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Abstract 

This paper presents type classes, a new approach 
to ad-hoc polymorphism. Type classes permit over- 
loading of arithmetic operators such as multiplica- 
tion, and generalise the “eqtype variables” of Stan- 
dard ML. Type classes extend the Hindley/Milner 
polymorphic type system, and provide a new ap- 
proach to issues that arise in object-oriented pro- 
gramming, bounded type quantification, and ab- 
stract data types. This paper provides an informal 
introduction to type classes, and defines them for- 
mally by means of type inference rules. 

1 Introduction 

Strachey chose the adjectives ad-hoc and panzmelric 
to distinguish two varieties of polymorphism [Str67]. 

Ad-hoc polymorphism occurs when a function is 
defined over several diflerent types, acting in a dif- 
ferent way for each type. A typical example is 
overloaded multiplication: the same symbol may be 
used to denote multiplication of integers (as in 3*3) 
and multiplication of floating point values (as in 
3.14*3.14). 

Parametric polymorphism occurs when a function 
is defined over a range of types, acting in the same 
way for each type. A typical example is the length 
function, which acts in the same way on a list of 
integers and a list of floating point numbers. 

One widely accepted approach to parametric 
polymorphism is the Hindley/Milner type system 
[Hin69, Mi178, DM82], which is used in Standard 
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ML [HMM86, Mi187], Mirandal[Tur85], and other 
languages. On the other hand, there is no widely 
accepted approach to ad-hoc polymorphism, and so 
its name is doubly appropriate. 

This paper presents type classes, which extend the 
Hindley/Milner type system to include certain kinds 
of overloading, and thus bring together the two sorts 
of polymorphism that Strachey separated. 

The type system presented here is a generalisa- 
tion of the Hindley/Milner type system. As in that 
system, type declarations can be inferred, so explicit 
type declarations for functions are not required. Dur- 
ing the inference process, it is possible to translate a 
program using type classes to an equivalent program 
that does not use overloading. The translated pro- 
grams are typable in the (ungeneralised) Hindley/ 
Milner type system. 

The body of this paper gives an informal introduc- 
tion to type classes and the translation rules, while 
an appendix gives formal rules for typing and trans- 
lation, in the form of inference rules (as in [DM82]). 
The translation rules provide a semantics for type 
classes. They also provide one possible implementa- 
tion technique: if desired, the new system could be 
added to an existing language with Hindley/Milner 
types simply by writing a pre-processor. 

Two places where the issues of ad-hoc polymor- 
phism arise are the definition of operators for arith- 
metic and equality. Below we examine the ap- 
proaches to these three problems adopted by Stan- 
dard ML and Miranda; not only do the approaches 
differ between the two languages, they also differ 
within a single language. But as we shall see, type 
classes provide a uniform mechanism that can ad- 
dress these problems. 

This work grew out of the efforts of the Haskell 
committee to design a lazy functional programming 
language2. One of the goals of the Haskell commit- 
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tee was to adopt “off the shelf’ solutions to problems 
wherever possible. We were a little surprised to re- 
alise that arithmetic and equality were areas where 
no standard solution was available! Type classes 
were developed as an attempt to find a better so- 
lution to these problems; the solution was judged 
successful enough to be included in the Haskell de- 
sign. However, type classes should be judged inde- 
pendently of Haskell; they could just as well be in- 
corporated into another language, such as Standard 
ML. 

Type classes appear to be closely related to issues 
that arise in object-oriented programming, bounded 
quantification of types, and abstract data types 
[CWSS, MP85, Key85]. Some of the connections are 
outlined below, but more work is required to under- 
stand these relations fully. 

A type system very similar to ours has been dis- 
covered independently by Stefan Kaes [Kae88]. Our 
work improves on Kites’ in several ways, notably 
by the introduction of type classes to group re- 
lated operators, and by providing a better transla- 
tion method. 

This paper is divided into two parts: the body 
gives an informal introduction to type classes, while 
the appendix gives a more formal description. Sec- 
tion 2 motivates the new system by describing limi- 
tations of ad-hoc polymorphism as it is used in Stan- 
dard ML and Miranda. Section 3 introduces type 
classes by means of a simple example, Section 4 
illustrates how the example of Section 3 may be 
translated into an equivalent program without type 
classes. Section 5 presents a second example, the def- 
inition of an overloaded equality function. Section 6 
describes subclasses. Section 7 discusses related work 
and concludes. Appendix A presents inference rules 
for typing and translation. 

2 Limitations of ad-hoc 
polymorphism 

This section motivates our treatment of ad-hoc poly- 
morphism, by examining problems that arise with 
arithmetic and equality in Standard ML and Mi- 
randa. 

Arithmetic. In the simplest approach to overload- 
ing, basic operations such as addition and multiplica- 
tion are overloaded, but functions defined in terms of 

Young. 

them are not. For example, although one can write 
3*3 and 3.14*3.14, one cannot define 

square x = x*x 

and then write terms such as 

square 3 
square 3.14 

This is the approach taken in Standard ML. (Inci- 
dentally, it is interesting to note that although Stan- 
dard ML includes overloading of arithmetic opera 
tors, its formal definition is deliberately ambiguous 
about how this overloading is resolved [HMT88, page 
711, and different versions of Standard ML resolve 
overloading in different ways.) 

A more general approach is to allow the above 
equation to stand for the definition of two over- 
loaded versions of square, with types Int -> Int 
and Float -> Float. But consider the function: 

squares (x, y, z) 
= (square x, square y, square 2) 

Since each of x, y, and z might, independently, have 
either type Int or type Float, there are eight possi- 
ble overloaded versions of this function, In general, 
there may be exponential growth in the number of 
translations, and this is one reason why such solu- 
tions are not widely used. 

In Miranda, this problem is side-stepped by not 
overloading arithmetic operations. Miranda provides 
only the floating point type (named “num”), and 
there is no way to use the type system to indicate 
that an operation is restricted to integers. 

Equality. The history of the equality operation is 
checkered: it has been treated as overloaded, fully 
polymorphic, and partly polymorphic. 

The first approach to equality is to make it over- 
loaded, just like multiplication. In particular, equal- 
ity may be overloaded on every monotype that ad- 
mits equality, i.e., does not contain an abstract type 
or a function type. In such a language, one may 
write 3*4 == 12 to denote equality over integers, or 
JaJ == ‘b’ to denote equality over characters. But 
one cannot define a function member by the equations 

member Cl y = False 
member (x:xs) y = (x == y> \/ member xs y 

and then write terms such as 

member [1,2,31 2 
member “Haskell” ‘k’ 

61 



(We abbreviate a list of characters [‘a), lb’, ‘~‘1 
as “abc”.) This is the a.pproach taken in the first 
version of Standard ML [Mi184]. 

A second approach is to make equality fully poly- 
morphic. In this case, its type is 

(==) : : a -> a -> B'ool 

where a is a type variabie ranging over every type. 
The type of the member function is now 

member : : [a] -> a -> Boo1 

(We write [a] for the type “list of a”.) This means 
that applying equality to functions or abstract types 
does not generate a type error. This is the approach 
taken in Miranda: if equality is applied on a func- 
tion type, the result is a run-time error; if equality is 
applied on an abstract type, the result is to test the 
representation for equality. This last may be consid- 
ered a bug, as it violates the principle of abstraction. 

A third approach is to make equality polymorphic 
in a limited way. In this case, its type is 

(==> : : a(,,)-> a(,,=) -> Boo1 

where a(==) is a type variable ranging only over 
types that admit equality. The type of the member 
function is now 

member : : [a(,,)1 -> a(,,)-> Boo1 

Applying equality, or member, on a function type or 
abstract type is now a type error. This is the ap- 
proach currently taken in Standard ML, where a(==) 
is written J ~a, and called an “eqtype variable”. 

Polymorphic equality places certain demands upon 
the implementor of the run-time system. For in- 
stance, in Standard ML reference types are tested 
for equality differently from other types, so it must 
be possible at run-time to distinguish references from 
other pointers. 

Object-oriented programming. It would be nice 
if polymorphic equality c.ould be extended to include 
user-defined equality operations over abstract types. 
To implement this, we would need to require that 
every object carry with it a pointer to a method, a 
procedure for performing the equality test. If we are 
to have more than one operation with this property, 
then each object should carry with it a pointer to a 
dictionary of appropriate methods. This is exactly 
the approach used in object-oriented programming 
[GR83]. 

In the case of polymorphic equality, this means 
that both arguments of the equality function will 

contain a pointer to the same dictionary (since they 
are both of the same type). This suggests that per- 
haps dictionaries should be passed around indepen- 
dently of objects; now polymorphic equality would 
be passed one dictionary and two objects (minus dic- 
tionaries). This is the intuition behind type classes 
and the translation method described here. 

3 An introductory example 

We will now introduce type classes by means of an 
example. 

Say that we wish to overload (+) , (*>, and negate 
(unary minus) on types Int and Float. To do so, we 
introduce a new type class, called Num, as shown in 
the class declaration in Figure 1. This declaration 
may be read as stating “a type a belongs to class Num 
if there are functions named (+) , (* > , and negate, 
of the appropriate types, defined on it.” 

We may now declare instances of this class, as 
shown by the two instance declarations in Figure 1. 
The assertion Num Int may be read “there are func- 
tions named (+>, (*>, and negate, of the appropri- 
ate types, defined on Int”. The instance declaration 
justifies this assertion by giving appropriate bindings 
for the three functions. The type inference algorithm 
must verify that these bindings do have the appropri- 
atetype,i.e., that addInt has type Int->Int->Int, 
and similarly for mulInt and negInt. (We assume 
that addInt,mulInt, and negInt are definedin the 
standard prelude.) The instance Nun Float is de- 
clared similarly. 

A word on notational conventions: Type class 
names and type constructor names begin with a capi- 
tal letter, and type variable names begin with a small 
letter. Here, Hum is a type class, Int and Float are 
type constructors, and a is a type variable. 

We may now define 

square x = x*x 

There exists an algorithm that can infer the type 
of square from this definition (it is outlined in the 
appendix). It derives the type: 

square : : Num a => a -> a 

This is read, “square has type a -> a, for every a 
such that a belongs to class Num (i.e., such that (+I, 
(*) , and negate are defined on a).” We can now 
write terms such as 

square 3 
square 3.14 
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class Num a where 
(+), (*) :: a -> a -> a 
negate : : a -> a 

instance Num Int where 
(+) = addInt 
(*) = mulInt 
negate = negInt 

instance Num Float where 

::: 
= addFloat 
= mulFloat 

negate = negFloat 

square : : Num a=> a -> a 
square x = x*x 

squares : : Num a, Num b, Num c => (a,b,c) -> (a,b,c) 
squares (x, y, z> = (square x, square y, square z) 

Figure 1: Definition of arithmetic operations 

data NumD a = NumDict (a -> a -> a) (a -> a -> a) (a -> a> 

add (Numb&t a m n> = a 
mu1 (NumDict a m n> = m 
neg (Numbict a m n) = n 

nunDInt :: NumD Int 
numDInt = NumDict addInt mulInt negInt 

numbFloat :: NumD Float 
numDFloat = NumDict addFloat mulFloat negFloat 

square ) :: NumD a -> a -> a 
square’ nudax = mu1 numDa x x 

squares' :: (NumD a, Numb b, NumD c) -> (a,b,c) -> (a,b,c) 
squares' (numDa, numDb, numDc) (x, y, z> 

= (square' numDa x, square' numbb y, square' numDc z) 

Figure 2: Translation of arithmetic operations 
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and an appropriate type will be derived for each (Int 
for the first expression, Float for the second). On 
the other hand, writing square ‘x8 will yield a type 
error at compile time, because Char has not been 
asserted (via an instance declaration) to be a numeric 

type. 
Finally, if we define tlhe function squares men- 

tioned previously, then the type given in Figure 1 
will be inferred. This type may be read, “squares 
has the type (a,b,c) -> (a,b,c) for every a, b, 
and c such that a, b, and c belong to class Num”. 
(We write (a,b,c) for the type that is the Cartesian 
product of a, b, and c.) So squares has one type, 
not eight. Terms such as 

q--es (1, 2, 3.14) 

are legal, and derive an appropriate type. 

4 Translation 

One feature of this form of overloading is that it 
is possible at compile-time to translate any pro- 
gram containing class and instance declarations to 
an equivalent program that does not. The equiva 
lent program will have a valid Hindley/Milner type. 

The translation method will be illustrated by 
means of an example. Figure 2 shows the transla- 
tion of the declarations in Figure 1. 

For each class declaration we introduce a new 
type, corresponding to an appropriate “method dic- 
tionary” for that class, and functions to access the 
methods in the dictionary. In this case, correspond- 
ing to the class NUQ we introduce the type NumD as 
shown in Figure 2. The data declaration defines 
NumD to be a type constructor for a new type. Values 
of this type are created using the value constructor 
NumDict, and have three components of the types 
shown. The functions ad.d, mul, and neg take a value 
of type NunB and return its first, second, and third 
component, respectively. 

Each instance of the class Num is translated into 
the declaration of a value of type NumD. Thus, corre- 
sponding to the instance Nun Int we declare a data 
structure of type NumD Xnt, and similarly for Float. 

Each term of the form x+y, x*y, and negate x is 
now replaced by a corresponding term, as follows: 

x+Y --> add. numD x y 

X*Y --> mul. numD X y 
negate x --> neg numD x 

where numD is an appropriate dictionary. How is the 
appropriate dictionary determined? By its type. For 
example, we have the following translations: 

3*3 
--> mu1 numDInt 3 3 

3.14 * 3.14 
--> mu1 numDFloat 3.14 3.14 

As an optimisation, it is easy for the compiler to 
perform beta reductions to transform these into 
mulInt 3 3 and mulFloat 3.14 3.14, respectively. 

If the type of a function contains a class, then this 
is translated into a dictionary that is passed at run- 
time. For example, here is the definition of square 
with its type 

square : : Nun a => a -> a 
square x = x*x 

This translates to 

square’ : : NumD a -> a -> a 
square’ numD x = mu1 numD x x 

Each application of square must be translated to 
pass in the appropriate extra parameter: 

square 3 
--> square’ nunDInt 3 

square 3.2 
--> square’ numDFloat 3 

Finally, the translation of squares is also shown 
in Figure 2. Just as there is one type, rather than 
eight, there is only one translation, rather than eight. 
Exponential growth is avoided. 

5 A further example: equality 

This section shows how to define equality using class 
and instance declarations. Type classes serve as a 
straightforward generalisation of the “eqtype vari- 
ables” used in Standard ML. Unlike Standard ML, 
this mechanism allows the user to extend equality 
over abstract types in a straightforward way. And, 
unlike Standard ML, this mechanism can be trans- 
lated out at compile time, so it places no special de- 
mands on the implementor of the run-time system. 

The definition is summarised in Figure 3. We be- 
gin by declaring a class, Eq, containing a single op- 
erator, (==) , and instances Eq Int and Eq Char of 
this class. 
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class Eq a where 
(e) :: a -> a -> boo1 

instance Eq Int where 
(==) = eqInt 

instance Eq Char where 
(==) = eqChar 

member : : Eq a => Cal -> a -> Boo1 
member Cl y = False 
member (x:x8) y = (x == y) \/ member xs y 

inst ante Eq a, Eq b => Eq (a,b) where 
(u,v) == b,y) = (u == x) & (v == y) 

inst. axe Eq a => Eq Cal where 
Cl == C] = True 
Cl == y:ys = False 
x:xs == Cl = False 
x:xs == y:ys = (x == y) h (xs == ys) 

data Set a = NkSet [a] 

instance Eq a => Eq (Set a) where 
MkSet xs == MkSet ys = and (map (member xs) ys) 

& and (map (member ys) xs) 

Figure 3: Definition of equality 

We then define the member function in the usual 
way, as shown in Figure 3. The type of member need 
not be given explicitly, as it can be inferred. The 
inferred type is: 

member : : Eq a => Cal -> a -> Boo1 

This is read “member has type [al -> a -> Bool, 
for every type a such that a is in class Eq 

( i.e., such that equality is defined on a)” (This 
is exactly equivalent to the Standard ML type 
’ ‘a list->’ ‘a->bool, where ’ ‘a is an “eqtype 
variable” .) We may now write terms such as 

member C1,2,31 2 
member “Haskell” ‘k ’ 

which both evaluate to True. 
Next, we give an instance defining equality over 

pairs. The first line of this instance reads, “for every 

a and b such that a is in class Eq and b is in class Eq, 
the pair (a,b) is also in class Eq.” In other words, 
“if equality is defined on a and equality is defined on 
b, then equality is defined on (a,b).” The instance 
defines equality on pairs in terms of equality on the 
two components, in the usual way. 

Similarly, it is possible to define equality over lists. 
The first line of this instance reads, “if equality is 
defined on a, then equality is defined on type ‘list of 
a ‘.” We may now write terms such as 

“hello” == “goodbye” 
C[i,2,31, [4,5,611 == it1 
member PHaskell” , “Alonzo”1 “Moses” 

which all evaluate to False. 
The final data declaration defines a new type con- 

structor Set and a new value constructor MkSet. If 
a module exports Set but hides MkSet, then out- 
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I--- 

data EqD a = EqDict (a -> a -> Bool) 

eq (EqDict e) = e 

eqDInt : : EqD Int 
eqDInt = EqDict eqInt 

eqDChar : : EqD Int 
eqDChar = EqDict eqChar 

member ) : : EqD a -> [al -> a -> Boo1 
member ’ eqDa Cl y = False 
member ) eqDa (x:xs) y = eq eqDa x y \/ member’ eqDa xs y 

eqDPair :: (EqD a, EqD b) -> EqD (a,b) 
eqDPair (eqDa, eqDb) = EqDict (eqPair (eqDa, eqDb) > 

eqPair : : (EqD a, EqD b) -> (a,b) -> (a.b) -> Boo1 
eqPair (eqDa,eqDb) (x,y) (u,v) = eq eqDa x u b eq eqDb y v 

eqDList : : EqD a -> EqD Cal 
eqDList eqDa = EqDict (eqList eqDa) 

eqList : : EqD a -> [a] -> Cal -> Boo1 
eqList eqDa Cl Cl = True 
eqList eqDa Cl (y : ys) = False 
eqList eqDa (x:xs) •l = False 
eqList eqDa (x:xs) (y:ys) = eq eqDa x y % eq (eqDList eqDa) xs ys 

Figure 4: Translation of equality 

side of the module the representation of Set will not 
be accessible; this is the mechanism used in Haskell 
to define abstract data types. The final instance de- 
fines equality over sets. The first line of this instance 
reads, “if equality is defined on a, then equality is 
defined on type ‘set of a’.” In this case, sets are rep- 
resented in terms of lists, and two sets are taken to 
be equal if every member of the first is a member 
of the second, and vice-versa. (The definition uses 
standard functions map, .which applies a function to 
every element of a list, and and, which returns the 
conjunction of a list of booleans.) Because set equal- 
ity is defined in terms of member, and member uses 
overloaded equality, it is. valid to apply equality to 
sets of integers, sets of lists of integers, and even sets 
of sets of integers. 

This last example shows how the type class mech- 

anism allows overloaded functions to be defined over 
abstract data types in a natural way. In particular, 
this provides an improvement over the treatment of 
equality provided in Standard ML or Miranda. 

5.1 Translation of equality 

We now consider how the translation mechanism ap- 
plies to the equality example. 

Figure 4 shows the translation of the declarations 
in Figure 3. The first part of the translation intro- 
duces nothing new, and is similar to the translation 
in Section 4. 

We begin by defining a dicitionary EqD correspond- 
ing to the class Eq. In this case, the class contains 
only one operation, (==), so the dictionary has only 
one entry. The selector function eq takes a dictio- 
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nary of type EqD a and returns the one entry, of 
type a->a->Bool. Corresponding to the instances 
Eq Int and Eq Char we define two dictionaries of 
types EqD Int and EqD Char, containing the appro- 
priate equality functions, and the function member 
is translated to member’ in a straightforward way, 
Here are three terms and their translations: 

3*4 == 12 
--> eq eqDInt (mu1 numDInt 3 4) 12 

member [1,2,31 2 
--> member’ eqDInt [1,2,31 2 

be applied to the first two examples above, and also 
to the definition of eqList itself in Figure 4. 

It is worthwhile to compare the efficiency of this 
translation technique with polymorphic equality as 
found in Standard ML or Miranda. The individual 
operations, such as eqInt are slightly more efficient 
than polymorphic equality, because the type of the 
argument is known in advance. On the other hand, 
operations such as member and eqList must explic- 
itly pass an equality operation around, an overhead 
that polymorphic equality avoids. Further experi- 
ence is needed to asses the trade-off between these 
costs. 

member “Haskell” ) k’ 
--> member’ eqDChar “Haskell” ‘k’ 6 Subclasses 

The translation of the instance declaration for 
equality over lists is a little trickier. Recall that the 
instance declaration begins 

instance Eq a => Eq cdl where 
. * . 

This states that equality is defined over type [a] if 
equality is defined over type a. Corresponding to 
this, the instance dictionary for type [aJ is param- 
eterised by a dictionary for type a, and so has the 
type 

memsq : : Eq a, Nuxn a => Cal->a->Bool 
memsq xs x = member xs (square x) 

As a practical matter, this seems a bit odd-we 
would expect every data type that has (+), (*) , and 
negate defined on it to have (==) defined as well; but 
not the converse. Thus it seems sensible to make Num 
a subclass of Eq. 

eqDList : : EqD a -> EqD [a] We can do this as follows: 

The remainder of the translation is shown in Figure 
4, as is the translation for equality over pairs. Here 
are three terms and their translations: 

class W a => Nun a where 
(+) ** a -> a -> a 
(*) II a -> a -> a 
negate : : a -> a 

“hello” == “goodbye” 
--> eq (eqDList eqDChar) 

“hello” 
“goodbye” 

c[1,2,31, [4.5,611 == [I 
--> eq (eqDList (eqDList eqDInt>> 

CCl,2,31, C4,5.611 
Cl 

member C”Haskel1” , “Alonzo”l “Moses” 
--> member’ (eqDList eqDChar) 

[“Kaskell”, “Alonzo”] 
“Moses” 

As an optimisation, it is easy for the compiler to per- 
form beta reductions to transform terms of the form 
eq (eqDList eqD) into eqList eqD, where eqD is 
any dictionary for equality. This optimisation may 

In the preceeding, Num and Eq were considered as 
completely separate classes. If we want to use both 
numerical and equality operations, then these each 
appear in the type separately: 

This asserts that a may belong to class Num only if 
it also belongs to class Eq. In other words, Num is a 
subclass of Eq, or, equivalently, Eq is a superclass of 
Num. The instance declarations remain the same as 
before-but the instance declaration Num Int is only 
valid if there is also an instance declaration Eq Int 
active within the same scope. 

$rom this it follows that whenever a type con- 
tains Nun a it must also contain Eq a; therefore as a 
convenient abbreviation we permit Eq a to be omit- 
ted from a type whenever Num a is present. Thus, 
for the type of memsq we could now write 

memsq :: Nnm a => Cal->a->Bool 

The qualifier Eq a no longer needs to be mentioned, 
because it is implied by Num a. 

In general, each class may have any number of sub 
OP superclasses. Here is a contrived example: 

67 



class Top a where 
fun1 : : a -> a 

class Top a => Left a where 
fun2 :: a -> a 

class Top a => Right a where 
f un3 : : a -> a 

class Left a, Right a => Bottom a 
where 
fun4 : : a -> a 

The relationships among these types can be dia- 
grammed as follows: 

TOP 
/ ‘\ 

/ \ 
Left Right 

\ / 
\ ,I 
Bottom 

Although multiple superclasses pose some prob- 
lems for the usual means of implementing object- 
oriented languages, they pose no problems for the 
translation scheme outlined here. The translation 
simply assures that the appropriate dictionaries 
passed at run-time; no special hashing schemes 
required, as in some object-oriented systems. 

are 
are 

7 Conclusion 

It is natural to think of ad.ding assertions to the class 
declaration, specifying properties that each instance 
must satisfy: 

class Eq a where 
(==> :: a -> a -> Boo1 
% (==) is an equivalence relation 

class Num a where 
zero, one :: a 
(+),(*> :: a->a->a 
negate : : a -> a 
% (zero, one, (+I, (*I. negate) 
% form a ring 

It is valid for any proof to rely on these properties, so 
long as one proves that t,hey hold for each instance 
declaration. Here the assertions have simply been 
written as comments; a more sophisticated system 

could perhaps verify or use such assertions. This sug- 
gests a relation between classes and object-oriented 
programming of a different sort, since class declara 
tions now begin to resemble object declarations in 
OBJ [FGJM85]. 

It is possible to have overloaded constants, such as 
zero and one in the above example. However, unre- 
stricted overloading of constants leads to situations 
where the overloading cannot be resolved without 
providing extra type information. For instance, the 
expression one * one is meaningless unless it is used 
in a context that specifies whether its result is an Int 
or a Float. For this reason, we have been careful in 
this paper to use constants that are not overloaded: 
3 has type Int, and 3.14 has type Float. A more 
general treatment of constants seems to require co- 
ercion between subtypes. 

It is reasonable to allow a class to apply to more 
than one type variable. For instance, we might have 

class Coerce a b where 
coerce :: a -> b 

instance Coerce Int Float where 
coerce = convertIntToFloat 

In this case, the assertion Coerce a b might be 
taken as equivalent to the assertion that a is a sub- 
type of b. This suggests a relation between this work 
and work on bounded quantification and on subtypes 
(see [CWSS, ReySS] f or excellent surveys of work in 
this area, and [Wan87, Car881 for more recent work). 

Type classes may be thought of as a kind of 
bounded quantifier, limiting the types that a type 
variable may instantiate to. But unlike other ap- 
proaches to bounded quantification, type classes do 
not introduce any implicit coercions (such as from 
subtype Int to supertype Float, or from a record 
with fields x, y, and z to a record with fields x and 
y). Further exploration of the relationship between 
type classes and these other approaches is likely to 
be fruitful. 

Type classes also may be thought of as a kind 
of abstract data type. Each type class specifies 
a collection of functions and their types, but not 
how they are to be implemented. In a way, each 
type class corresponds to an abstract data type with 
many implementations, one for each instance dec- 
laration. Again, exploration of the relationship be- 
tween type classes and current work on abstract data 
types [CWSS, MP85, Rey85] appears to be called for. 

We have already referred to the work of Kaes. One 
advance of our work over his is the conceptual and 
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notational benefit of grouping overloaded functions 
into classes. In addition, our system is more gen- 
eral; Kaes cannot handle overloadings involving more 
than one type variable, such as the coerce example 
above. Finally, our translation rules are an improve- 
ment over his. Kaes outlines two sets of translation 
rules (which he calls “semantics”), one static and one 
dynamic. His dynamic semantics is more limited in 
power than the language described here; his static 
semantics appears similar in power, but, unlike the 
translation described here, can greatly increase the 
size of a program. 

One drawback of our translation method is that 
it introduces new parameters to be passed at run- 
time, corresponding to method dictionaries. It may 
be possible to eliminate some of these costs by us- 
ing partial evaluation [BEJ88] to generate versions 
of functions specialised for certain dictionaries; this 
would reduce run time at the cost of increasing code 
size. Further work is needed to assess the trade-offs 
between our approach (with or without partial eval- 
uation) and other techniques. 

It is clear from the above that many issues remain 
to be explored, and many tradeoffs remain to be as- 
sessed. We look forward to the practical experience 
with type classes that Haskell will provide. 
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A Typing and translation 
rules 

This appendix presents the formal typing and trans- 
lation rules, one set of rules performing both typing 
and translation. The rules are an extension of those 
given by Damas and Milner [DM82]. 

A.1 Language 

To present the typing and translation rules for over- 
loading, it is helpful to use a slightly simpler language 
that captures the essential issues. We will use a lan- 
guage with the usual constructs (identifiers, appli- 
cations, lambda abstractions, and let expressions), 

plus two new constructs, over and inst expressions, 
that correspond to class and instance declarations, 
respectively. The syntax of expressions and types is 
given in Figure 5. 

An over expression 

over 2 ::d in e 

declares x to be an overloaded identifier. Within the 
scope of this declaration, there may be one or more 
corresponding inst expressions 

inst 2 :: 17’ c, eo in el 

where the type u’ is an instance of the type u (a 
notion to be made precise later). Unlike lambda 
and let expressions, the bound variables in over and 
inst expressions may not be redeclared in a smaller 
scope. Also unlike lambda and let expressions, over 
and inst expressions must contain explicit types; the 
types in other expressions will be inferred by the 
rules given here. 

As an example, a portion of the definition of equal- 
ity given in Figure 3 is shown in Figure 6. In this 
figure, and in the rest of this appendix, we use Eq r 
as an abbreviation for the type r + r + Bool. 

As a second example, a portion of the definition 
of arithmetic operators given in Figure 1 is shown in 
Figure 7. In this figure we use Num 7 as an abbrevi- 
ation for the type 

In translating to the formal language, we have 
grouped the three operators together into a “dictio- 
nary”. This is straightforward, and independent of 
the central issue: how to resolve overloading. 

A.2 Types 

The Damas/Milner system distinguishes between 
types (written r) and type schemes (written u). Our 
system adds a third syntactic group, predicated types. 
The syntax of these is given in Figure 5. 

In the full language, we wrote types such as 

member : : Eq a => Ial -> a -> Boo1 

In the simplified language, we write this in the form 

member :: VCY. (eq :: Eq cr). [a] + a -+ Boo1 

The restriction Eq a can be read “equality is defined 
on type a” and the corresponding restriction (eq :: 
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Identifiers 
Expressions 

X 

e T 

1 

Type Variables (Y 
Type Constructors x 

Types r ..- ..- 
Predicated Types p ::= 
Type-schemes u ..- ..- 

2 

e0 el 
Xx. e 
let x = eo in el 
over 2 :: u in e 
inst 2 :: u = eo in el 

Figure 5: Syntax of expressions and types 

over ep :: Va. Eqcx in 
inst eq :: Eq Int = eqInt in 
inst eq :: Eq Char = eqChar in 
inst eq :: Va.V,B.(eq :: Eqa).(eq :: Eq P).Eq (cy,,B) 

- Ap.Xq. eq (fst p) (fst q) A eq (snd p) (snd q) in 
eq (1, ‘a’r(2, ‘b’) 

Figure 6: Definition of equality, formalised 

over numD :: Va. Num a in 
inst numD :: Num Int = (addInt, mullnt, neglnt) in 
inst numD :: Num Float = (addFloat, mulFloat, negFloat) in 
let (+) = fst numD in 
let (*) = snd numD in 
let negate = thd numD in 
let square = Xx. x * 2 in 
square 3 

Figure 7: Definition of arithmetic operations, formalised 
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Eq CY) can be read “eq must have an instance of type 
Eq a”. 

In general, we refer to (x :: 7). p as a predicated 
type and (2 :: T) as a predicafe. 

We will give rules for deriving typings of the form 

Ake::a\i? 

This can be read as, “under the set of assumptions 
A, the expression e has well-typing u with transla- 
tion 2’. Each typing also includes a translation, so 
the rules derive typing\translation pairs. It is possi- 
ble to present the typing rules without reference to 
the translation, simply by deleting the ‘\z’ portion 
from all rules. It is not, however, possible to present 
the translation rules independently, since typing con- 
trols the translation. For example, the introduction 
and elimination of predicates in types controls the 
introduction and elimination of lambda abstractions 
in translations. 

A.3 Assumptions 

Typing is done in the context of a set of assump- 
tions, A. The assumptions bind typing and transla- 
tion information to the free identifiers in an expres- 
sion. This includes identifiers bound in lambda and 
let expression, and overloaded identifiers. Although 
we write them as sequences, assumptions are sets, 
and therefore the order is irrelevant. 

There are three forms of binding in an assumption 
list : 

0 (x ::, 0) is used for overloaded identifiers; 

l (X ::i CY \ CC,) is used for declared instances of 
overloaded identifiers; and 

l (x :: CY \ Z) is used for lambda and let bound 
variables, and assumed instances of overloaded 
identifiers. 

In (x :: a\Z) and (x ::i u \:), the identifier 5 is the 
translation of z. If x is not an overloaded identifier 
(that is, if z is bound by a lambda or let expression), 
then the assumption for x has the form (x :: u \ z), 
so 2 simply translates as itself. 

Figure 8 shows the assumptions available when ap- 
plying t.he inference rules to the expression 

XP. &7. eq W P) W) A eq (snd P> (s&j 

in Figure 6. There are three (::i) bindings, corre- 
sponding to the three instance declarations, and two 

(::) bindings for the two bound variables, and two 
(::) bindings corresponding to assumed instances of 
equality. (We shall see later how assumed instances 
are introduced by the PRED rule.) 

A.4 Instances 

Given a set of assumptions A, we define an instance 
relation between type-schemes, 

This can be read as “C is more general than u’ under 
assumptions A”. This is the same as the relationship 
defined by Damas and Milner, but extended to apply 
to predicated types. 

Only certain sets of assumptions are valid. The 
definition of validity depends on the >A relation, so 
there is a (well-founded) mutual recursion between 
the definition of valid assumptions and the definition 
of >A. We give the definition of >_A in this section, - 
and the definition of valid assumptions in the next. 

The instance relation 

d >,A Cd 

where u = Vcri.. . crn.p and u’ = VP,. . .&,,.p’, is 

defined as follows: 

u >A 6’ iff 
(1) /3i is not free in u and 

This part is similar to the definition in Damas/ 
Mimer. The bound variables of u are specialised and 
the resulting predicated types are compared. 

Define p 2~ p’ iff the type part of p equals the type 
part of p’ (the same condition as Dama.s/Milner), 
and for every predicate (x :: r) in p, either 

l there is a predicate of the form (x :: r) in p’ (i.e. 
the predicate 

l the predicate 
tions A. 

A predicate (x :: 
either 

appears in both types); or 

can be eliminated under assump- 

r) can be eliminated under A iff 

l (x:: T \2) is in A; or 

l (x::iu’\Zi?)isinAandu’>Ar. 

For example, if A0 is the set of assumptions in 
Figure 8, then 
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(eq :L, tlc~.Eq a), 

(e!l ::i Eq In2 \ eq(EqInt) >, 
(eq ::i Eq Char \ ~P(E, c/m,-) >, 
(eq ::i Va.V,O.(eq :: Eqcr).(eq :: Eq,!3).Eq(a,,L?) \ eq 

(“q lzEqa\ eq(Eqa))g 
(Va.V@.(eq::Eq a).(eq::Eq@.Eq(a,P)) )) 

h :: EqP\ e!pEqp))y 

(P :: (a, P> \ Ph 
(!I :: h,P) \ 4) 

Figure 8: Some assumptions 

TAUT A,(x::a\z)t-x::o\z 

TA’IJT A, (x ::i u\‘F)~x::u\?E 

Al-e :: t/a. a\E 
SPEC 

Al-e :: [a\+\~ 

Al-e::u\Z 
(Y not free in A 

GEN 
Al-e::Va.a\B 

Al-e::(r’-,r)\Z 
Al-e’::r’\P 

COMB 
A I- (e e’) :: T \ (a a’) 

AB3 
A,, (x :: 7’ \ x) I- e :: 7 \E 

A I- (Xx.e) :: (T’ --, 7) \ (xx.Z?) 

Ake::u\B 
A,, (x :: u\x)ke’::r\i?’ 

LET 
A t- (let z: = e in e’) :: T \ (let x = F in Z’) 

Figure 9: Typing and translation rules, part 1 
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holds. On the other hand, 

(Va. (eq :: Eq a). [Ly] + cx ----) Boo/) 
LA,, ([Fht] -+ F/d 4 BOO/) 

does not hold, since A0 contains no binding asserting 
that eq has an instance at type Float. 

Two type-schemes are unifiable if they overlap, 
that is, if there exists a type that is an instance of 
both under some set of assumptions. We say that u 
and u’ are unifiable if there exists a type r and valid 
set of assumptions A such that 

d >A 7 A 0’ >A ‘,- 

We write U#CT’ if u and u’ are not unifiable, 

A.5 Valid assumptions 

All sets of assumptions used within proofs must be 
valid. The valid sets of assumptions are inductively 
defined as follows: 

l Empty. The empty assumption set, { ), is valid. 

l Normal identifier. If A is a valid assumption set, 
x is an identifier that does not appear in A, and 
u is a type scheme, then 

A, (z :: u \ x) 

is a valid assumption set. 

l Overloaded identifier. If A is a valid assumption 
set, x is an identifier that does not appear in A, 
u is a type scheme, and ~1,. . . , r, are types and 

(Ji,.*-, u,, are types schemes such that 

- u >A ui, for i from 1 to n, and 

- a2ATi,forifromltom,and 
- ci#ej, for distinct i,j from 1 to n 

then 

A, (x ::, u), 
[X ::i Ul \ X0,), . - * I (X ::i Un \ X0,), 

x :: r1\ XT,), . . * , (x :: 7, \ XT,) 

is a valid assumption set. 

For example, the assumptions in Figure 8 are a 
valid set. However, this set would be invalid if aug- 
mented with the binding 

(eq ::i ‘d7J-Q WQT 7) \ eq(v,.Eq(char,y)) > 

as this instance overlaps with one already in the set. 

A.6 Inference rules 

We now give inference rules that characterise well- 
typings of the form 

Al-e::cr\z 

The rules break into two groups, shown in Figures 9 
and 10. The first group is based directly on the 
Damas/Milner rules (Figure 9). There are two small 
differences: translations have been added to each rule 
in a straightforward way, and there are two TAUT 
rules instead of one (one rule for (::) bindings and 
one for (::i) bindings). 

For example, let A0 be the set of assumptions 
shown in Figure 8, together with assumptions about 
the types of integer and character constants. Then 
the above rules are sufficient to derive that 

AO I- (eq 1 ‘4 :: Boo1 \ (eqp, Int) 1 2) 
A0 I- (eq ‘a’ ‘b’) :: &ml \ h(Eq Char) ‘a’ ‘b’) 

That is, these rules alone are sufficient to resolve 
simple overloading. 

More complicated uses of overloading require the 
remaining four rules, shown in Figure 10. The first 
two deal with the introduction and elimination of 
predicates, and the second two deal with the over 
and inst constructs. 

As we have seen, expressions with types that con- 
tain classes (that is, expressions with predicated 
types) are translated to lambda abstractions that 
require a dictionary to be passed at run-time. This 
idea is encapsulated in the PRED (“predicate”) and 
REL (“release”) rules. The PRED and REL rules 
introduce and eliminate predicates analogously to 
the way that the GEN and SPEC rules introduce 
and eliminate bound type variables. In particular, 
the PRED rule adds a predicate to a type (and has 
a lambda expression as its translation) and the REL 
rule removes a predicate from a type (and has an ap- 
plication as its translation). 

The OVER rule types over expressions adding 
the appropriate (::0) binding to the environment, 
and the INST rule types inst expressions adding 
the appropriate (::i) binding to the environment. 
The validity condition on sets of assumptions ensures 
that overloaded identifiers are only instanced at valid 
types. 

Notice that none of the translations contain over 
or inst expressions, therefore, they contain no over- 
loading. It is easy to verify that the translations are 
themselves well-typed in the Hindley/Milner system. 
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A,(x :: r\x,) t e :: p\Z 
PRED _ 

A t- e :: (x :: T>.P\ (X2T.E) 

A I- e :: (x :: ~).p\a 
Al-xz::r\z’ 

REL 
Ate ::p\(FE’) 

(x ::, u) E A 

(x ::* u) E A 

Az,(x::oc)l-e::~\i? 
OVER _ 

At-( overa:::aine)::r\Z 

A,+ ::i u’ \ x0,) t e’ :: 13’ \F 
A, (x :zi 6’ \ xc,) t e :: T \a 

INST 
7 t (inst 2 :: 0’=e’ine)::7\(let2,r=EfinE) 

(x ::, u) E A 

Figure 10: Typing and translation rules, part 2 

let eqcEpInt) = eqInnt in 
let eq(Eq Char) = eqchar in 

let e~(Va.V~.(eq::Eqa).(eq::EqP).Eq(a,p)) 

= fb(Eq Q) .Aeq(Eq p)h&. 

e4(EQ a) (M P> (fit 4) A eqEQp) (snd P> (snd 4) in 

eq(Va.VP.(eq::Eq a).(eq::Eq P).Eq(a,P)) eq(Eq hat) eq(Eq Char) (1, ‘a’) (2, ‘b’) 

Figure 11: Translation of equality, formalised 

AI : (ea ::, VcY.Eq cY) 
(eqlnl :: Eq Ini \ eqlnt) 
(eqChar :: Eq InZ \ eqChar) 

el : inst eq :: Eq Int = eqInnt in 
inst eq :: Eq Char = eqChar in 

eq 

Figure 12: A problematic expression 
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For example, the program in Figure 6 is translated 
by these rules into the program in Figure 11. The 
reader can easily verify that this corresponds to the 
translation from Figure 3 to Figure 4. We have thus 
shown how to formalise the typing and transforma- 
tion ideas that were presented informally in the body 
of the paper. 

A.7 Principal typings 

Given A and e, we call c a principal type scheme for 
e under A iff 

l Abe:: U\Z; and 

l for every u’, if A l- e :: u’ \z’ then u >A u’ 

A key result in the Hindley/Milner system is that 
every expression e that has a well-typing has a prin- 
cipal type scheme. 

We conjecture that for every valid set of assump- 
tions A and every expression e containing no over or 
inst expressions, if e has a well-typing under A then 
e has a principal type scheme under A. 

For example, let Aa be the set of assumptions in 
Figure 8. Then the typing 

AO I- eq :: Va.Eq a \ e!?(Eq olpha) 

is principal. Examples of non-principal typings are 

Ao I- eq :: Eq Int \ eqEq mt) 
AO I- eq :: Eq Char \ eq(Eq char) 

Each of these is an instance of the principal typing 
under assumptions Aa. 

The existence of principal types is problematic for 
expressions that contain over and inst expressions. 
For example, let Al and el be the assumption set 
and expression in Figure 12. Then it is possible to 
derive the typings 

AI I- el :: Eq Int \ eqlnt 
Al t- el :: Eq Char \ eqChar 

But there is no principal type! One possible resolu- 
tion of this is to require that over and inst declara- 
tions have global scope. It remains an open question 
whether there is some less drastic restriction that 
still ensures the existence of principal types. 
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