Check for
Updates

MODULE TEST CASE GENERATION

Daniel Hoffman and Christopher Brealey
University of Victoria
Department of Computer Science

P.O. Box 1700

Victoria, B.C., Canada V8W 2Y2

Abstract

While considerable attention has been given to techniques
for developing complex systems as collections of reliable and
reusable modules, little is known about testing these mod-
ules. In the literature, the special problems of module test-
ing have been largely ignored and few tools or techniques are
available to the practicing tester. Without effective testing
methods, the development and maintenance of reliable and
reusable modules is difficult indeed.

We describe an approach for systematic module regres-
sion testing. Test cases are defined formally using a lan-
guage based on module traces, and a software tool is used to
automatically generate test programs that apply the cases.
Techniques for test case generation in C and in Prolog are
presented and illustrated in detail.

1 INTRODUCTION

The fundamental goal of our research is to improve system
quality and reduce maintenance costs through systematic
module regression testing. While considerable attention is
given to testing during software development, this is not the
only time testing is required. As Brooks points out:

As a consequence of the introduction of new bugs,
program maintenance requires far more system
testing per statement written than any other pro-
gramming. Theoretically, after each fix one must
run the entire test bank of test cases previously run
against the system, to ensure that it has not been
damaged in an obscure way. In practice such re-
gression testing must indeed approximate this the-
oretical ideal, and it is very costly [1, pg. 122].

While system testing is usually emphasized, module testing
is also important. It is difficult to thoroughly test a mod-
ule in its production environment, just as it is difficult to
effectively test a chip on its production board. IEEE test-
ing standards [2] emphasize the benefits of testing software
components, not just complete systems.

Our research focuses on reducing the cost of module
regression testing. Since regression tests are developed once
and run many times, our efforts are directed towards re-
ducing the costs of test case execution and evaluation. We
propose tests which are developed manually, with automated
support, and which then run fully automatically. We rely on
the test programmer’s knowledge of the implementation pro-
gramming language, and on his ability to effectively select
test cases.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1989 ACM 089791-342-6/89/0012/0097 $1.50

97

2 MODULES AND INTERFACES

Following Parnas [3], we define a module as a programming
work assignment, and a module interface (hereafter just in-
terface) as the set of assumptions that programmers using
the module are permitted to make about its behavior. An
interface specification is a statement, in some form, of these
assumptions. We view a module as a black box, accessi-
ble only through a fixed set of access programs. The syntaz
of the specification states the names of the access programs,
their parameter and return value types, and the names of the
exceptions that each access program may generate. Any con-
stants or types provided by the module are also described.
The semantics of the specification state, for each access pro-
gram call, the situations in which the call is legal, and the ef-
fect that invoking the call has on the legality and return val-
ues of other calls. By convention, in access program names
we use the prefix s. (set) to indicate calls which set internal
module values and g- (get) to indicate calls which retrieve
those values.

Access

Program Inputs Outputs Exceptions

s_init

g-space integer

s.addsym string maxlen
legsym
tblfull

s_delsym integer notlegid

g-legsym string boolean

g-legid integer boolean

g-sym integer string notlegid

g-id string integer notlegsym

Figure 1. Symbol Table (symtbl) Interface Syntax

These ideas are illustrated on a simple table module
which is used as an example throughout this paper. The
Symbol Table (symtbl) module maintains a set of sym-
bol/identifier pairs. The syntax is shown in Figure 1; the
semantics are described informally below and formally else-
where [4]. Up to S unique symbols may be stored, each up
to N characters in length. Each symbol has a unique integer
identifier, assigned by symtbl from the range [0, S — 1}. The
access programs are divided into three groups.

1. s_init initializes the module and must be called before
any other call. g-space returns the amount of available
space in the table.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F75309.75320&domain=pdf&date_stamp=1989-11-01

2. s.addsym(s) adds the symbol s to the table, sig-
naling maxlen if s is longer than N, legsym if s
is already in symtbl, and tblfull if g.space = 0.
s_delsym(i) deletes the symbol with identifier ¢ and
signals notlegid if no symbol in the table has that
identifier.

3. g-legsym and g.legid are the characteristic predicates
of the set of legal symbols and the set of legal iden-
tifiers, respectively. g-sym(i) returns the symbol with
identifier i, signaling notlegid if g-legid(s) is false;
g-id(s) returns the identifier for symbol s, signaling
notlegsym if g_legsym(s) is false.

3 TEST PROGRAM GENERATION

Below we describe a test script language, used to describe
test cases, and the test program generator PGMGEN, which
generates test drivers in the C language from scripts.

Test Script Language

Our test scripts are written in terms of module traces: se-
quences of access program calls on the module. Elsewhere
traces have been used in connection with the formal specifi-
cation method of the same name {5, 6] in which logic asser-
tions are used to characterize module behavior on all possible
traces. Although the trace specification method is powerful,
considerable skill is required to devise these assertions. It
is straightforward, however, to describe module behavior for
any particular trace. For example, consider the following
traces on the symtbl module. (When writing traces, we sep-
arate adjacent calls with a period.)

s_init () .s.addsym("cat").g-legsym(''cat")
s-init() .s.addsym("cat").g-id("dog")

The first trace initializes symtbl, adds the symbol "cat" and
checks to see if "cat" is a legal symbol. In the second trace,
the g.id call generates the exception notlegsym because the
symbol ""dog" is not in symtbl.

We describe test cases by providing a trace and asso-
ciating it with some aspect of the required behavior of the
module following that trace. We represent a test case as a
five-tuple

< trace, ezpexc, actval, expval, type >
with the following meanings:

trace
a trace used to exercise the module.

expexc
the name of the exception that trace is expected to
generate (or noexc if no exception is expected).

actval
an expression (typically a get call) to be evaluated after
trace, whose value is taken to be the “actual value” of
the trace.

expval
the value that actval is expected to have.

type
the data type of actval and ezpval.

Below are two test cases, based on the traces described
above. In test cases developed solely to do exception check-
ing, the actval, expval, and type fields contain empty.

<s.init () .s_addsym("cat™),
noexc, g-legsym('"cat"), 1, boolean>

98

<s.init () .s.addsym("cat") .g.id("dog"),
notlegsym, empty, empty, empty>

A test script consists of a list of access program and ex-
ception declarations, a list of test cases, and optional global
C code. C code, delimited by the symbols “{%” and “%}”,
may also be embedded in test cases and provides the test
programmer with expressions and control structures not sup-
ported by PGMGEN. A test script may be viewed as a par-
tial specification for a module, expressing its required behav-
ior under specific circumstances. The purpose of PGMGEN
is to generate a driver which will determine whether an im-
plementation satisfies this partial specification.

Test Program Generation

Although implementing test drivers manually is straightfor-
ward, it is also tedious and error-prone, and produces code
that is costly to maintain. As a result, test driver generation
is a good candidate for automated support. In this section
we briefly describe how PGMGEN accomplishes this task; a
more detailed description is available [7).

Initially, code is generated to record exception occur-
rences. Then, for each test case of the form:

< ¢1.€3.....CN, €Tpexc, actval, expval, type >
code is generated to:

invoke ¢1, c2, ..., ¢N
compare the actual occurrences of exceptions
against ezpezc
if there are any differences
print a message
else
if actval # ezxpual
print a message
if any exceptions have occurred since cy
was invoked
print a message
update summary statistics

Following the last case, code is generated to print summary
statistics.

In order to automate driver generation, we have made
the following assumptions about access program invocation
and exception signaling. Each access program is imple-
mented as a C function. For each exception, there is a C
function of that name, serving as exception handler. When
an exception occurs, the module implementation must call
the appropriate function. The module user is expected to
implement the exception handlers to take whatever action
he deems suitable. In a symtbl implementation, each set
and get call is implemented as a C function and the func-
tions legsym, maxlen, notlegid, notlegsym, and tblfull
are invoked when the corresponding exception is detected.
However, the symtbl user implements these exception func-
tions. PGMGEN, for example, implements the exception
handlers to set flags for monitoring exception occurrences.

We have developed PGMGEN scripts for over 20 mod-
ules [7], including many of the modules in the PGMGEN im-
plementation itself. Our test case selection has been based
primarily on functional testing [8]. We have found the scripts
significantly easier to develop and maintain than the man-
ually generated drivers used previously. In particular, the
scripts are roughly an order of magnitude shorter than the
generated drivers.

4 TEST CASE GENERATION IN C

While PGMGEN allows a test programmer to write and
maintain scripts which are significantly simpler than their
corresponding C drivers, test scripts themselves often be-
come lengthy. The effort to test multiple combinations of
calls and parameter values produces scripts that are long
and repetitive — 100 or more cases is not unusual even for
implementations only several hundred lines in length. To
reduce script size, we have developed a scheme for replacing
long lists of test cases with templates driven by “embedded
code” loops written in C.

General Approach

o Choose the test basis T'
Choose a subset T of the set of all traces on the module.
Each of these traces may be viewed as an abstract state
of the module corresponding to the actual state of the
implementation after the calls in the trace have been
invoked. Typically T is chosen from the normal form
[6], a set of traces chosen to abstractly represent the
entire state space of the module. For testing purposes,
the traces in T must be easy to generate and it must be
easy to compute, for each t € T, the expected behavior
of access programs immediately following ¢.

¢ Provide a generator for T
Choose a representation for the elements of T', a means
for requesting these elements one at a time, and a
method for accessing the characteristics of the current
element. Analogous to the iterator construct of pro-
gramming languages such as CLU [9], the generator
simplifies test scripts by separating the means for gen-
erating elements from the processing done on the cur-
rent element.

¢ Apply the test cases
Use the generator described above to write loops, each
executing a set of test cases once for each ¢t € T'. Invoke
access programs to determine if the implementation be-
havior is correct with respect to . Check that set and
get calls operate correctly and exercise both normal and
exception behavior. Use the generator to provide the
expected behavior for these test cases.

Symtbl Example

We apply the above approach to testing a straightforward
symtbl implementation. It is sufficient to know that symbols
are stored in a fixed-size rectangular array with one row per
symbol, identifers are zero-relative row indexes, linear search
is used for symbol lookup, and the lowest identifier available
is given to a newly added symbol.

o Choose the test basis T’

For symtbl, each table value corresponds to a trace
consisting of an s.init call followed by zero or more
s.addsym calls. We would like our tests to be based on
tables for which the number of symbols and the length
of the symbols vary. Symbol values are unimportant as
long as they are unique and easy to generate. We de-
fine the function mksym(i, n), whose value is 7 in string
form padded right with “*’ characters to length n (or
zero ‘*’ characters if 1 has n or more digits). We define
ts n as a table with s symbols where, for ¢ € [0,s — 1],
the symbol with identifier i is mksym(s, n). More pre-
cisely, ts,n is

99

s_init() .s-addsym(mksym(0,n)).....
s.addsym(mksym(s — 1,n))

For example, 3 5 is
s.init() .s_addsym("O%**x") s_addsym(" 1#%*+")

Finally, we define T as {ts,;n|s € {0,5/2,5} An €
{0, N}} to focus testing on critical table sizes and sym-
bol lengths.

¢ Provide a generator for T
To represent the elements of 7', we implement the C
function t-mksym to compute mksym and declare t_tbl
as an array of table size/symbol length pairs. Then,
iterating over T' is accomplished by indexing t.tbl:
t.init initializes the index, t-next increments the in-
dex and loads the next table into symtbl, and t_end
returns true when the index exceeds the number of ele-
ments in t.tbl. For the current table, t_siz returns the
expected table size and t-sym(¢) returns the expected
symbol with identifier ¢, calculated using t.mksym and
the current t-tbl element.

e Apply the test cases
With the above functions in place, the test cases may
be coded independently of the representation of T, as
shown in Figure 2. In the outer loop, executed once
for each table, are cases to check that g.space returns
the correct value and that g.legsym works properly on a
symbol much longer than N. The inner loop is executed
once for each identifier in [0, S — 1]. For an identifier 1
in the current table are cases to check that t_sym(s) is
legal and has the correct identifier, and, similarly, that s
is legal and is associated with the correct symbol. Also
included are cases to check that s_del(i) is legal and
that it deletes both ¢ and t_sym(i). Finally, there are
cases to check that, when 1 is not in the current table,
both t_sym(i) and i are illegal.

The full script, including the C functions described above
and exception checks, is shown in the Appendix. For S =
50, the script produces a C driver which is 600 lines in length
and executes 1842 test cases.

5 TEST CASE GENERATION IN PROLOG

In the previous section, we made use of C code to iterate
over a list of relatively fixed test cases. To generate cases
with significant variations, we have found Prolog more effec-
tive than C. (Some familiarity with Prolog is necessary to
understand this chapter.)

Prolog Code

We base test case generation on three Prolog predicates. The
first two are rewritten for each set of test cases; the third is
used without change.

o cases(irace,expbeh,gen,parmlist,mazcases)
describes the test case format. trace is a list of ac-
cess program calls and ezpbek is the expected behavior
for trace. gen is the name of a Prolog predicate and
parmlist is a list of parameters to gen. mazcases is
the maximum number of cases to be generated.

o gen(incase,outcase,parmlist) instantiates outcase,
based on tncase and parmlist.

{% t-initQ;
t.next();
while (!t.end()) { %}
< , noexc, g-space(), {%S-t-siz()%}, int>
<, noexc, g.legsym({%t.mksym(0,T_MKSYMMAX)%}),
0, bool>
{%for (i = 0; i < S; i++) {
if (i < t-sizQ) { %}
/*t_sym(i) is legal, has correct id+/
< , noexc, g-legsym({%t-sym(id%}), 1, bool>
< , noexc, g-id({4t-sym(i)%4}), i, int>
/#i is legal and has correct symbols*/
< , noexc, g-legid(i), i, bool>
< , noexc, g_sym(l), {/t_sym(1)'/}, string>
/*s.del deletes i and symbolx/
<s.del(i), noexc, empty, empty, empty>
< , noexc, g-legsym({%t-sym(i)%}), 0, bool>
< , noexc, g-legid(i), 0, bool>
} else { %}
/*t_sym(i) and i are not legal*/
<, noexc, g-legsym({%t-sym(i)%}), 0, bool>
< , noexc, g-legid(i), 0, bool>
{#_}
}
tnext();

} %}

{%

Figure 2. symtbl test script — normal case

o casegen(f) generates a test script in file f, based on
the following pseudocode

do
invoke gen([trace,expbeh],outcase,parmlist)

convert outcase to PGMGEN syntax and write to f

write converted outcase to f
until (gen fails or mazcases cases are generated)

Trace Equivalence

Trace Ty is equivalent to Ty (T} = T%) if Ty and T are indis-
tinguishable with respect to future module behavior, i.e., T}
and T» leave the module in the same abstract state. Trace
equivalences provide a good basis for test case generation.
Roughly speaking, in Section 4, we tested whether a given
trace put the module in the correct state — here we test
whether equivalent traces put the module in the same state.

Exhaustive testing of trace equivalence is rarely possi-
ble — both the set of equivalent traces and the set of traces
constituting “future behavior” are typically infinite. There-
fore, for testing purposes, a subset of the equivalent traces
and a subset of the future behavior must be selected.

Testing Trace Equivalence

Assuming the same symtbl implementation as in Section 4,
we generate cases to test the equivalence

T = T.s-addsym(z).s.del(g-id(z))

i.e., “add/delete pairs cancel.” This equivalence holds for
all traces T and strings z and, by the transitivity of =, for
any number of add/delete pairs following T. For testing
purposes, we fix T to be

s.init.s_addsym(a) .s_addsym(b).s_addsym(c)

100

We follow T with between 1 and 3 add/delete pairs where
the symbol d or e is added and the identifier 3 is deleted.
We test the equivalence of these traces by invoking get calls
to check that that the symbol a with identifier 0 is in the
table and that the symbol d and identifier 3 are not in the
table.

cases(
[s-init,s.addsym(a) ,s_addsym(b) ,s-addsym(c),
AddDels],
[actval(ActVal) ,expval (ExpVal)]l,
gen,
[3,AddDels,ActVal,ExpVall,
10000) .
gen(T,T, [N,AddDels,ActVal ,ExpVall) :-
adddel(N,AddDels), getcall(ActVal,ExpVal).
adddel(N,L) :-
N > 0, adddel_1(N,L).
adddel(N,L) :-
N > i1, N1 is N-1, adddel(Ni1,L).
adddel-1(0,[1).
adddel_1(N, [s_addsym(S),s.del(3) |Tail]) :-
N > 0, new_symbol(S), N1 is N-1,
adddel-1(N1,Tail).
new_symbol(d). new.symbol(e).
getcall(g legsym(a),1). getcall(g-legid(0),1).
getcall(g.sym(0) ,a). getcall(g-id(a),0).
getcall(g-legsym(d),0). getcall(g-legid(3),0).

Figure 3. cases and gen predicates

Figure 3 shows the cases and gen predicates used to
accomplish this testing. In cases, the trace begins with T" as
described above. The tail of the trace and the expected be-
havior are variables, passed as parameters to gen. gen’s first
parameter is the maximum number of add/delete pairs. gen
is defined in terms of adddel and getcall. adddel(N,L)
is true if L is a list of N or fewer add/delete pairs, where
the added symbol is d or e and the deleted identifier is 3.
getcall(C, X) is true of the 7 getcall/expected value pairs
shown.

When casegen is invoked, a script with 98 cases results,
from which PGMGEN produces a C driver of 2484 lines.

6 RELATED WORK

Considerable work has been done in the area of test case se-
lection. The two basic approaches are black-boz and white-
boz testing. In black-box testing, the tests are constructed
based on the requirements of the program. Both functional
testing [8] and random testing [10] are examples of black-
box testing. White-box testing uses the internal structure
of the program to select appropriate test cases [11, 12]. Mu-
tation testing [13] is a test input analysis technique based on
constructing variants, called mutants, of the program under
test. A set of test cases is evaluated according to its ability
to distinguish between a program and its mutants. Our test
methods are neither black-box nor white-box, but combine
both of these methods. While we emphasize the module
interface and have been influenced by Howden’s proposals
for functional testing, we also base test cases on the module
implementation.

Relatively little has been published on test case execu-
tion. The DAISTS system [14] focuses on module testing and

describes test cases using sequences of calls. Given a formal
algebraic specification of the module under test, DAISTS
automatically determines the correct behavior for a given
test. Panzl [15] reports on regression testing of Fortran sub-
routines. He presents a test case description language and a
program to automatically execute the cases, monitoring ac-
tual versus expected behavior. Choquet [16), Gerhart [17],
Gorlick [18], and Wild [19] have all explored the use of Pro-
log for test case generation. Our work is most similar to the
DAISTS work, which goes further than ours by providing
a test oracle, but offers little for testing modules when an
algebraic specification is unavailable.

7 CONCLUSIONS

We have argued the importance of systematic module re-
gression testing and presented tools and techniques for ac-
complishing that task. We have made a conscious decision
to base our testing on the module interface — both the
test script language and the automated support provided by
PGMGEN depend critically on this decision.

We have presented two test case generation techniques
for situations where test scripts themselves become uncom-
fortably long. In the first technique, a set of base traces
is chosen, a generator for that set is developed, and test
cases focus on the behavior of calls executed just after the
base traces. In the Prolog-based approach, sets of equiva-
lent traces are chosen and cases are written to test if the
implementation preserves the equivalence. The superiority
of Prolog or C as a test generation language remains an open
question.

With the ability to generate large numbers of test cases
automatically, care must be taken when interpreting test
case counts. Specifically, there is no simple connection be-
tween the number of test cases and either the quality of the
test or the cost to develop the test. Consider the following
script.

{% for (i = 0; i < 1000000; i++) do }%
<s_init, noexc, g-legsym(i), 0, int>

This code will generate one million cases, yet is surely far
less effective and far less expensive to develop than the script
shown in Figure 2. We have found that test quality depends
on careful selection of test cases and that test cost is domi-
nated by the size and complexity of the test case generation
code.

In the testing literature, a test oracle is typically as-
sumed to exist and discussions focus on test input genera-
tion. In practice, the cost of examining outputs for correct-
ness cannot be ignored — it is pointless to generate inputs if
you cannot afford to check the outputs! We have found that
it is often much easier to generate input/output pairs than to
generate output given a random input. The latter requires
a full implementation; the former is far easier. We have
exploited this idea in our test case generation techniques.

REFERENCES

(1] F.P. Brooks. The Muythical Man-Month. Addison-
Wesley, 1975.

[2) IEEE Standard for Software Unit Testing. Soft. Eng.
Tech. Comm. of the IEEE Computer Society, May 1987.

[3] D.L. Parnas and P.C. Clements. A rational design pro-
cess: how and why to fake it. IEEE Trans. Soft. Eng.,
SE-12(2):251-257, February 1986.

[4] D.M. Hoffman. Practical interface specification. Soft-
ware - Practice and Ezperience, 19(2):127-148, Febru-
ary 1989.

[5] Wolfram Bartussek and David L. Parnas. Using traces
to write abstract specifications for software modules.
In Information Systems Methodology, pages 211-236,
Springer-Verlag, 1978. Proc. 2nd Conf. European Co-
operation in Informatics, October 10-12, 1978.

[6] D.M. Hoftman and R. Snodgrass. Trace specifications:
methodology and models. IEEE Trans. Soft. Eng.,
14(9), 1988.

[7] D.M. Hoffman. A CASE study in module testing. In
Proc. Conf. Software Maintenance (accepted for publi-
cation), IEEE Computer Society, October 1989.

[8] W.E. Howden. Functional program testing. IEEE
Trans. Soft. Eng., SE-6(2):162-169, March 1980.

[9] B. Liskov and J. Guttag. Abstraction and Specification
in Program Development. The MIT Press, 1986.

[10] J.W. Duran and S.C. Ntafos. An evaluation of ran-
dom testing. IEEE Trans. Soft. Eng., SE-10(4):438-
444, July 1984.

[11] J.C. Huang. An approach to program testing. ACM
Computing Surveys, 7(3):113-128, September 1975.

[12] W.E. Howden. Reliability of the path analysis test-
ing strategy. IEEE Trans. Soft. Eng., SE-2(3):208-215,
September 1976.

[13] T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Say-
ward. Theoretical and empirical studies on using pro-
gram mutation to test the functional correctness of pro-

grams. In Proc. Principles Prog. Lang., pages 220-233,
ACM, 1980.

[14] J. Gannon, P. McMullin, and R. Hamlet. Data-
abstraction implementation, specification and testing.
ACM Trans. Program. Lang. Syst., 3(3):211-223, July
1981.

{15] D.J. Panzl. A language for specifying software tests.
In Proc. AFIPS Natl. Comp. Conf., pages 609-619,
AFIPS, 1978.

[16] N. Choquet. Test data generation using a prolog
with constraints. In Workshop on Software Testing,
pages 132-141, IEEE Computer Society, 1986.

[17] S. Gerhart. A Test Data Generation Method Using Pro-
log. Technical Report TR85-02, Wang Inst. of Grad.
Studies, 1985.

[18] M.M. Gorlick, C.D. Kesselman, D.A. Marotta, and D.S.
Parker. Mockingbird: a logical methodology for testing.
Journal of Logic Programming (to appear), 1988.

[19] C. Wild. The Use of Generic Constraint Logic Program-
ming for Software Testing and Analysis. Technical Re-
port 88-02, Dept. of Computer Science, Old Dominion
University, Norfolk, VA, 1988.

APPENDIX - C TEST SCRIPT

accprogs /* declare access programs and arity*/
<s.init:0,g-space:0,s_addsym:1,s.del:1,
g-legid:1,g.legsym:1,g.id:1,g.sym: 1>

exceptions /*declare exceptions*/
<legsym,maxlen,notlegid,notlegsym, tblfull>

globcod /*global C code*/
{%
#include "symtbl.h"
#define T_MKSYMMAX 1000
#define T.FILLCHAR ’*’
#define T_TBLSIZ 5
static int i;
static struct {
int siz;
int symlen;
} t-tbl[] = {
{o,o},
{s/2,0},
{s/2,xn},
{s,0},
{s.n}
oo
static int t.cur;
static char *t_mksym(i,len)
int i,len;
{
static char buf [T_MKSYMMAX+1];
int j;
sprintf (buf,"%d",i); /*convert i to ASCII*/
if (len > strlen(buf)) {
for (j = strlen(buf); j < len; j++)
buf[j] = T_FILLCHAR;
buf[len] = ’\0’;

return(buf) ;
static void t.init()
{

t.cur = ~-1;

static void t.next()

b
int i;
t_cur++;
if (t.cur >= 0 && t_cur < T.TBLSIZ) {
s-init();
for (i = 0; i < t_tbl[t_cur].siz; i++)
s.addsym(t.mksym(i,t_tbl[t_cur].symlen));
}
}

static int t_end()
return(t-cur >= 5);

static int t.siz()

{

return(t-tbl[t-cur].siz);
}
static char *t_sym(i)
int i;

return(t_mksym(i,t_tbl[t_cur].symlen));

}
4}
cases
/Akxxkexceptionskksss/
{% t-initQ;
tnext();
while (!t-end()) {
for (i = 0; i < t8izQ); i++) { %}

{%

{4

{%

/*add an existing symbol*/
<s_addsym({%t-sym(i)%}), legsym, empty, empty,
empty>
/*add overlength symbols%/
<s.addsyn({%t.mksym(0,N+1)%}), maxlen, empty,
empty, empty>
<s.addsym({%t-nksym(0,T-MKSYMMAX)%}),
maxlen, empty, empty, empty>
/*add a symbol to a full tablex/
if (t_siz() == S) %}
<s.addsym("x"), tblfull, empty, empty, empty>

} 4}

/*#delete ids not in the tablex/

<s.del(-1), notlegid, empty, empty, empty>

<s.del({%t-siz()%}), notlegid, empty, empty,
empty>

/*request symbols for ids not in the table*/

<g-sym(-1), notlegid, empty, empty, empty>

<g_sym({%t_siz(0%}), notlegid, empty, empty,
empty>

/*request ids for symbols not in the tablex*/

<g-id({%t-mksym(t_siz(),0)%}), notlegsym, empty,
empty, empty>

<g-id(""), notlegsym, empty, empty, empty>

tmnext();

} 4}

/*x+xxpormal casex¥*x*/
/*special - empty string should be a legal symbol*/
<g_init () .s_addsym(""), noexc, g-legsym('""), 1,

<
{%

bool>
, noexc, g.legid({%g-id(""%}), 1, bool>
t-init)

tnext();
while (!t.end()) { %}

{%

{i

{%

< , noexc, g-space(), {YS-t_siz()%}, int>
< , noexc, g-legsym({’t.mksym(0,T_MKSYMMAX)%}),
0, bool>
for (i = 0; i < S; i++) {
if (1 < t8izQ)) { %}
/*tsym(i) is legal and has correct id+/
< , noexc, g-legsym({%t-sym(i)%}), 1, bool>
< , noexc, g-id({#t_sym(i)%}), i, int>
/#i is legal and has correct symbol#*/
< , noexc, g-legid(i), 1, bool>
< , noexc, g-sym(i), {%tsym(i)%}, string>
/*s_del deletes i and symbolx/
<s.del(i), noexc, empty, empty, empty>
< , noexc, g-legsym({%t_sym(i)%}), 0, bool>
< , noexc, g-legid(i), 0, bool>
} else { %}
/*t_sym(i) and i are not legal*/
< , noexc, g-legsym({%t_sym(i)%}), 0, bool>
< , noexc, g-legid(i), 0, bool>

}

tnext();

} %}

