
How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott
University of Glasgow*

Abstract

This paper presents type classes, a new approach
to ad-hoc polymorphism. Type classes permit over-
loading of arithmetic operators such as multiplica-
tion, and generalise the “eqtype variables” of Stan-
dard ML. Type classes extend the Hindley/Milner
polymorphic type system, and provide a new ap-
proach to issues that arise in object-oriented pro-
gramming, bounded type quantification, and ab-
stract data types. This paper provides an informal
introduction to type classes, and defines them for-
mally by means of type inference rules.

1 Introduction

Strachey chose the adjectives ad-hoc and panzmelric
to distinguish two varieties of polymorphism [Str67].

Ad-hoc polymorphism occurs when a function is
defined over several diflerent types, acting in a dif-
ferent way for each type. A typical example is
overloaded multiplication: the same symbol may be
used to denote multiplication of integers (as in 3*3)
and multiplication of floating point values (as in
3.14*3.14).

Parametric polymorphism occurs when a function
is defined over a range of types, acting in the same
way for each type. A typical example is the length
function, which acts in the same way on a list of
integers and a list of floating point numbers.

One widely accepted approach to parametric
polymorphism is the Hindley/Milner type system
[Hin69, Mi178, DM82], which is used in Standard

*Authors’ address: Department of Computing Science,
University of Glasgow, Glasgow G12 SQQ, Scotland. Elec-
tronic mail: aadler, blottUlcs .glasgou .ac .uk.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and n*
tice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

0 1989 ACM 0-89791-.294-2/89/0001/0060 $1.50

ML [HMM86, Mi187], Mirandal[Tur85], and other
languages. On the other hand, there is no widely
accepted approach to ad-hoc polymorphism, and so
its name is doubly appropriate.

This paper presents type classes, which extend the
Hindley/Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

The type system presented here is a generalisa-
tion of the Hindley/Milner type system. As in that
system, type declarations can be inferred, so explicit
type declarations for functions are not required. Dur-
ing the inference process, it is possible to translate a
program using type classes to an equivalent program
that does not use overloading. The translated pro-
grams are typable in the (ungeneralised) Hindley/
Milner type system.

The body of this paper gives an informal introduc-
tion to type classes and the translation rules, while
an appendix gives formal rules for typing and trans-
lation, in the form of inference rules (as in [DM82]).
The translation rules provide a semantics for type
classes. They also provide one possible implementa-
tion technique: if desired, the new system could be
added to an existing language with Hindley/Milner
types simply by writing a pre-processor.

Two places where the issues of ad-hoc polymor-
phism arise are the definition of operators for arith-
metic and equality. Below we examine the ap-
proaches to these three problems adopted by Stan-
dard ML and Miranda; not only do the approaches
differ between the two languages, they also differ
within a single language. But as we shall see, type
classes provide a uniform mechanism that can ad-
dress these problems.

This work grew out of the efforts of the Haskell
committee to design a lazy functional programming
language2. One of the goals of the Haskell commit-

‘Miranda is a trademark of Research Software Limited.
2The Haskell committee includes: Arvind, Brian Boutel,

Jon Fairbairn, Joe Fasel, Paul Hudak, John Hughes, Thomas
Johnsson, Dick Kieburtz, Simon Peyton Jones, Ftishiyur
Nikhil, Mike Reeve, Philip Wadler, David Wise, and Jonathan

60

http://crossmark.crossref.org/dialog/?doi=10.1145%2F75277.75283&domain=pdf&date_stamp=1989-01-03

tee was to adopt “off the shelf’ solutions to problems
wherever possible. We were a little surprised to re-
alise that arithmetic and equality were areas where
no standard solution was available! Type classes
were developed as an attempt to find a better so-
lution to these problems; the solution was judged
successful enough to be included in the Haskell de-
sign. However, type classes should be judged inde-
pendently of Haskell; they could just as well be in-
corporated into another language, such as Standard
ML.

Type classes appear to be closely related to issues
that arise in object-oriented programming, bounded
quantification of types, and abstract data types
[CWSS, MP85, Key85]. Some of the connections are
outlined below, but more work is required to under-
stand these relations fully.

A type system very similar to ours has been dis-
covered independently by Stefan Kaes [Kae88]. Our
work improves on Kites’ in several ways, notably
by the introduction of type classes to group re-
lated operators, and by providing a better transla-
tion method.

This paper is divided into two parts: the body
gives an informal introduction to type classes, while
the appendix gives a more formal description. Sec-
tion 2 motivates the new system by describing limi-
tations of ad-hoc polymorphism as it is used in Stan-
dard ML and Miranda. Section 3 introduces type
classes by means of a simple example, Section 4
illustrates how the example of Section 3 may be
translated into an equivalent program without type
classes. Section 5 presents a second example, the def-
inition of an overloaded equality function. Section 6
describes subclasses. Section 7 discusses related work
and concludes. Appendix A presents inference rules
for typing and translation.

2 Limitations of ad-hoc
polymorphism

This section motivates our treatment of ad-hoc poly-
morphism, by examining problems that arise with
arithmetic and equality in Standard ML and Mi-
randa.

Arithmetic. In the simplest approach to overload-
ing, basic operations such as addition and multiplica-
tion are overloaded, but functions defined in terms of

Young.

them are not. For example, although one can write
3*3 and 3.14*3.14, one cannot define

square x = x*x

and then write terms such as

square 3
square 3.14

This is the approach taken in Standard ML. (Inci-
dentally, it is interesting to note that although Stan-
dard ML includes overloading of arithmetic opera
tors, its formal definition is deliberately ambiguous
about how this overloading is resolved [HMT88, page
711, and different versions of Standard ML resolve
overloading in different ways.)

A more general approach is to allow the above
equation to stand for the definition of two over-
loaded versions of square, with types Int -> Int
and Float -> Float. But consider the function:

squares (x, y, z)
= (square x, square y, square 2)

Since each of x, y, and z might, independently, have
either type Int or type Float, there are eight possi-
ble overloaded versions of this function, In general,
there may be exponential growth in the number of
translations, and this is one reason why such solu-
tions are not widely used.

In Miranda, this problem is side-stepped by not
overloading arithmetic operations. Miranda provides
only the floating point type (named “num”), and
there is no way to use the type system to indicate
that an operation is restricted to integers.

Equality. The history of the equality operation is
checkered: it has been treated as overloaded, fully
polymorphic, and partly polymorphic.

The first approach to equality is to make it over-
loaded, just like multiplication. In particular, equal-
ity may be overloaded on every monotype that ad-
mits equality, i.e., does not contain an abstract type
or a function type. In such a language, one may
write 3*4 == 12 to denote equality over integers, or
JaJ == ‘b’ to denote equality over characters. But
one cannot define a function member by the equations

member Cl y = False
member (x:xs) y = (x == y> \/ member xs y

and then write terms such as

member [1,2,31 2
member “Haskell” ‘k’

61

(We abbreviate a list of characters [‘a), lb’, ‘~‘1
as “abc”.) This is the a.pproach taken in the first
version of Standard ML [Mi184].

A second approach is to make equality fully poly-
morphic. In this case, its type is

(==) : : a -> a -> B'ool

where a is a type variabie ranging over every type.
The type of the member function is now

member : : [a] -> a -> Boo1

(We write [a] for the type “list of a”.) This means
that applying equality to functions or abstract types
does not generate a type error. This is the approach
taken in Miranda: if equality is applied on a func-
tion type, the result is a run-time error; if equality is
applied on an abstract type, the result is to test the
representation for equality. This last may be consid-
ered a bug, as it violates the principle of abstraction.

A third approach is to make equality polymorphic
in a limited way. In this case, its type is

(==> : : a(,,)-> a(,,=) -> Boo1

where a(==) is a type variable ranging only over
types that admit equality. The type of the member
function is now

member : : [a(,,)1 -> a(,,)-> Boo1

Applying equality, or member, on a function type or
abstract type is now a type error. This is the ap-
proach currently taken in Standard ML, where a(==)
is written J ~a, and called an “eqtype variable”.

Polymorphic equality places certain demands upon
the implementor of the run-time system. For in-
stance, in Standard ML reference types are tested
for equality differently from other types, so it must
be possible at run-time to distinguish references from
other pointers.

Object-oriented programming. It would be nice
if polymorphic equality c.ould be extended to include
user-defined equality operations over abstract types.
To implement this, we would need to require that
every object carry with it a pointer to a method, a
procedure for performing the equality test. If we are
to have more than one operation with this property,
then each object should carry with it a pointer to a
dictionary of appropriate methods. This is exactly
the approach used in object-oriented programming
[GR83].

In the case of polymorphic equality, this means
that both arguments of the equality function will

contain a pointer to the same dictionary (since they
are both of the same type). This suggests that per-
haps dictionaries should be passed around indepen-
dently of objects; now polymorphic equality would
be passed one dictionary and two objects (minus dic-
tionaries). This is the intuition behind type classes
and the translation method described here.

3 An introductory example

We will now introduce type classes by means of an
example.

Say that we wish to overload (+) , (*>, and negate
(unary minus) on types Int and Float. To do so, we
introduce a new type class, called Num, as shown in
the class declaration in Figure 1. This declaration
may be read as stating “a type a belongs to class Num
if there are functions named (+) , (* > , and negate,
of the appropriate types, defined on it.”

We may now declare instances of this class, as
shown by the two instance declarations in Figure 1.
The assertion Num Int may be read “there are func-
tions named (+>, (*>, and negate, of the appropri-
ate types, defined on Int”. The instance declaration
justifies this assertion by giving appropriate bindings
for the three functions. The type inference algorithm
must verify that these bindings do have the appropri-
atetype,i.e., that addInt has type Int->Int->Int,
and similarly for mulInt and negInt. (We assume
that addInt,mulInt, and negInt are definedin the
standard prelude.) The instance Nun Float is de-
clared similarly.

A word on notational conventions: Type class
names and type constructor names begin with a capi-
tal letter, and type variable names begin with a small
letter. Here, Hum is a type class, Int and Float are
type constructors, and a is a type variable.

We may now define

square x = x*x

There exists an algorithm that can infer the type
of square from this definition (it is outlined in the
appendix). It derives the type:

square : : Num a => a -> a

This is read, “square has type a -> a, for every a
such that a belongs to class Num (i.e., such that (+I,
(*) , and negate are defined on a).” We can now
write terms such as

square 3
square 3.14

62

class Num a where
(+), (*) :: a -> a -> a
negate : : a -> a

instance Num Int where
(+) = addInt
(*) = mulInt
negate = negInt

instance Num Float where

:::
= addFloat
= mulFloat

negate = negFloat

square : : Num a=> a -> a
square x = x*x

squares : : Num a, Num b, Num c => (a,b,c) -> (a,b,c)
squares (x, y, z> = (square x, square y, square z)

Figure 1: Definition of arithmetic operations

data NumD a = NumDict (a -> a -> a) (a -> a -> a) (a -> a>

add (Numb&t a m n> = a
mu1 (NumDict a m n> = m
neg (Numbict a m n) = n

nunDInt :: NumD Int
numDInt = NumDict addInt mulInt negInt

numbFloat :: NumD Float
numDFloat = NumDict addFloat mulFloat negFloat

square) :: NumD a -> a -> a
square’ nudax = mu1 numDa x x

squares' :: (NumD a, Numb b, NumD c) -> (a,b,c) -> (a,b,c)
squares' (numDa, numDb, numDc) (x, y, z>

= (square' numDa x, square' numbb y, square' numDc z)

Figure 2: Translation of arithmetic operations

63

and an appropriate type will be derived for each (Int
for the first expression, Float for the second). On
the other hand, writing square ‘x8 will yield a type
error at compile time, because Char has not been
asserted (via an instance declaration) to be a numeric

type.
Finally, if we define tlhe function squares men-

tioned previously, then the type given in Figure 1
will be inferred. This type may be read, “squares
has the type (a,b,c) -> (a,b,c) for every a, b,
and c such that a, b, and c belong to class Num”.
(We write (a,b,c) for the type that is the Cartesian
product of a, b, and c.) So squares has one type,
not eight. Terms such as

q--es (1, 2, 3.14)

are legal, and derive an appropriate type.

4 Translation

One feature of this form of overloading is that it
is possible at compile-time to translate any pro-
gram containing class and instance declarations to
an equivalent program that does not. The equiva
lent program will have a valid Hindley/Milner type.

The translation method will be illustrated by
means of an example. Figure 2 shows the transla-
tion of the declarations in Figure 1.

For each class declaration we introduce a new
type, corresponding to an appropriate “method dic-
tionary” for that class, and functions to access the
methods in the dictionary. In this case, correspond-
ing to the class NUQ we introduce the type NumD as
shown in Figure 2. The data declaration defines
NumD to be a type constructor for a new type. Values
of this type are created using the value constructor
NumDict, and have three components of the types
shown. The functions ad.d, mul, and neg take a value
of type NunB and return its first, second, and third
component, respectively.

Each instance of the class Num is translated into
the declaration of a value of type NumD. Thus, corre-
sponding to the instance Nun Int we declare a data
structure of type NumD Xnt, and similarly for Float.

Each term of the form x+y, x*y, and negate x is
now replaced by a corresponding term, as follows:

x+Y --> add. numD x y

X*Y --> mul. numD X y
negate x --> neg numD x

where numD is an appropriate dictionary. How is the
appropriate dictionary determined? By its type. For
example, we have the following translations:

3*3
--> mu1 numDInt 3 3

3.14 * 3.14
--> mu1 numDFloat 3.14 3.14

As an optimisation, it is easy for the compiler to
perform beta reductions to transform these into
mulInt 3 3 and mulFloat 3.14 3.14, respectively.

If the type of a function contains a class, then this
is translated into a dictionary that is passed at run-
time. For example, here is the definition of square
with its type

square : : Nun a => a -> a
square x = x*x

This translates to

square’ : : NumD a -> a -> a
square’ numD x = mu1 numD x x

Each application of square must be translated to
pass in the appropriate extra parameter:

square 3
--> square’ nunDInt 3

square 3.2
--> square’ numDFloat 3

Finally, the translation of squares is also shown
in Figure 2. Just as there is one type, rather than
eight, there is only one translation, rather than eight.
Exponential growth is avoided.

5 A further example: equality

This section shows how to define equality using class
and instance declarations. Type classes serve as a
straightforward generalisation of the “eqtype vari-
ables” used in Standard ML. Unlike Standard ML,
this mechanism allows the user to extend equality
over abstract types in a straightforward way. And,
unlike Standard ML, this mechanism can be trans-
lated out at compile time, so it places no special de-
mands on the implementor of the run-time system.

The definition is summarised in Figure 3. We be-
gin by declaring a class, Eq, containing a single op-
erator, (==) , and instances Eq Int and Eq Char of
this class.

64

class Eq a where
(e) :: a -> a -> boo1

instance Eq Int where
(==) = eqInt

instance Eq Char where
(==) = eqChar

member : : Eq a => Cal -> a -> Boo1
member Cl y = False
member (x:x8) y = (x == y) \/ member xs y

inst ante Eq a, Eq b => Eq (a,b) where
(u,v) == b,y) = (u == x) & (v == y)

inst. axe Eq a => Eq Cal where
Cl == C] = True
Cl == y:ys = False
x:xs == Cl = False
x:xs == y:ys = (x == y) h (xs == ys)

data Set a = NkSet [a]

instance Eq a => Eq (Set a) where
MkSet xs == MkSet ys = and (map (member xs) ys)

& and (map (member ys) xs)

Figure 3: Definition of equality

We then define the member function in the usual
way, as shown in Figure 3. The type of member need
not be given explicitly, as it can be inferred. The
inferred type is:

member : : Eq a => Cal -> a -> Boo1

This is read “member has type [al -> a -> Bool,
for every type a such that a is in class Eq

(i.e., such that equality is defined on a)” (This
is exactly equivalent to the Standard ML type
’ ‘a list->’ ‘a->bool, where ’ ‘a is an “eqtype
variable” .) We may now write terms such as

member C1,2,31 2
member “Haskell” ‘k ’

which both evaluate to True.
Next, we give an instance defining equality over

pairs. The first line of this instance reads, “for every

a and b such that a is in class Eq and b is in class Eq,
the pair (a,b) is also in class Eq.” In other words,
“if equality is defined on a and equality is defined on
b, then equality is defined on (a,b).” The instance
defines equality on pairs in terms of equality on the
two components, in the usual way.

Similarly, it is possible to define equality over lists.
The first line of this instance reads, “if equality is
defined on a, then equality is defined on type ‘list of
a ‘.” We may now write terms such as

“hello” == “goodbye”
C[i,2,31, [4,5,611 == it1
member PHaskell” , “Alonzo”1 “Moses”

which all evaluate to False.
The final data declaration defines a new type con-

structor Set and a new value constructor MkSet. If
a module exports Set but hides MkSet, then out-

65

I---

data EqD a = EqDict (a -> a -> Bool)

eq (EqDict e) = e

eqDInt : : EqD Int
eqDInt = EqDict eqInt

eqDChar : : EqD Int
eqDChar = EqDict eqChar

member) : : EqD a -> [al -> a -> Boo1
member ’ eqDa Cl y = False
member) eqDa (x:xs) y = eq eqDa x y \/ member’ eqDa xs y

eqDPair :: (EqD a, EqD b) -> EqD (a,b)
eqDPair (eqDa, eqDb) = EqDict (eqPair (eqDa, eqDb) >

eqPair : : (EqD a, EqD b) -> (a,b) -> (a.b) -> Boo1
eqPair (eqDa,eqDb) (x,y) (u,v) = eq eqDa x u b eq eqDb y v

eqDList : : EqD a -> EqD Cal
eqDList eqDa = EqDict (eqList eqDa)

eqList : : EqD a -> [a] -> Cal -> Boo1
eqList eqDa Cl Cl = True
eqList eqDa Cl (y : ys) = False
eqList eqDa (x:xs) •l = False
eqList eqDa (x:xs) (y:ys) = eq eqDa x y % eq (eqDList eqDa) xs ys

Figure 4: Translation of equality

side of the module the representation of Set will not
be accessible; this is the mechanism used in Haskell
to define abstract data types. The final instance de-
fines equality over sets. The first line of this instance
reads, “if equality is defined on a, then equality is
defined on type ‘set of a’.” In this case, sets are rep-
resented in terms of lists, and two sets are taken to
be equal if every member of the first is a member
of the second, and vice-versa. (The definition uses
standard functions map, .which applies a function to
every element of a list, and and, which returns the
conjunction of a list of booleans.) Because set equal-
ity is defined in terms of member, and member uses
overloaded equality, it is. valid to apply equality to
sets of integers, sets of lists of integers, and even sets
of sets of integers.

This last example shows how the type class mech-

anism allows overloaded functions to be defined over
abstract data types in a natural way. In particular,
this provides an improvement over the treatment of
equality provided in Standard ML or Miranda.

5.1 Translation of equality

We now consider how the translation mechanism ap-
plies to the equality example.

Figure 4 shows the translation of the declarations
in Figure 3. The first part of the translation intro-
duces nothing new, and is similar to the translation
in Section 4.

We begin by defining a dicitionary EqD correspond-
ing to the class Eq. In this case, the class contains
only one operation, (==), so the dictionary has only
one entry. The selector function eq takes a dictio-

66

nary of type EqD a and returns the one entry, of
type a->a->Bool. Corresponding to the instances
Eq Int and Eq Char we define two dictionaries of
types EqD Int and EqD Char, containing the appro-
priate equality functions, and the function member
is translated to member’ in a straightforward way,
Here are three terms and their translations:

3*4 == 12
--> eq eqDInt (mu1 numDInt 3 4) 12

member [1,2,31 2
--> member’ eqDInt [1,2,31 2

be applied to the first two examples above, and also
to the definition of eqList itself in Figure 4.

It is worthwhile to compare the efficiency of this
translation technique with polymorphic equality as
found in Standard ML or Miranda. The individual
operations, such as eqInt are slightly more efficient
than polymorphic equality, because the type of the
argument is known in advance. On the other hand,
operations such as member and eqList must explic-
itly pass an equality operation around, an overhead
that polymorphic equality avoids. Further experi-
ence is needed to asses the trade-off between these
costs.

member “Haskell”) k’
--> member’ eqDChar “Haskell” ‘k’ 6 Subclasses

The translation of the instance declaration for
equality over lists is a little trickier. Recall that the
instance declaration begins

instance Eq a => Eq cdl where
. * .

This states that equality is defined over type [a] if
equality is defined over type a. Corresponding to
this, the instance dictionary for type [aJ is param-
eterised by a dictionary for type a, and so has the
type

memsq : : Eq a, Nuxn a => Cal->a->Bool
memsq xs x = member xs (square x)

As a practical matter, this seems a bit odd-we
would expect every data type that has (+), (*) , and
negate defined on it to have (==) defined as well; but
not the converse. Thus it seems sensible to make Num
a subclass of Eq.

eqDList : : EqD a -> EqD [a] We can do this as follows:

The remainder of the translation is shown in Figure
4, as is the translation for equality over pairs. Here
are three terms and their translations:

class W a => Nun a where
(+) ** a -> a -> a
(*) II a -> a -> a
negate : : a -> a

“hello” == “goodbye”
--> eq (eqDList eqDChar)

“hello”
“goodbye”

c[1,2,31, [4.5,611 == [I
--> eq (eqDList (eqDList eqDInt>>

CCl,2,31, C4,5.611
Cl

member C”Haskel1” , “Alonzo”l “Moses”
--> member’ (eqDList eqDChar)

[“Kaskell”, “Alonzo”]
“Moses”

As an optimisation, it is easy for the compiler to per-
form beta reductions to transform terms of the form
eq (eqDList eqD) into eqList eqD, where eqD is
any dictionary for equality. This optimisation may

In the preceeding, Num and Eq were considered as
completely separate classes. If we want to use both
numerical and equality operations, then these each
appear in the type separately:

This asserts that a may belong to class Num only if
it also belongs to class Eq. In other words, Num is a
subclass of Eq, or, equivalently, Eq is a superclass of
Num. The instance declarations remain the same as
before-but the instance declaration Num Int is only
valid if there is also an instance declaration Eq Int
active within the same scope.

$rom this it follows that whenever a type con-
tains Nun a it must also contain Eq a; therefore as a
convenient abbreviation we permit Eq a to be omit-
ted from a type whenever Num a is present. Thus,
for the type of memsq we could now write

memsq :: Nnm a => Cal->a->Bool

The qualifier Eq a no longer needs to be mentioned,
because it is implied by Num a.

In general, each class may have any number of sub
OP superclasses. Here is a contrived example:

67

class Top a where
fun1 : : a -> a

class Top a => Left a where
fun2 :: a -> a

class Top a => Right a where
f un3 : : a -> a

class Left a, Right a => Bottom a
where
fun4 : : a -> a

The relationships among these types can be dia-
grammed as follows:

TOP
/ ‘\

/ \
Left Right

\ /
\ ,I
Bottom

Although multiple superclasses pose some prob-
lems for the usual means of implementing object-
oriented languages, they pose no problems for the
translation scheme outlined here. The translation
simply assures that the appropriate dictionaries
passed at run-time; no special hashing schemes
required, as in some object-oriented systems.

are
are

7 Conclusion

It is natural to think of ad.ding assertions to the class
declaration, specifying properties that each instance
must satisfy:

class Eq a where
(==> :: a -> a -> Boo1
% (==) is an equivalence relation

class Num a where
zero, one :: a
(+),(*> :: a->a->a
negate : : a -> a
% (zero, one, (+I, (*I. negate)
% form a ring

It is valid for any proof to rely on these properties, so
long as one proves that t,hey hold for each instance
declaration. Here the assertions have simply been
written as comments; a more sophisticated system

could perhaps verify or use such assertions. This sug-
gests a relation between classes and object-oriented
programming of a different sort, since class declara
tions now begin to resemble object declarations in
OBJ [FGJM85].

It is possible to have overloaded constants, such as
zero and one in the above example. However, unre-
stricted overloading of constants leads to situations
where the overloading cannot be resolved without
providing extra type information. For instance, the
expression one * one is meaningless unless it is used
in a context that specifies whether its result is an Int
or a Float. For this reason, we have been careful in
this paper to use constants that are not overloaded:
3 has type Int, and 3.14 has type Float. A more
general treatment of constants seems to require co-
ercion between subtypes.

It is reasonable to allow a class to apply to more
than one type variable. For instance, we might have

class Coerce a b where
coerce :: a -> b

instance Coerce Int Float where
coerce = convertIntToFloat

In this case, the assertion Coerce a b might be
taken as equivalent to the assertion that a is a sub-
type of b. This suggests a relation between this work
and work on bounded quantification and on subtypes
(see [CWSS, ReySS] f or excellent surveys of work in
this area, and [Wan87, Car881 for more recent work).

Type classes may be thought of as a kind of
bounded quantifier, limiting the types that a type
variable may instantiate to. But unlike other ap-
proaches to bounded quantification, type classes do
not introduce any implicit coercions (such as from
subtype Int to supertype Float, or from a record
with fields x, y, and z to a record with fields x and
y). Further exploration of the relationship between
type classes and these other approaches is likely to
be fruitful.

Type classes also may be thought of as a kind
of abstract data type. Each type class specifies
a collection of functions and their types, but not
how they are to be implemented. In a way, each
type class corresponds to an abstract data type with
many implementations, one for each instance dec-
laration. Again, exploration of the relationship be-
tween type classes and current work on abstract data
types [CWSS, MP85, Rey85] appears to be called for.

We have already referred to the work of Kaes. One
advance of our work over his is the conceptual and

68

notational benefit of grouping overloaded functions
into classes. In addition, our system is more gen-
eral; Kaes cannot handle overloadings involving more
than one type variable, such as the coerce example
above. Finally, our translation rules are an improve-
ment over his. Kaes outlines two sets of translation
rules (which he calls “semantics”), one static and one
dynamic. His dynamic semantics is more limited in
power than the language described here; his static
semantics appears similar in power, but, unlike the
translation described here, can greatly increase the
size of a program.

One drawback of our translation method is that
it introduces new parameters to be passed at run-
time, corresponding to method dictionaries. It may
be possible to eliminate some of these costs by us-
ing partial evaluation [BEJ88] to generate versions
of functions specialised for certain dictionaries; this
would reduce run time at the cost of increasing code
size. Further work is needed to assess the trade-offs
between our approach (with or without partial eval-
uation) and other techniques.

It is clear from the above that many issues remain
to be explored, and many tradeoffs remain to be as-
sessed. We look forward to the practical experience
with type classes that Haskell will provide.

Acknowledgements. The important idea that
overloading might be reflected in the type of a func-
tion was suggested (in a rather different form) by
Joe Fasel. For discussion and comments, we are also
grateful to: Luca Cardelli, Bob Harper, Paul Hudak,
John Hughes, Stefan Kaes, John Launchbury, John
Mitchell, Kevin Mitchell, Nick Rothwell, Mads Tofte,
David Watt, the members of the Haskell committee,
and the members of IFIP 2.8.

A Typing and translation
rules

This appendix presents the formal typing and trans-
lation rules, one set of rules performing both typing
and translation. The rules are an extension of those
given by Damas and Milner [DM82].

A.1 Language

To present the typing and translation rules for over-
loading, it is helpful to use a slightly simpler language
that captures the essential issues. We will use a lan-
guage with the usual constructs (identifiers, appli-
cations, lambda abstractions, and let expressions),

plus two new constructs, over and inst expressions,
that correspond to class and instance declarations,
respectively. The syntax of expressions and types is
given in Figure 5.

An over expression

over 2 ::d in e

declares x to be an overloaded identifier. Within the
scope of this declaration, there may be one or more
corresponding inst expressions

inst 2 :: 17’ c, eo in el

where the type u’ is an instance of the type u (a
notion to be made precise later). Unlike lambda
and let expressions, the bound variables in over and
inst expressions may not be redeclared in a smaller
scope. Also unlike lambda and let expressions, over
and inst expressions must contain explicit types; the
types in other expressions will be inferred by the
rules given here.

As an example, a portion of the definition of equal-
ity given in Figure 3 is shown in Figure 6. In this
figure, and in the rest of this appendix, we use Eq r
as an abbreviation for the type r + r + Bool.

As a second example, a portion of the definition
of arithmetic operators given in Figure 1 is shown in
Figure 7. In this figure we use Num 7 as an abbrevi-
ation for the type

In translating to the formal language, we have
grouped the three operators together into a “dictio-
nary”. This is straightforward, and independent of
the central issue: how to resolve overloading.

A.2 Types

The Damas/Milner system distinguishes between
types (written r) and type schemes (written u). Our
system adds a third syntactic group, predicated types.
The syntax of these is given in Figure 5.

In the full language, we wrote types such as

member : : Eq a => Ial -> a -> Boo1

In the simplified language, we write this in the form

member :: VCY. (eq :: Eq cr). [a] + a -+ Boo1

The restriction Eq a can be read “equality is defined
on type a” and the corresponding restriction (eq ::

69

Identifiers
Expressions

X

e T

1

Type Variables (Y
Type Constructors x

Types r ..- ..-
Predicated Types p ::=
Type-schemes u ..- ..-

2

e0 el
Xx. e
let x = eo in el
over 2 :: u in e
inst 2 :: u = eo in el

Figure 5: Syntax of expressions and types

over ep :: Va. Eqcx in
inst eq :: Eq Int = eqInt in
inst eq :: Eq Char = eqChar in
inst eq :: Va.V,B.(eq :: Eqa).(eq :: Eq P).Eq (cy,,B)

- Ap.Xq. eq (fst p) (fst q) A eq (snd p) (snd q) in
eq (1, ‘a’r(2, ‘b’)

Figure 6: Definition of equality, formalised

over numD :: Va. Num a in
inst numD :: Num Int = (addInt, mullnt, neglnt) in
inst numD :: Num Float = (addFloat, mulFloat, negFloat) in
let (+) = fst numD in
let (*) = snd numD in
let negate = thd numD in
let square = Xx. x * 2 in
square 3

Figure 7: Definition of arithmetic operations, formalised

70

Eq CY) can be read “eq must have an instance of type
Eq a”.

In general, we refer to (x :: 7). p as a predicated
type and (2 :: T) as a predicafe.

We will give rules for deriving typings of the form

Ake::a\i?

This can be read as, “under the set of assumptions
A, the expression e has well-typing u with transla-
tion 2’. Each typing also includes a translation, so
the rules derive typing\translation pairs. It is possi-
ble to present the typing rules without reference to
the translation, simply by deleting the ‘\z’ portion
from all rules. It is not, however, possible to present
the translation rules independently, since typing con-
trols the translation. For example, the introduction
and elimination of predicates in types controls the
introduction and elimination of lambda abstractions
in translations.

A.3 Assumptions

Typing is done in the context of a set of assump-
tions, A. The assumptions bind typing and transla-
tion information to the free identifiers in an expres-
sion. This includes identifiers bound in lambda and
let expression, and overloaded identifiers. Although
we write them as sequences, assumptions are sets,
and therefore the order is irrelevant.

There are three forms of binding in an assumption
list :

0 (x ::, 0) is used for overloaded identifiers;

l (X ::i CY \ CC,) is used for declared instances of
overloaded identifiers; and

l (x :: CY \ Z) is used for lambda and let bound
variables, and assumed instances of overloaded
identifiers.

In (x :: a\Z) and (x ::i u \:), the identifier 5 is the
translation of z. If x is not an overloaded identifier
(that is, if z is bound by a lambda or let expression),
then the assumption for x has the form (x :: u \ z),
so 2 simply translates as itself.

Figure 8 shows the assumptions available when ap-
plying t.he inference rules to the expression

XP. &7. eq W P) W) A eq (snd P> (s&j

in Figure 6. There are three (::i) bindings, corre-
sponding to the three instance declarations, and two

(::) bindings for the two bound variables, and two
(::) bindings corresponding to assumed instances of
equality. (We shall see later how assumed instances
are introduced by the PRED rule.)

A.4 Instances

Given a set of assumptions A, we define an instance
relation between type-schemes,

This can be read as “C is more general than u’ under
assumptions A”. This is the same as the relationship
defined by Damas and Milner, but extended to apply
to predicated types.

Only certain sets of assumptions are valid. The
definition of validity depends on the >A relation, so
there is a (well-founded) mutual recursion between
the definition of valid assumptions and the definition
of >A. We give the definition of >_A in this section, -
and the definition of valid assumptions in the next.

The instance relation

d >,A Cd

where u = Vcri.. . crn.p and u’ = VP,. . .&,,.p’, is

defined as follows:

u >A 6’ iff
(1) /3i is not free in u and

This part is similar to the definition in Damas/
Mimer. The bound variables of u are specialised and
the resulting predicated types are compared.

Define p 2~ p’ iff the type part of p equals the type
part of p’ (the same condition as Dama.s/Milner),
and for every predicate (x :: r) in p, either

l there is a predicate of the form (x :: r) in p’ (i.e.
the predicate

l the predicate
tions A.

A predicate (x ::
either

appears in both types); or

can be eliminated under assump-

r) can be eliminated under A iff

l (x:: T \2) is in A; or

l (x::iu’\Zi?)isinAandu’>Ar.

For example, if A0 is the set of assumptions in
Figure 8, then

71

(eq :L, tlc~.Eq a),

(e!l ::i Eq In2 \ eq(EqInt) >,
(eq ::i Eq Char \ ~P(E, c/m,-) >,
(eq ::i Va.V,O.(eq :: Eqcr).(eq :: Eq,!3).Eq(a,,L?) \ eq

(“q lzEqa\ eq(Eqa))g
(Va.V@.(eq::Eq a).(eq::Eq@.Eq(a,P))))

h :: EqP\ e!pEqp))y

(P :: (a, P> \ Ph
(!I :: h,P) \ 4)

Figure 8: Some assumptions

TAUT A,(x::a\z)t-x::o\z

TA’IJT A, (x ::i u\‘F)~x::u\?E

Al-e :: t/a. a\E
SPEC

Al-e :: [a\+\~

Al-e::u\Z
(Y not free in A

GEN
Al-e::Va.a\B

Al-e::(r’-,r)\Z
Al-e’::r’\P

COMB
A I- (e e’) :: T \ (a a’)

AB3
A,, (x :: 7’ \ x) I- e :: 7 \E

A I- (Xx.e) :: (T’ --, 7) \ (xx.Z?)

Ake::u\B
A,, (x :: u\x)ke’::r\i?’

LET
A t- (let z: = e in e’) :: T \ (let x = F in Z’)

Figure 9: Typing and translation rules, part 1

72

holds. On the other hand,

(Va. (eq :: Eq a). [Ly] + cx ----) Boo/)
LA,, ([Fht] -+ F/d 4 BOO/)

does not hold, since A0 contains no binding asserting
that eq has an instance at type Float.

Two type-schemes are unifiable if they overlap,
that is, if there exists a type that is an instance of
both under some set of assumptions. We say that u
and u’ are unifiable if there exists a type r and valid
set of assumptions A such that

d >A 7 A 0’ >A ‘,-

We write U#CT’ if u and u’ are not unifiable,

A.5 Valid assumptions

All sets of assumptions used within proofs must be
valid. The valid sets of assumptions are inductively
defined as follows:

l Empty. The empty assumption set, {), is valid.

l Normal identifier. If A is a valid assumption set,
x is an identifier that does not appear in A, and
u is a type scheme, then

A, (z :: u \ x)

is a valid assumption set.

l Overloaded identifier. If A is a valid assumption
set, x is an identifier that does not appear in A,
u is a type scheme, and ~1,. . . , r, are types and

(Ji,.*-, u,, are types schemes such that

- u >A ui, for i from 1 to n, and

- a2ATi,forifromltom,and
- ci#ej, for distinct i,j from 1 to n

then

A, (x ::, u),
[X ::i Ul \ X0,), . - * I (X ::i Un \ X0,),

x :: r1\ XT,), . . * , (x :: 7, \ XT,)

is a valid assumption set.

For example, the assumptions in Figure 8 are a
valid set. However, this set would be invalid if aug-
mented with the binding

(eq ::i ‘d7J-Q WQT 7) \ eq(v,.Eq(char,y)) >

as this instance overlaps with one already in the set.

A.6 Inference rules

We now give inference rules that characterise well-
typings of the form

Al-e::cr\z

The rules break into two groups, shown in Figures 9
and 10. The first group is based directly on the
Damas/Milner rules (Figure 9). There are two small
differences: translations have been added to each rule
in a straightforward way, and there are two TAUT
rules instead of one (one rule for (::) bindings and
one for (::i) bindings).

For example, let A0 be the set of assumptions
shown in Figure 8, together with assumptions about
the types of integer and character constants. Then
the above rules are sufficient to derive that

AO I- (eq 1 ‘4 :: Boo1 \ (eqp, Int) 1 2)
A0 I- (eq ‘a’ ‘b’) :: &ml \ h(Eq Char) ‘a’ ‘b’)

That is, these rules alone are sufficient to resolve
simple overloading.

More complicated uses of overloading require the
remaining four rules, shown in Figure 10. The first
two deal with the introduction and elimination of
predicates, and the second two deal with the over
and inst constructs.

As we have seen, expressions with types that con-
tain classes (that is, expressions with predicated
types) are translated to lambda abstractions that
require a dictionary to be passed at run-time. This
idea is encapsulated in the PRED (“predicate”) and
REL (“release”) rules. The PRED and REL rules
introduce and eliminate predicates analogously to
the way that the GEN and SPEC rules introduce
and eliminate bound type variables. In particular,
the PRED rule adds a predicate to a type (and has
a lambda expression as its translation) and the REL
rule removes a predicate from a type (and has an ap-
plication as its translation).

The OVER rule types over expressions adding
the appropriate (::0) binding to the environment,
and the INST rule types inst expressions adding
the appropriate (::i) binding to the environment.
The validity condition on sets of assumptions ensures
that overloaded identifiers are only instanced at valid
types.

Notice that none of the translations contain over
or inst expressions, therefore, they contain no over-
loading. It is easy to verify that the translations are
themselves well-typed in the Hindley/Milner system.

73

A,(x :: r\x,) t e :: p\Z
PRED _

A t- e :: (x :: T>.P\ (X2T.E)

A I- e :: (x :: ~).p\a
Al-xz::r\z’

REL
Ate ::p\(FE’)

(x ::, u) E A

(x ::* u) E A

Az,(x::oc)l-e::~\i?
OVER _

At-(overa:::aine)::r\Z

A,+ ::i u’ \ x0,) t e’ :: 13’ \F
A, (x :zi 6’ \ xc,) t e :: T \a

INST
7 t (inst 2 :: 0’=e’ine)::7\(let2,r=EfinE)

(x ::, u) E A

Figure 10: Typing and translation rules, part 2

let eqcEpInt) = eqInnt in
let eq(Eq Char) = eqchar in

let e~(Va.V~.(eq::Eqa).(eq::EqP).Eq(a,p))

= fb(Eq Q) .Aeq(Eq p)h&.

e4(EQ a) (M P> (fit 4) A eqEQp) (snd P> (snd 4) in

eq(Va.VP.(eq::Eq a).(eq::Eq P).Eq(a,P)) eq(Eq hat) eq(Eq Char) (1, ‘a’) (2, ‘b’)

Figure 11: Translation of equality, formalised

AI : (ea ::, VcY.Eq cY)
(eqlnl :: Eq Ini \ eqlnt)
(eqChar :: Eq InZ \ eqChar)

el : inst eq :: Eq Int = eqInnt in
inst eq :: Eq Char = eqChar in

eq

Figure 12: A problematic expression

74

For example, the program in Figure 6 is translated
by these rules into the program in Figure 11. The
reader can easily verify that this corresponds to the
translation from Figure 3 to Figure 4. We have thus
shown how to formalise the typing and transforma-
tion ideas that were presented informally in the body
of the paper.

A.7 Principal typings

Given A and e, we call c a principal type scheme for
e under A iff

l Abe:: U\Z; and

l for every u’, if A l- e :: u’ \z’ then u >A u’

A key result in the Hindley/Milner system is that
every expression e that has a well-typing has a prin-
cipal type scheme.

We conjecture that for every valid set of assump-
tions A and every expression e containing no over or
inst expressions, if e has a well-typing under A then
e has a principal type scheme under A.

For example, let Aa be the set of assumptions in
Figure 8. Then the typing

AO I- eq :: Va.Eq a \ e!?(Eq olpha)

is principal. Examples of non-principal typings are

Ao I- eq :: Eq Int \ eqEq mt)
AO I- eq :: Eq Char \ eq(Eq char)

Each of these is an instance of the principal typing
under assumptions Aa.

The existence of principal types is problematic for
expressions that contain over and inst expressions.
For example, let Al and el be the assumption set
and expression in Figure 12. Then it is possible to
derive the typings

AI I- el :: Eq Int \ eqlnt
Al t- el :: Eq Char \ eqChar

But there is no principal type! One possible resolu-
tion of this is to require that over and inst declara-
tions have global scope. It remains an open question
whether there is some less drastic restriction that
still ensures the existence of principal types.

References

[BEJ88] D. Bjmrner, A. Ershov, and N.D. Jones,
editors, Partial Evaluation and Mixed

[CW85]

[Car881

[DM82]

[FGJ M85]

[GR83]

[Hin69]

[HMM86]

[HMT88]

[Kae88]

[Mi178]

Computation, North-Holland, 1988 (to
appear).

L. Cardelli and P. Wegner, On under-
standing types, data abstraction, and
polymorphism. Computing Surveys 17, 4,
December 1985.

L. Cardelli, Structural subtyping and the
notion of power type. In Proceedings of
the 15Yh Annual Symposium on Prin-
ciples of Programming Languages, San
Diego, California, January 1988.

L. Damas and R. Milner, Principal type
schemes for functional programs. In PTO-
ceedings of the 9’th Annual Symposium
on Principles of Programming Languages,
Albuquerque, N.M., January 1982.

K. Futasagi, J .A. Goguen, J.-P. Jouan-
naud, and J. Meseguer, Principles of
OBJ2. In Proceedings of the 12Yh An-
nual Symposium on Principles of Pro-
gramming Languages, January 1985.

A. Goldberg and D. Robson, Smalltalk-
80: The Language and Its Implementa-
tion. Addison-Wesley, 1983.

R, Hindley, The principal type scheme
of an object in combinatory logic. Trans.
Am. Math. Sot. 146, pp. 29-60, Decem-
ber 1969.

R. Harper, D. MacQueen, and R. Milner,
Standard ML. Report ECS-LFCS-86-2,
Edinburgh University, Computer Science
Dept., 1986.

R. Harper, R. Milner, and M. Tofte, The
definition of Standard ML, version 2. Re-
port ECS-LFCS-88-62, Edinburgh Uni-
versity, Computer Science Dept., 1988.

S. Kaes, Parametric polymorphism. In
Proceedings of the 2’nd European Sym-
posium on Programming, Nancy, France,
March 1988. LNCS 300, Springer-Verlag,
1988.

R. Milner, A theory of type polymor-
phism in programming. J. Comput. Syst.
Sci. 17, pp. 348-375, 1978.

75

[Mi184]

[Mi187]

[MP85]

h~851

[Str67]

[Tur85]

[Wan871

R. Milner, A proposal for Standard ML.
In Proceedings of the Symposium on Lisp
and Functional Programming, Austin,
Texas, August 1984.

R. Milner, Changes to the Standard ML
core language. Report ECS-LFCS-87-33,
Edinburgh University, Computer Science
Dept., 1987.

J. C. Mitchell and G. D. Plotkin, Ab-
stract types have existential type. In Pro-
ceedings of the 12’th Annual Symposium
on Principles 0-f Programming Languages,
January 1985.

J. C. Reynolds, Three approaches to
type structure. In Mathematical Foun-
dations of Software Development, LNCS
185, Springer-Verlag, 1985.

C. Strachey, Fundamental concepts in
programming languages. Lecture notes
for International Summer School in Com-
puter Programming, Copenhagen, Au-
gust 1967.

D. A. Turner, Miranda: A non-strict
functional language with polymorphic
types. In Proceedings of the 2’nd Inter-
national Conference on Functional Pro-
gramming Lan,guages and Computer Ar-
chitecture, Na.ncy, France, September
1985. LNCS 201, Springer-Verlag, 1985.

M. Wand, Complete type inference for
simple objects. In Proceedings ofthe Sym-
posium on Logic in Computer Science,
Ithaca, NY, Ju.ne 1987. IEEE Computer
Society Press, 1987.

76

