ;Statecharts
language. The application of recently developed criteria for
completeness analysis of embedded systems requirements to
specifications in Statecharts is discussed, in particular. Ad-
ditions for the language that will enable such analysis are
indicated.

Introduction

As today’s computer systems are asked to perform more and
more complex tasks, the individual components of the task
or system and their interface become more complex, and the
difficulty increases of assuring such properties as consistency,
completeness, and unambiguity in the specifications. Embed-
ded systems, in particular, have become increasingly complex
as the software is tasked to interface with many machines and
humans at once, often with stringent fault tolerance, safety,
and reliability requirements. Evaluation for correctness and
other properties is essential early on, i.e. at the requirements
level, before commitment is made to a physical solution that
may be costly or even impossible to change. Postponing such
analysis is inadvisable: time and effort spent on verification
of the design or the implementation to the requirements spec-
ification are wasted if the requirements are incorrect.

Work is ongoing at the University of Californi(a, Irvine to
develop a formal model that can be used to determine and
describe the features required for a real-time requirements
specification language suitable for embedded systems and to
develop completeness analysis methods based on this model.
The focus has been on those aspects of the requirelments spec-
ification that are often handled poorly or inadequately such
as safety, robustness, timing, and the human-machine inter-
face.

‘This work has been partially supported by NSF Grant CCR-
8718001, NSF VPW Grant 8800505-RII, NSF CER ‘Grant DCR-
8521398, and NASA Grant NAG-l-668.

Permission to copy without fee ail or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyriet notice and the title of the publication and
its date appear, and notice 1s given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specfic permission.

The language used to specify software requirements is im-
portant not only for its ability to express and to communicate
the requirements, but also for its ability to enable analyses of
the requirements specification. It is therefore interesting and
appropriate to consider such analysis capabilities in State-
charts [Har87], a state-of-the-art language for the specifica-
tion of complex embedded systems.

In [MLJ88], the authors present a critical evaluation of
Statecharts as a language that enables such analysis and sug-
gest some additional features that are needed to completely
specify real-time embedded systems. The application of the
completeness analysis procedures that we have developed to
an example specification in Statecharts is examined there as
well. A brief description of a few of the results of this work
is given here.

Statecharts

Statecharts is a language under development at Weizmann
Institute in Israel by David Hare1 and his colleagues. It is
intended for use in defining real-time reactive systems and
is appropriate for the embedded applications on which this
research is focused.

There are several characteristics of a language used for
specifying software requirements that enable the application
of various analyses of the resulting system description. In
general, to preclude the need for some sort of natural lan-
guage processor to manipulate the description, a formal, non-
prose language is desired for requirements specification. On
the other hand, formal languages can be hard to read and un-

derstand; tradeoffs are necessary when selecting a language
that must be appropriate for use on many levels (i.e., design,

validation, specification, analysis). As Statecharts employs
a graph structure with multiple abstraction levels to repre-
sent an underlying formalism based on finite state machines,
formal analysis can be focused on a certain level of detail in

the specification or on parts of the representation that are
relevant without looking at the entire specification.

Timing is an essential consideration for real-time embedded
software. A means for representing minimum and/or maxi-

mum times for certain activities is present in the language.
Syntax is provided to specify desired transition in the event
of a time-out; that is, the passing of a given time since the
last occurrence of a specified event. This capability is impor-

01989 ACM 0-89791~3051/89/0500/0100$00.7!5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F75200.75215&domain=pdf&date_stamp=1989-04-01

tant to most analysis techniques. Another important feature
for requirements analysis is the capability to include an en-
vironmental model as an orthogonal (independent, parallel)
state to the software decription. Thus analyses of the re-
quirements specification can include analysis of the software
model interacting with its environment.

The next two sections describe two specific analyses for
requirements level descriptions that have been considered for
application to a Statecharts model.

Safety analysis

Leveson and Stolzy [LS87] h ave developed analysis techniques
for timed Petri net specifications to analyze a model for safety
and fault tolerance properties and to derive associated tim-
ing and functional requirements from a global system model.
These techniques basically require a finite state machine for-
malism, the ability to derive at least a partial reachability
graph, and the specification of maximum and minimum tim-
ing for state transitions. These capabilities are all a part of
the Statecharts formalism, though not entirely backed by the
current formal semantics. The procedures and algorithms
can be transferred to Statechart specifications, with certain
additions to the basic Statecharts model for modeling fail-
ures. There may even be advantages in the use of Statecharts
for the specification since they allow the possibility of con-
centrating on detailed specification of hazardous states while
performing less detailed analysis of non-critical functionality
and performance.

Some additional features, however, may be necessary to
completely specify and analyze timing requirements. In Stat-
echarts, a state configuration of the software system is ac-
tually a tuple of substates of orthogonal components. If
this “system state” then has a timing requirement, it should
go into effect when the last orthogonal substate is entered.
Sometimes it is desirable to give certain transitions priority
over others for safety considerations; it is not clear how to
give priority to a transition with timing on such a system
state, since the substates may have starting times at quite
a distance (time and space) from each other. Much work
remains to be done in the area of time modeling.

There are five basic elements of a failure model considered
in the Leveson and Stolzy work:

l a required event that does not occur,

a an undesired event,

l an incorrect sequence of required events,

l two incompatible events that occur simultaneously, and

l timing failures in event sequences.

These can be modeled in Statecharts by making use of the
maximum and minimum timing features. Additional features
are recommended to express, in particular, the case of incom-
patible simultaneous events. If the events are at the top level
of the software description, a global transition is appropriate

for the simultaneous occurrence. In fact, global transitions
are quite useful for handling undesired events that require
the same transition for all states. However, the general case
demands a feature that transitions from perhaps widely sep-
arated internal states. To further facilitate analysis, there
should also be some distinction between the normal, expected
(desired) transitions and the error transition, which is usu-
ally, but not always, a time-out transition. The Leveson and
Stolzy notion of a failure transition can be added to the Stat-
echarts model in a straightforward way.

Completeness analysis

There is little consensus on what constitutes completeness in
a requirements specification. Jalfe and Leveson [JL88] have
attempted to provide a formal definition of completeness in
real-time requirements specification and to identify criteria
that can be used to detect and generate missing requirements
for a particular specification. The analysis is applied to a
black-box behavioral description that is composed of a set
of assertions of the form: trigger w output. The triggers
and outputs are described using first-order predicate calculus
and a simple state machine model. The general format of a
requirements assertion in the model is:

where:

3E1,..., Ei 3 PE e 3!0 3 PO

Ei: observables in environment (including passage of
time), inputs and/or outputs,

PE: predicate on trigger events, and

PO: predicate on outputs (the trigger must existentially
quantify any events used in the definition of PO).

The Ei are the necessary state history or conditions for an
output 0.

Criteria have been developed to formally define complete-
ness of both trigger conditions (i.e., robustness criteria) and
output predicates using logical completeness to “close” the
set of requirements. Closure with respect to trigger condi-
tions ensures that undesired or unexpected events are consid-
ered and the behavior desired should they occur is specified,
while closure with respect to outputs ensures that all rele-
vant output behavior is specified. In addition, application-
dependent rules and heuristics can be developed to close the
output specification with respect to various criteria impor-
tant in the controlled system. Criteria have been developed
for safety, reachability, and path robustness (i.e., fault toler-
ante) .

These criteria require a language for specification capa-
ble of expressing time and value for outputs, assumptions of
timing and value ranges for environmental triggers and inter-
nal state information. Statecharts environmental model and
state representation provide an appropriate format and neces-
sary information to allow most analysis for the completeness
of environmental assumptions and requirements that concern

101

states. It may be desirable, however, to express time and
value range assumptions elsewhere with reference to these
specifications on the corresponding transitions so that arcs
in the representation do not become cluttered. To specify
exceptions to these assumptions of range and timing of input
triggers, an additional state is generally required for each as-
sumption. Addition to the Statecharts formalism of a specific
mechanism for modeling exceptions would promote readibil-
ity and allow analysis.

It is important to have an appropriate syntax and seman-
tics for expressing timing requirements, as certain analyses
rely heavily on a formal semantic representation of timing
and time-outs. Most critical states will require dou‘ble timing
specifications for minimum and maximum timing of certain
activities that result in output. Notation for these should
be made less confusing. In particular, expression of peri-
odic functions is ambiguous in most representations as one
description can allow or disallow phase shift depending on
the interpretation. (This problem is described in. detail in
[JL88].) c ons rut s t t t o make the desired timing explicit are
necessary before these requirements can be completely spec-
ified.

Summary

No current real-time requirements specification language con-
tains all the features we feel are necessary to completely spec-
ify a real-time, embedded system. Many features of State-
charts facilitate the analysis of the requirements. Orthogo-
nality and hierarchy structuring, which augment the under-
lying finite state machine model, provide the modular break-
down needed for dealing with large, complex systems and
allow specification of prerequisite inputs to assure their exis-
tence before use. The state representation allows evaluation
for dynamic properties through reachability analysis. Some
analysis is simplified as the specification of global require-
ments is possible with superstates in the hierarchy. The in-
clusion of the environmental model and means for expressing
timing constraints are important for embedded systems; in
particular, time-outs allow expression of some exceptions to
timing assumptions for the environment.

Some additions have been suggested for the language that
would enable analysis for safety and completeness of a Stat-
echarts model. The Statecharts language is still under de-
velopment, and it is hoped that the formal semantics will be
completed in the near future. Semantics for maximum and
minimum timing and time-out transitions are especially im-
portant. Features to describe value ranges and exceptions
concisely and to indicate error and undesired event transi-
tions are recommended. More details about how analysis
might be done and suggestions for adding missing capabili-
ties to the Statecharts language may be found in [MLJ88].

In general, there is a need for more scientific approaches to
analyzing requirements specification documents for correct-
ness. Informal techniques do not provide the reliability or
confidence demanded for today’s complex safety-critical sys-
tems. Techniques for analysis of the external completeness

of the model and methods to analyze the specification of un-
desired event handling for completeness and consistency are
a critical need for real-time embedded systems specification.
Special modeling abstractions may be required to make com-
plete specification of these models possible. While developing
formal analysis methods is a complex endeavor, there are real
benefits for doing so, as the alternative may mean incomplete
and incorrect specifications that result in systems expensive
to correct and that may even lead to disaster.

References

[Har87] David Harel. Statecharts: A Visual formalism for
complex systems. Science of Computer Program-
ming, 8:231-274, 1987.

[JL88] Matthew S. J&e and Nancy G. Leveson. Complete-
ness, robustness, and safety in real-time software
requirements specification. Technical report, Dept.
of Information and Computer Science, University of
California, Irvine, September 1988.

[LS87] Nancy G. L eveson and Janice L. Stolzy. Safety anal-
ysis using Petri nets. IEEE Transactions on Soft-
mire Engineering, SE13(3):386-397, March 1987.

[MLJ88] Bonnie E. Melhart, Nancy G. Leveson, and
Matthew S. Jaffe. Analysis capabilities for require-
ments specified in Statecharts. Technical report,
Dept. of Information and Computer Science, Uni-
versity of California, Irvine, September 1988.

102

