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1. INTRODUCTION 

A Boolean set operations algorithm that can be used to unite, intersect, or 
subtract solid objects with each other is an essential component of any solid 
modeling system. For human users, set operations offer a tool for describing 
complex objects in terms of a series of operations on simpler components. For 
various algorithms, set operations offer a tool for describing physical processes 
applied to objects. For instance, an algorithm for verifying code for numerically 
controlled (NC) machine tools can use set operations to model effects of individ- 
ual machining operations or to determine collisions between the tool and the 
fixtures [21]. 
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A set operations algorithm depends completely on the solid representation 
used in the modeler. In systems based on the constructive solid geometry (CSG) 
approach [13, 141, set operations are performed by so-called boundary evaluation 
1161, ordinarily based on a “divide-and-conquer” procedure working on a CSG 
tree that records the description of an object in terms of a collection of solid 
primitives and several set operations. This family of set operations algorithms is 
relatively well understood, and its usefulness for the tasks mentioned above has 
been demonstrated (e.g., [6]). 

Systems that use the boundary representation (BR) approach [4] usually 
include a binary set operations algorithm that works on two boundary models of 
solids at a time and creates a third boundary model as its result. Requicha and 
Voelcker [16] use the term boundary merging for this process. These algorithms 
generally work by comparing, for example, faces of the two solids against each 
other, and form the desired result by removing the unnecessary parts of the 
bounding surfaces of the solids. Some CSG systems (e.g., [3]) include a similar 
procedure for the so-called incremental boundary evaluation [16] that updates a 
previously evaluated boundary representation when a CSG tree is modified. 

Unfortunately, Boolean set operations algorithms for boundary representations 
are much less well understood than their counterparts for CSG representations. 
This is so because BR algorithms are plagued by two kinds of problems. First, to 
be effective, a set operations algorithm must be able to treat all possible kinds of 
geometric intersections that may appear between faces, edges, and vertices of the 
two objects. The proper treatment of all cases easily leads to a very hairy case 
analysis. Second, the very case analysis must be based on various tests for 
overlap, coplanarity, and intersection, which are difficult to implement robustly 
in the presence of numerical errors. Perhaps as a result of this complexity, all 
published descriptions of Boolean set operations algorithms known to the author 
[2, 5, 7-9, 18, 19, 221 are incomplete in that details on the treatment of special 
cases are omitted or only partially explained.* 

To appreciate the difficulty of the set operations, consider Figure 1, which 
depicts the set intersection of two extruded profiles. In the figure, the two top 
views depict two orthogonal profiles. The solid shown in the bottom right view 
is generated by %weeping” the profiles appropriately to generate overlapping 
solids and calculating their Boolean intersection. Clearly, the swept objects 
intersect each other in various “special” ways. In this case a set operations 
algorithm will have difficulties if it is not prepared to deal with, for example, 
coplanar overlapping faces such as the bottom face of the resulting object. 

Observe that the code of overlapping coplanar faces must be able to handle 
robustly a two-dimensional set operation of two polygons, a task that even alone 
is quite challenging for a programmer uninitiated in geometry. All the program 
code required to break the problem into solvable cases and the codes for each 
case sum up to a voluminous and complicated algorithm whose correctness is 
difficult to establish. 

This article presents a different path to complete set operations. The algo- 
rithm to be presented breaks the Boolean set operations problem into a set of 
simpler problems of just two major kinds that can be handled with a relatively 

’ I apologize for potential misjudgments of cited works. 

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986. 



e-Manifold Booleans through Vertex Neighborhood Classification l 3 

Fig. 1. Set operation of two extruded profiles. 

straightforward case analysis. As will be elaborated upon in subsequent sections, 
the main underlying task involves the processing of two coincident vertices of 
the two solids, a task termed here the vertex neighborhood classification. 

The article is organized as follows: First, the problem statement is elaborated 
upon, and some terminology introduced in Section 2. Section 3 introduces the 
basic ideas of the vertex neighborhood classification in the context of the splitting 
problem, a much simpler relative to the Boolean operations problem. A general- 
ization of the splitting problem, the boundary classification, and its use in the 
Boolean operations are discussed in Section 4. Section 5 then outlines the flow 
of the resulting set operations algorithm. 

On the basis of the preceding sections, the vertex neighborhood classifier for 
Boolean set operations is derived in Section 6. Section 7 gives some practical 
insights on the numerical problems of the algorithm gained from its experimental 
implementation. Finally, Section 8 summarizes the results of this work and 
indicates areas where further research will be needed. 

2. STATEMENT OF THE PROBLEM 

The algorithms to be discussed work on boundary representations of planar 
polyhedra. More rigorously, we assume that our objects are 2-manifolds; that is, 
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they satisfy the following criteria: 

(1) Every edge belongs to exactly two flat faces. 
(2) Every vertex is surrounded by a single cycle of edges and faces. 
(3) Faces may not intersect each other except at common edges or vertices. 

See [lo] and [15] for further discussion on 2-manifold models. 
We assume that the polyhedra are represented in terms of a winged-edge data 

structure [l] or some equivalent variation of it. That is, we assume the existence 
of data structures for faces, edges, and vertices and adequate (explicit or implicit) 
access paths between adjacent entities. Faces may have holes; that is, each face 
has one “external” bounding loop of edges and zero or more “internal” bounding 
loops. As typical for the winged-edge data structure, “dangling” edges belonging 
twice to a face are allowed and are freely used during intermediate stepsof the 
algorithm. 

The polyhedra are assumed to be consistently oriented; that is, the edges 
around each face must occur in a consistent direction (say, counterclockwise) as 
viewed from outside the polyhedron. Under this assumption, all face normal 
vectors point consistently to the outside. 

Given two such objects A and 23, our aim is to devise an algorithm that can 
calculate a new object C that represents the desired regularized [13] Boolean 
combination of A and B, that is, A U* B, A ‘* B, or A \* B, where U*, A*, and \* 
are the regularized counterparts of the ordinary (point) set operations union U, 
intersection *, and set difference \. 

Unfortunately, we cannot require that C will always satisfy both of the 
requirements (1) and (3) above. This is so because 2-manifolds are not closed 
under set operations; that is, Boolean combination of two 2-manifolds is not 
necessarily a 2-manifold. For instance, the set difference of the block and the 
wedge of Figure 2 has four faces meeting at an edge, and criterion (1) is not 
satisfied. 

We accept this limitation because a winged-edge data structure cannot repre- 
sent objects such as the result of Figure 2 directly. The only resort available is 
to represent the nonmanifold as a “pseudomanifold”, that is, as if it were one or 
the other of the objects depicted in Figure 3. In particular, Figure 3a treats the 
situation as if the wedge extended outside the top face of the block, whereas 
Figure 3b handles the wedge as if it only intersected the front and the back faces 
of the block. In Figure 3a, the object has two entirely coincident edges, whereas 
Figure 3b has an edge lying on a face. 

Hence we require that the result of the set operations algorithm satisfy all 
other criteria except (3). Instead of (3), a more permissive criterion is required: 

(3’) Faces of the polyhedron may not intersect each other at their internal 
points. The only other kinds of intersections are the following: 

-Some edges of the polyhedron are entirely coincident. In this case, the 
edge neighborhoods of these edges must be distinct. 

-Some edges may lie on a face. In this case, both faces adjacent to the edge 
must lie on the same side of the face. 

-Some vertices may lie on a face. In this case, all edges and faces adjacent 
to the vertex must lie on the same side of the face. 
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(4 (b) 

Fig. 2. Set operations are not closed for 2-manifolds. 

(4 (b) 

Fig. 3. Pseudomanifold representations of a nonmanifold. 

-Some vertices may lie on an edge or on a vertex. In these cases, all edges 
and faces adjacent to the vertex must lie on the same side of the surface 
defined by the faces of the incident edge or vertex. 

That is, the surface of the resulting object may “touch” itself at some edges or 
vertices, but not intersect itself properly. 

ACM Transactions on Graphics, Vol. 5, No. 1, January 1986. 
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3. DIVERSION: THE SPLITTING PROBLEM 

A problem related to Boolean operations is the splitting of a solid with a plane. 
While being a useful solid modeling tool in its own right, a splitting algorithm 
forms a good introduction to the much more complicated Boolean operations. 
Let us, therefore, introduce the basic ideas of the Boolean set operations algo- 
rithm in the context of the splitting problem in an intuitive fashion. 

A splitting algorithm is expected to divide a polyhedral solid S in two sets 
determined by the intersection polygons of a splitting plane SP and S. As SP 
can be conveniently represented in terms of its plane equation 

(a b c d) * (x y 2 1) = 0, (1) 

we shall call the resulting parts Above and Below, denoting the parts of S in the 
half-spaces 

and 

(a b c d) . (x y z 1) P 0 (2) 

(a b c d) . (x y z 1) 5 0, (3) 

respectively. Of course, we require that Above and Below be in all respects well- 
formed solids; in particular, if S is regular, Above and Below must be also. 

Let us outline the computation of Above and Below intuitively in terms of the 
sample case depicted in two views in Figure 4. In Figure 4a, the intersection 
polygon is shown in dashed lines; Figure 4b shows the expected result. Observe 
that the part Above in this case is a disconnected solid, which is a perfectly 
acceptable result of the algorithm. (That the top of part Below consists of three 
coplanar faces is an artifact of the algorithm to be discussed.) 

The initial steps of the splitting algorithm considered here are the following: 

(1) Locate all edges E of S that intersect SP properly, that is, whose end points are 
strictly on different sides of SP. 

(2) Subdivide each edge found in step (1) at its intersection point with SP. Hence all such 
edges are replaced by two new edges and a new vertex. 

(3) Locate all vertices V of S that lie on SP and store them for later steps. (Of course, the 
resulting set includes at least all vertices inserted in step (2)) If the set is empty, S 
and SP do not intersect, and we are done. 

After these steps, the splitting problem is effectively reduced into a collection of 
simpler problems, namely, that of dealing properly with each vertex found in 
step (3). This computation must be designed so as to guarantee the overall 
correctness of the result. 

Returning to the example of Figure 4, Figure 5 indicates the set of coplanar 
vertices computed in step (3) above. For reference, these vertices are labeled as 
1-8. Labels 9-16 denote the other vertices of S. 

Let us introduce the term vertex neighborhood to denote the ordered cycle of 
edges and (parts of) faces around a vertex. For instance, the vertex neighborhood 
of vertex 3 is depicted in Figure 6. This neighborhood consists of the edges 
(3, ll), (3, 4), and (3, 5); vertices 11, 4, and 5 are termed the final vertices of the 
edges of the neighborhood; vertex 3 is the base vertex of the neighborhood. We 
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(4 (b) 

Fig. 4. A sample splitting problem. 

Fig. 5. Set of coplanar vertices for the sample 
problem. 
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Fig. 6. Vertex neighborhood of vertex 3. 

use the term sector to denote the portion of a face immediately adjacent 
to a vertex; in this case, the neighborhood includes sectors (11, 3, 4), (4, 3 5), 
and (5, 3, 11). 

For the splitting problem, each coplanar vertex is processed with an algorithm 
called uertex neighborhood classifier. The outline of this process is as follows: 

(1) Classify each edge of the neighborhood according to whether its final vertex lies above, 
on, or below the splitting plane SP. Tag edges with the corresponding labels ABOVE, 
ON, and BELOW. 

(2) Consider the labeled edges in their cyclic order around the vertex, and reclassify all 
edges tagged with ON by applying the following rules in the order given: 
-After (1) above, sectors that lie on SP appear as two consecutive edges labeled with 

ON. Reclassify each such sector “to the side of the material”; that is, if the face 
normal of the sector and the normal of SP are collinear, the sector is reclassified as 
BELOW, otherwise ABOVE. Also, reclassify the ON-edges of all neighboring sectors 
accordingly. 

-After reclassifying all ON-sectors and their neighbors as indicated above, only four 
types of sector sequences with ON-edges may appear, namely, 

ABOVE-ON-ABOVE, 
BELOW-ON-BELOW, 
ABOVE-ON-BELOW, 
BELOW-ON-ABOVE. 

The ON-edges are reclassified in these cases as ABOVE, BELOW, BELOW, and 
BELOW, respectively. 

Figure 7a depicts the labels assigned in (1) above for the case of Figure 6. In this 
case the reclassification rule for coplanar sectors results in the arrangement of 
7b. The reclassification rules are designed so as to maintain the regularity and 
the correctness of the result. Specifically, the rule for coplanar sectors avoids 
“dangling faces,” whereas the rules for coplanar edges avoid “dangling edges.” 

Figure 8 depicts the sample case after all edges of all relevant vertex neighbor- 
hoods have been reclassified. In the figure, A and B stand for ABOVE and 
BELOW. Observe that edges lying on SP will be classified twice; the reclassifi- 
cation rules make sure that the two classifications will be consistent. 

After reclassifying all ON-edges, the vertex neighborhood classifier can easily 
detect those sectors that intersect SP. Specifically, if the angle formed by the 
bounding vectors of the sector is less than or equal to MO”, the sector intersects 
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986. 
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ABOVE ABOVE 
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(4 (b) 

Fig. 7. Vertex neighborhood classification of vertex 3. 

Fig. 8. Classifications of the neighborhoods for the sample 
problem. 

SP if its boundaries are classified to different sides of SP. “Wide” sectors whose 
angle is larger than 180” always intersect SP if they are not entirely coplanar 
with it. 

To construct the desired results, the vertex neighborhood classifier subdivides 
vertex neighborhoods along sectors that intersect SP. (If a neighborhood does 
not intersect SP, it will be ignored. Hence “dangling vertices” cannot occur.) In 
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ABOVE 

Fig. 9. Result of vertex neigh- 
borhood classification. 

BELOW 

null edge 

Fig. 10. Computation of the result. 

our implementation, the subdivision is accomplished by inserting into the original 
neighborhood new vertices that share the location of the original vertex. Edges 
of zero length (null edge) join such new vertices with old ones. Figure 9 depicts 
this for the case of Figures 6 and 7. Here just one null edge is required. 

After applying the classification to all vertices, the final result can be computed 
by combining the vertices of null edges with new edges in the proper order and 
removing all null edges. Figure 10 depicts this process, the details of which are 
unimportant for the current discussion. See [9] and [ll] for additional 
information. 

Observe that the vertex neighborhood classifier for the splitting problem 
actually solves a particular case of the general set membership classification 
(SMC) problem [20]. As elaborated by Requicha and Voelcker 1161, SMC is an 
important tool for boundary evaluation procedures. This suggests that vertex 
neighborhood classification can play a role in Boolean set operations as well. 
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986. 
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4. BOUNDARY CLASSIFICATION 

The splitting algorithm outlined in the preceding section is based on reducing 
the global problem into a collection of local vertex neighborhood classification 
problems. The classifier works by dividing each vertex neighborhood according 
to rules that guarantee the correctness of the result. The set operations algorithm 
and its classifier will follow this general approach. 

To see the close relationship between the splitting problem and set operations, 
recall that the splitting algorithm divides a solid S into two sets (Above, Below) 
according to a splitting plane SP. For set operations we need the more general 
splitting of a polyhedron A according to a reference polyhedron B. More rigor- 
ously, let us denote the bounding surface of A by b(A). Then the two objects 
resulting from the general splitting operation will be denoted by AinB (for the 
part of b(A) inside B) and AoutB (for the part of b(A) outside B).’ 

Given two polyhedra A and B, the collection of four objects AinB, AoutB, 
BinA, and BoutA formed by splitting A against B and symmetrically B against 
A are here called the boundary classification of A and B. For instance, Figure lla 
depicts two intersecting bricks; their intersection curve is indicated with heavy 
lines. The resulting boundary classification is shown in Figure llb. (In the 
winged-edge representation, each component of the classification is a polyhedron 
in its own right that generally has some nonplanar “intersection” faces.) 

From the boundary classification of A and B, all their Boolean combinations 
are readily computed: 

b(A u B) = AoutB & BoutA, 

b(A * B) = AinB & BinA, 

b(A \ B) = AoutB & (BinA)-‘, 

(4) 

where & denotes the “gluing” of two surfaces along a common boundary (in this 
case, an intersection face), and (BinA)-’ denotes the complement of BinA, that 
is, BinA with the orientation of all faces reversed. Gluing and complementation 
can be implemented relatively easily for boundary representations (e.g., [2]), and 
we do not elaborate upon these procedures. 

In the splitting algorithm, the vertex neighborhood classifier treats edges and 
faces lying on the splitting plane by reclassifying them as lying above or below 
the plane. The reclassification rules are designed so as to guarantee the regularity 
of the result. A similar approach can be followed also in the classifier for 
set operations. In this case, however, the reclassification rules will be more 
complicated. 

To provide insight into the reclassification rules, it is useful to consider the 
eight-way boundary classification of A and B that adds the components AonB+, 
AonB-, BonA+, and BonA- to the components of the four-way classification 
(AinB, AoutB, BinA, BoutA). AonB+ consists of those parts of b(A) that lie on 
b(B) so that the face normals of the respective faces are equal, whereas AonB- 

’ Observe that this is exactly what the splitting algorithm does if we think of the halfspace “above” 
SP as a polyhedron B bounded by just one infinite face. 
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Table I. Reclassification Rules for ON-Components 

Set operation AonB+ AonB- BonA+ BonA- 
U AoutB AinB BinA BinA 
A 

AinB AoutB Bout4 BoutA 
\ AoutB AinB Bout.4 BoutA 

consists of the overlapping parts where the normals are opposite. BonA+ and 
Bowl- are defined analogously. 

Figure 12 illustrates the eight-way boundary classification of two objects A and 
B shown in three views. For clarity, the IN- and ON-components of the classifi- 
cation are shaded. 

From the components of the eight-way classification, the result of a set 
operation can be computed as follows: 

b(A U B) = AoutB & BoutA & AonB+, 

b(A A B) = AinB & BinA & AonB+, (5) 

b(A \ B) = AoutB & (BinA)-’ & AonB-. 

(The reader is encouraged to check that these equations indeed give the correct 
regularized results for the objects of Figure 12.) 

It would be perfectly possible to construct a set operations algorithm that 
computes the full eight-way boundary classification, and works out the result 
according to eqs. (4). Because of the inherent burden of this computation, we do 
not follow this approach directly. Instead, our algorithm calculates a four-way 
boundary classification in which the ON-components of the eight-way classifi- 
cation are lumped with the components of the four-way classification so as to 
make eqs. (4) and (5) equivalent. 

A set of reclassification rules with this property is shown in Table I. It should 
be stressed that these rules will be implemented directly in the vertex neighbor- 
hood classifier, and that higher levels of the algorithm can effectively ignore all 
ON-cases. (Observe the analogy of the rules of Table I and the reclassification 
of ON-edges in the splitting algorithm of Section 3.) 

5. OUTLINE OF THE BOOLEAN .SET OPERATIONS ALGORITHM 

We can now formulate the initial steps of the algorithm as follows: 

(1) 

(2) 

(3) 
(4) 

(5) 

(6) 

Locate all pairs of edges EA of A and Es of B that intersect each other properly, that 
is, at an internal point of both edges. Subdivide both edges at their intersection point, 
that is, replace each edge by two edges and a new vertex lying at the intersection 
point. 
Locate all edges of A that pass through a vertex of B. Subdivide all such edges at the 
intersection point. 
Do step (2) symmetrically for edges of B and vertices of A. 
Locate all coincident pairs of vertices Va of A and VB, and store them for later 
processing. (Of course, the resulting set includes at least all vertices added during 
steps (l)-(3).) 
Locate all edges EA of A that intersect a face Fs of B properly, that is, at an internal 
point of F. Subdivide all such edges at the intersection point. 
Do step (5) symmetrically for edges of B and faces of A. 
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(7) Locate all vertices VA of A that lie within a face FB of B and store the pair (VA, Fs) 
for later processing. (This set will include all vertices added during step (5)) 

(8) Locate all vertices Ve of B that lie within a face FA of A and store the pair ( Vg, FA) 
for later processing. (This set includes all vertices added in step (6).) 

(The reader is urged to compare these steps with those of the splitting algorithm 
in Section 3. In particular, note the analogy of steps (5)-(8) of this algorithm 
with the splitting algorithm.) 

After these steps, the problem is reduced into a collection of problems of two 
kinds: 

-dealing with a vertex of one solid that lies on a face of the other solid, 
-dealing with a pair of coincident vertices of A and B. 

Both of these problems are solved by a vertex neighborhood classifier that inserts 
the proper null edges as to split the vertex neighborhoods into subcycles inside 
and outside of the respective other polyhedron. The components of the four-way 
classification are then constructed just as in the case of the splitting algorithm, 
and the final polyhedron is computed according to eqs. (4). We do not elaborate 
these parts of the algorithm. 

6. VERTEX NEIGHBORHOOD CLASSIFICATION 

As discussed in the preceding section, the vertex neighborhood classification is 
required in the set operations algorithm in two forms: 

(1) Vertex-face classification: The classification of a vertex neighborhood with 
respect to a face. By construction, the vertex is known to be coplanar and 
properly within the face. 

(2) Vertex-uertex classification: The classification of two vertex neighborhoods 
with respect to each other. By construction, the vertices are coincident. 

The following subsections elaborate these tasks. 

6.1 Vertex-Face Classification 

For the vertex-face classification, a classifier essentially identical as that of the 
splitting problem can be used. The differences between this case and the splitting 
problem are the following: 

-Instead of the splitting plane SP, the plane of the face is used, and the notions 
of “above” and “below” are replaced by “in” and “out” (recall that face normals 
point consistently out from the solid). 

-ON-sectors are reclassified according to Table I instead of the rule stated in 
Section 2. 

--In addition to splitting the vertex neighborhood, a reference of the intersection 
point must also be stored within the face so that the intersection polygon(s) 
can be drawn through the point. 

As for the last item, our algorithm for combining null edges can work properly if 
the intersections are marked by inserting a null edge as an internal loop into the 
face intersected; see Figure 13. (Such “dangling” edges are structurally allowed 
in the winged-edge data structure; they will be removed in the final phases of the 
algorithm.) 
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986. 
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Fig. 14. Sector intersection test, 

6.2 Vertex-Vertex Classification 

The vertex-vertex classification for set operations is expected to compare two 
vertex neighborhoods (with coincident base vertices) and determine their inter- 
section. Because this component is the most novel feature of the algorithm, we 
describe it at a considerably more detailed level than the other parts. 

6.2.1 Sector Intersection Test. The vertex-vertex classifier works by consid- 
ering all pairs of sectors from the two neighborhoods against each other, and 
testing for their intersection. This sector intersection test is illustrated in Figure 
14. As indicated in the figure, a vector int along intersection line can be calculated 
as the cross product of the plane normal vectors nl, n2: 

int = nl X n2. (6) 

If the cross product vanishes, the sectors are coplanar and not considered to 
intersect. Otherwise, an inclusion test for int and the sectors is performed; if int 
occurs within the sectors, they intersect. Of course, the inclusion of both int and 
its inverse must be tested. 

As shown in Figure 15, the inclusion test breaks into three cases according to 
whether the angle formed by the bounding vectors of the sector (refl, ref2) is 
less than, equal to, or greater than 180”. In the first case (Figure 15a), the 
inclusion is determined by examining the following cross products of ref 1, ref 2, 
and int: 

ref = refl X ref2, 

test1 = refl X int, 

test2 = int X ref2. 

If all three vectors are collinear, int is within the sector bounded by refl and 
ref2. 
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986. 
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(a) (b) 

Fig. 16. Edge-sector coincidence and edge-edge coincidence. 

The second case is simply solved by testing the inclusion of int in the 
complement of the sector and negating the result. In the final case, a fourth 
vector in that points to the inside of the sector is formed, and the inclusion of 
int can be determined by examining the sign of the dot product of int and in. 

6.2.2 Treatment of ON-Cases. The discussion above ignores the case in which 
the intersection line int actually coincides with a bounding edge of a sector. This 
will occur if some edges of a neighborhood are coplanar with a face of the other, 
or if the neighborhoods have coincident edges. 

A case analysis is required to process these events. The case analysis first splits 
according to whether an intersection test indicates that int coincides with a 
bounding line of both sectors (i.e., the neighborhoods have a coincident edge) or 
not. This decision is depicted in Figure 16. 

6.2.2.1 Edge-Sector Coincidence. Let us first consider the case of an edge- 
sector coincidence (Figure 16a). This case is solved by examining the two sectors 
sharing the coplanar edge (test sectors) against the sector of the other solid 
(reference sector). The second level of the case analysis breaks down according 
to whether the test sectors lie below, above, or on the reference sector. This can 
be measured in terms of a dot product (signed distance) between the noncoplanar 
bounding vector of the test sector and the reference sector. If the test sector is 
larger than or equal to 180” a bisector should be used. We shall use the keys IN, 
OUT, and ON for the results of these measurements. 

This analysis leads us to nine basic cases, some of which are depicted in 
Figure 17. Table II is a decision table as for the intersection of the test sectors 
and the reference sector; in the table, the two first columns give the side code of 
the test sectors, and the two columns on the right indicate whether the test 
sector 1 (respectively 2) is considered to intersect the reference sector or not. For 
ON-cases, a more complicated decision rule that takes into account the reclassi- 
fication rules of Table I is needed; these cases are indicated by entries “rule” and 
“NOT(rule)” (i.e., logical negation of “rule”). 

For instance, entirely coplanar sectors are not considered to intersect at all 
(row 1). Rows 5 and 9 deal properly with the cases in which the coplanar edge 
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Fig. 17. Cases of edge-sector coincidence. 

merely “touches” the sector. Rows 6 and 8 deal with the cases in which the test 
sectors are completely on the different sides of the reference sector; in these 
cases, the test sector in the inside of the reference sector is considered to 
intersect it. 

As evident from Table I, the decision rule for ON-cases must take the orienta- 
tion of the coplanar sectors (opposite, identical) and the set operation (U, *, \) 
into account. Furthermore, the rule must be asymmetric for the solids operated 
on. These requirements lead us to the rule given in Table III; the reader should 
compare it with Table I. 

To see how the rules work for ON-cases, consider the case of Figure 18a that 
depicts sectors Al, A2 of solid A and Bl, B2 of solid B. Al and B2 are coplanar; 
hence A2 has an edge lying on B2, and Bl has an edge lying on Al. When 
classifying A2 against B2, row 4 of Table II applies. If the set operation U is in 
the process, A2 is deemed to intersect B2 according to the first row of Table III. 
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Table 11. Decision Table for Edge-Sector Coincidence 

Test sector 1 Test sector 2 Result 1 Result 2 

ON 
ON 
ON 
IN 
IN 
IN 
OUT 
OUT 
OUT 

ON 
IN 
OUT 
ON 
IN 
OUT 
ON 
IN 
OUT 

No No 
No Rule 
No NOT(rule) 
Rule No 
No No 
Yes No 
NOT(rule) No 
No Yes 
No No 

Table III. Decision Rule for ON-Cases 

Set operation 

Orientation Comparison U \ A 

Identical A versus B Yes Yes No 
B versus A No Yes Yes 

Opposite A versus B No No Yes 
B versus A No Yes Yes 

Similarly, for classifying Bl against Al, row 7 of Table II is used, and the negation 
of the third row of Table III leads us to conclude that Bl also intersects Al. 
Hence the situation is treated as if Al were actually on top of B2 (Figure 18b). 

6.2.2.2 Edge-Edge Coincidence. The final case we have to consider is the 
edge-edge coincidence (Figure 16b). In this case, the existence of an intersection 
is determined by sorting the four sectors meeting at the common line angularly 
around the line; if the sectors appear in a “mixed order”, an intersection exists. 
In Figure 19, two arrangements with sectors sharing an edge are depicted on the 
left, and on the right the same arrangements are shown as viewed along the 
coincident edge. Clearly, in the first case the sectors intersect, whereas in the 
second case they do not. 

If some of the sectors are coplanar, there will be ties in the sorting order. These 
are resolved by applying the reclassification rules of Table I once more. The logic 
of this computation is illustrated in Figure 20, which depicts the main cases as 
seen along the common intersection line; arrows indicate the normal vectors of 
the sectors. 

In the case in which all sectors are pairwise coplanar (Figure 20a), we can 
immediately decide that no intersection takes place. Otherwise, we have one of 
the cases shown in Figure 20b-e. For these cases, the intersection of the nonco- 
planar pair of sectors is determined according to the decision table of Table III; 
hence the cases given in Figure 20d and e are considered to have an intersection, 
and those in Figure 20b and c are not. 

6.2.3 Result of the Vertex-Vertex Classification. The final result of the vertex- 
vertex classification elaborated above is an ordered sequence of intersecting 
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Fig. 20. Ties in the angular sort. 

sector pairs, as depicted schematically in Figure 21a. In the figure, dashes indicate 
sector intersection lines; hence sectors (2, 1, 3), (7, 6, 8) and (4, 1, 5), (9, 6, 10) 
intersect each other. 

Clearly, sector intersections indicate locations where the neighborhoods should 
be subdivided so as to separate the subsequences inside and outside the other 
sector from each other. Again, our algorithm encodes the subdivision by inserting 
null edges appropriately (Figure 21b). 

Frequently, a sector has several intersections with sectors from the other 
neighborhood. A typical arrangement is depicted in Figure 22a. This situation 
can be encoded by using a dangling null edge, as shown in Figure 22b. 

7. REMARKS ON NUMERICAL PROBLEMS 

As noted in Section 1, numerical accuracy is one of the major problems that the 
designer of a Boolean set operations algorithm must live with. For fairness, let 
us discuss some of the practical lessons learned while implementing the algorithm 
described. A word of warning: The author has not analyzed completely the 
numerical properties of the algorithm and cannot describe exactly under which 
assumptions the numerical results will be correct. Hence this section should be 
understood as an informal introduction into an area well worth a separate article. 

As described, the set operations algorithm requires a variety of tests for 
intersection, coplanarity, and coincidence. More accurately, the reduction phase 
of the algorithm (steps (l)-(8) of Section 5) requires the following tests: 

(1) a test for the intersection of two lines in three-space (step (l)), 
(2) a test for the coincidence of two points in three-space (step (4)), 
(3) a test for coplanarity of a point on a plane in three-space (steps (7) and (8)), 
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Fig. 21. Result of vertex-vertex classification. 

(4) a point-in-polygon test in three-space (steps (7) and (ES)), 
(5) a test for the intersection of a polygon and a noncoplanar edge in three-space 

(steps (5) and (6)). 

The vertex neighborhood classifier requires the additional test of collinearity 
of two vectors of three-space. Currently, this test is implemented by computing 
the cross product of the (normalized) vectors and examining whether the resulting 
vector is of zero length. 

As such, none of these problems is particularly difficult. In the context of set 
operations, however, the collection of these routines must be implemented 
carefully. To see why, observe that faces are hardly ever really planar. Owing to 
imperfect arithmetic, the points forming the boundary of a face usually have a 
nonzero distance to the plane of the face. 
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Fig. 22. Another result of vertex-vertex classification. 

Even with imperfect data, the geometric tests are expected to produce consist- 
ent results. Consider, for instance, the case depicted in Figure 23. In the figure, 
edge El intersects the object with faces Fl and F2 somewhere “near” edge E2. 

In this case, the geometric tests should yield one of the following outcomes: 

-The intersection point P is reported to lie within F1, and P does not lie on E2 
or within F2. 

-P is reported to lie within F2 and outside of E2 and FL 
-P is reported to lie on E2 and on the boundary of F1 and F2. 

If, owing to numerical errors, P were reported, say, to occur within both F1 and 
F2, the set operations algorithm would fail. 

To enforce consistency, the current implementation of our set operations 
algorithm employs two guidelines. First, the algorithms that implement the 
geometric tests form a hierarchy in which “high-level” modules use the services 
of “low-level” ones. For instance, to examine whether a point lies on the boundary 
of a face, the point-in-polygon procedure uses the point-on-edge procedure and 
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Fig. 23. Consistency. 

the point coincidence procedure. In turn, the point-on-edge procedure works by 
projecting the test point on the edge and testing the coincidence of the test point 
and the projected point. In this fashion all intersection tests are reduced to point 
coincidence tests. This approach guarantees that identical measures are applied 
throughout the procedures. 

Second, the order in which the various tests are applied and the tolerances for 
the point coincidence tests needed are selected carefully so as to enforce consist- 
ency. For instance, the test for edge-edge intersection is applied before edge-face 
tests (and with larger tolerances) to avoid wrong results. Naturally, all tolerances 
are calculated on the basis of the actual dimensions of the objects worked on. 
(See [17] for an approach of deriving some of the required tolerances.) 

In our experience, these measures are not sufficient to enforce the correct 
treatment of approximately coplanar faces. Therefore our actual implementation 
handles them separately to make sure that all edge-edge intersections, etc., 
caused by overlapping coplanar faces are noticed and processed. 

8. CONCLUSIONS 

We have presented an algorithm for Boolean set operations of 2-manifold 
polyhedral solids that can solve all special cases that may arise, provided that 
the required geometric tests can be performed consistently. As for now, we have 
not been able to analyze rigorously the conditions under which this limiting 
assumption will be satisfied. If the resulting object is not a 2-manifold, a 
pseudomanifold object will be computed. 

As suggested by Requicha and Voelcker [16], the techniques for classification 
and neighborhood analysis developed for boundary evaluation of CSG models are 
applicable to the evaluation of Boolean operations of BR models as well. Indeed, 
the algorithm described can be regarded as a particular way to implement the 
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theoretical procedures that Requicha and Voelcker outline in their article. How- 
ever, whereas they concentrate on explicitly represented face and edge neighbor- 
hoods, our algorithm is based on implicitly represented vertex neighborhoods. 
Moreover, our algorithm is much more economical by exploiting the adjacency 
information usually available in “data-rich” boundary representations such as 
the winged-edge representation, and by avoiding point-in-polyhedron tests com- 
pletely (except for the case that the surfaces of the solids do not intersect at all). 

The algorithm does not extend directly to objects with curved faces or to 
nonmanifold objects. Curved faces may intersect each other in a way that cannot 
be reduced to vertex-vertex coincidences (consider spheres, for instance). Set 
operations of nonmanifolds would require the classification of several vertex 
neighborhoods from one object against several neighborhoods from the other, 
instead of the one-against-one case handled by this algorithm. 

As presented, the algorithm is slow. A careful implementation of steps (l)-(8) 
of Section 5 can speed it up by a factor of 10 or so, but after these enhancements 
the search of intersecting entities starts to dominate the computation time. As 
noted by Requicha and Voelcker [16], however, the worst-case analysis of the 
computational efficiency for set operations is not very informative as to the 
practical speed of the algorithm, and advanced geometric search techniques can 
be applied to it so as to exploit the typical geometric locality of the computation. 
An example of this has been described in a previous paper [12]. 
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