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Abstract 

Two dimensional interconnection schemes have some 

inherent advantages because of their linear area and con- 

stant wire-lengths. The nearest-neighbor mesh is such a 

topology that has enjoyed a widespread acceptance. We 

investigate a family of bus-based topologies called the 

double-lattice-meshes, and propose a variation to improve 

their properties. We show that the bus-based topologies 

perform better than the mesh for a variety of communica- 

tion structures. In particular, when global communication 

is needed, they provide larger effective bandwidth, and when 

localized communication is permissible, they provide largest 

neighborhoods for a given communication capacity. 

1 I n t r o d u c t i o n  

Despite the emergence of high-dimensional intercon- 

nection schemes such as the hypercube the two--dimensionai 

topologies retain their attraction. This is mainly because of 

one useful property: the length of wires (communication 

channels) does not increase with increase in the number of 

PEs. This is a consequence of the linear area property [10]. 

Also, routing messages on such topologies is easier, and can 

be implemented et~ciently in hardware [3]. The most popu- 

lax two-dimensional topology is the nearest-neighbor mesh 

(called just  the mesh in the rest of the paper). The research- 

ers at CalTech who were instrumental in developing hyper- 

cube multi-processors have recently advocated [2] mesh- 

connected multiprocessors, and predict that two-- 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 

© 1989 ACM0-89791-299-3 /89 /0002 /0180  $1.50 

180 

dimensional meshes will be standard topologies in second 

generation multiprocessors. We have proposed a 2- 

dimensional bus-based topology called the double-lattice- 

mesh (DLM) [7]. It is a generalizations of the mesh. In an 

earlier paper [7] we have shown that the DLM is superior to a 

mesh when communication is to be localized to a neighbor- 

hood (this result is briefly summarized in Section 4). In this 

paper we show that the DLM, and a new variant of it called 

the laddered DLM, are superior to the mesh for almost all 

communication structures needed for different applications. 

Both the message latencies and network throughput are 

better for the these bus topologies compared those for the 

mesh. 

In the next section we briefly describe the DLM, and 

propose an improved variant, the laddered DLM. We also 

derive the average number of hops between all pairs of P~s 

for these topologies. In the succeeding sections, we compare 

the performance of these topologies for applications with 

different communication requirements. 

2 T h e  double  l a t t l ee  mesh 

The latt ice-mesh is described in [5]. We repeat its 

definition for ease of reference: Assume that each communi- 

cation channel (bus) connects ,q PEs. S is said to be the span 

of a bus. N PZs are laid out in a ~/-N×V~ matrix where 

V~" is a multiple of ,q. Each PZ is connected to 2 buses. 

We associate a label ----- (1 + (x+y) rood S) with a PZ (x,y). 

All the buses parallel to the X-axis start at a PZ with label 

X,, and all the buses parallel to the Y-axis start at a PZ 

with a label Y., where X.~ Y,. 

The dauble-lattice-mesh (DLM) can be thought as two 

overlapped lattice-meshes. Here, each PE is connected to 4 

buses. The simple DLM is characterized by 4 parameters, 

X,1 , Y ,1X ,  I, and Y,s, similar to the two parameters of the 

lattice-mesh. Figure 1 shows a 12x12 DLM using buses that 

span 3 PEs. We assume wrap around connections in this as 
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well as all other topologies considered in this paper. A DLM 

with Sffi2 is identical to the nearest neighbor mesh (with 

wrap around connections). Thus the DLM generalizes the 

mesh. 

How many hops does a message has to traverse to go 

from one PE to another? Because the topology is homogene- 

ous, (With minor local variations due to the buses) we can 

assume that the source of a message is a Pz at (0,0). Let the 

co-ordinates of the destination be (X,Y). Because of the 

wrap-around connections, we can assume X, Y~_~'N/2. We 

will derive an upper bound on the number of hops:* It is 

always possible to travel parallel to one axis covering a dis- 

tance of S in 2 hops. (Referring to Figure 1, one may start 

from a PZ labeled 1, travel along one horizontal bus as much 

as possible to the right, then take the other horizontal bus to 

travel to the next label 1. Traveling along the second bus as 

much to the right as possible is tempting, but cannot be sus- 

tained over many hops, as is easy to verify.) So, it is clearly 

possible to reach (X,Y)in (X+Y}= ~ 2(X+Y) hops. This 
s/~ s 

calculation is asymptotic, in that it is valid only if the dis- 

tance, X+Y, is sufficiently larger than S. As the PZ at 

(V'N-/2,~/N' /2)  is the farthest, the max imum hops = 

2V-~IS. 

We now derive the average of the number of hops 

needed between the P]~ at (0,0) and all the other PZs. 

Because of the wrap around connections, it suffices to con- 

sider the P~:s in the quadrant where X and Y are at most 

~¢/N/2, as shown in Figure 2. 

Let hops~N,$) denote the average number of hops 

for a DLM with N PEs connected using buses that span S PZs 

each. As PZS at a distance of i can be reached in 2i/S hops, 

h o p , ~ N , S )  ffi 

1 
~(number of PBs at di, tance i)(2i/S). 

( ' v~- /2 )  ( ' v ~ / 2 ) , f f i ,  

Referring to Figure 2, i t  is clear tha t  this sum can be broken 

into 2 parts as: 
-4/, v~ 

= ± I  + 
NS [ ~=, i_v~. /, +, 

which, after some symbolic manipulation, simplifies to 

I Throughout thiB paper we use distance to refer to the 
manhattan distance between two Pzs. E.g. the distance between a PZS 
st  (0,0) and (X,Y) is X+Y.  We use the word hops to refer to the 
number of communication links visited on the shortest path between 
two PZS. We avoid the word internode distance, which is commonly 
used for the latter, to avoid confusion between them. 

I 

L distance of j 

i+1 PSS at a distance of i 
i > 

Average hops for DLM 
Figure 2 

v~ 
h o p , ~ N , S ) f f i ~  

S 2.1 

(This result can also be obtained by a pairing argument: 

the average of the hops for a PE at (X,Y) and its reflection 

about  the dotted line, at ( 'X/N/2-Y, V N / 2 - X )  is always 
V-~ /s). 

This is a conservative calculation. We assumed the 

message traverses along one axis as much as possible before 

traversing along the other axis. By interspersing the X and 

Y movements, fewer hops may suffice. Unfortunately, such 

interspersing cannot be done systematically enough to lead 

to a derivable and better formula. 

The largest distance that can be traversed in one hop 

is S-1. As we saw above, such a distance cannot be sus- 

tained over long hauls. The reader should verify that even 

by interspersing X and Y movements, it is not possible to 

cover a distance of S-1 per hop in a sustained manner. Is it 

possible to design a bus topology such that this rate can be 

sustained? This question led us to the topology we describe 

next, r/z. the laddered DLId (abbreviated LDLM). It can be 

thought as an inverted (mirror image) lattice-mesh over- 

lapped on another normal lattice-mesh. More specifically: 

The layout and labeling of P~S is as before. There are 2 sets 

of horizontal (vertical) buses. All the buses in the first set 

start at PZs labeled 1, as in a DLM. The starting point of a 

bus in the second set depends on which row it is in (i.e. its Y 

co-ordinate). In a row that is distance R away from 0'th 

row, all the X buses in the second set start at PZS labeled 

( X , + 2 R - 1 )  rood S + i. Also, in rows where the two sets of 

X-buses would overlap with this formula, buses in one set 
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A 12x12 Standard Double Lattice Mesh 

Bus Span----3 Xs,~- ys1=l, Xn=3, ys2=2 
Figure  I 

A 12x12 Laddered Double Lattice Mesh 
Bus-span=3, Xs l -  Yn-1,  
I s ,  on the first X bus----3, 

Yss on the first Y bus----2 
Figure  $ 
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are shifted right. See Figure 3 for an example of a LDLM. 

Thus, as we go up through the rows, the starting point of 

buses in the first set moves left while that of buses in the 

second set moves right. The vertical buses are analogously 

defined. X, and Y0 are the two parameters of this topology, 

in addition to S. 

The important feature of the new topology is the 

presense of ladders. A ladder is a sequence of alternate X and 

Y buses such that endpoint of one bus connects to the start 

point of the next bus. A ladder thus allows a sustained rate 

of .q-1 physical distance per hop, as long as one is traveling 

along it. The worst case hops for LDLM with N PEs is 

N/N/C,q-1 ). 

There are ladders of both positive and negative slopes 

in a LDLM. It is possible to design a simple DLM (by choosing 

X,,= Y,s, say) that has negatively sloped ladders. However, 

no choice of parameters can produce a DLM with both kinds 

of ladders. We do need the power and 'irregularity' intro- 

duced by inverted lattice-mesh used in the LDLM. Also, 

notice that one can get on to a ladder, positive or negative, 

in one hop from any P~. 

Calculation of the average number of hops is some- 

what involved. Let us first calculate the hops to go from 

(0,0) to (X,¥). We assume X >  Y by symmetry. The rout- 

ing strategy is-shown in Figure 4. To traverse the diagonal 

of the square using a ladder, one needs 2 Y/(S-1)  hops. The 

rest of the distance is covered, as before, in 

(X- Y)/(S/2)f2(X- Y)/S hops. 

Hops between (0,0) and (X, Y) in a LDL.~ -- 

1 

.< AY --~ 

A y  

< AX > 

Routing on the LDLM 
F i g u r e  4 

2Y 2 (X-Y)  2X 
~ +  ~ ~ 2.2 
(~--1) S S 

The approximation is valid whenever S is sufficiently larger 

than 1. Also, X and Y must be larger than S. 

To calculate the average number of hops, notice that 

(see Figure 5) all the p~s on the perimeter of a (2i)x(2i) 
i 

square are at - -  hops away from the source p~. at center 
(S/2) 

of the square. As there are 8i PEs on the perimeter, we can 

write the average number of hops as: 

V~N/, 
hopsza~N,S) = 1 Z 8i'2i/S 

v-;s/, 
18 Z ;' 18 sp o4 where • ~ . 

SN ~=, SN 6 
K=N/N/2 Simplifying, we get Equation 23: 

4 2v~ 
hop,zau~N,8) =. ~Vf'NC%/-N+I)C%/N+2 ) 

68N 38 

3 Globa l  Communleat lon 

Now let us consider a specific communication struc- 

ture: Assume that each plz is equally likely to send a mes- 

sage to any other PE. Here, the performance of a topology is 

measured in terms of how much data it can deliver per unit 

time. We define the delivered bandwidth as the number of 

bytes of messages that can be delivered to their destinations 

l'Es on the perimeter of a square in a LDLM 
(All the P~s are at 2i/S hops from the center) 

F i g u r e  5 
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per unit of time, in the steady state. 

If a topology has B buses, and if a message traverses 

H hops on the average, clearly the delivered bandwidth is at 

most B/H times the bandwidth of an individual bus. We 

now compare this upper-bound for the different topologies. 

A DLM has 4N/S buses; so does a LDLM. A mesh is 

special case of DLM, with S=2. So it has 2N buses, as 

expected. For H, we use the asymptotic expressions we com- 

puted in the previous section. The results are shown in the 

table below: 

Mesh DLM LDLM 

Number of buses 2N 4N/S 4N/S 

Average Hops 
vW 

S 2 3S 

Delivered bandwidth 4~ /N  4V-N 6 ~ / N  

Table I, Delivered bandwidth with global communication 

Thus, the LDL~ provides 1.5 times the bandwidth of a mesh 

of the same size. The DLM at least provides as much 

bandwidth as the mesh. As the calculation of hops for the 

DLM was conservative, we can expect the actual bandwidth 

to be better than the mesh. An added advantage of bus 

topologies is that they require fewer hops than the mesh. 

When the communication load is low, the net time required 

to transfer an individual message is smaller in a bus topol- 

ogy than on a mesh. Thus, the recommendation is clear: for 

connecting a 2-dimensional matrix of PEs for an application 

involving global communication, use a LDLM (or a DLM if its 

regularity is preferred) as opposed to a mesh. What span of 

buses (S) should be used? To minimize the maximum hops 

and to justify our approximation of S>>1, it seems tempt- 

ing to say 'larger the better'. That would lead us to 

S=~. However, at such large values of S the boundary 

effects become significant enough to invalidate the results 

obtained by asymptotic analysis above. (For example, the 

average hops for a DLM with S = ~ are close to 2, but  the 

formula predicts 0.67.) Hardware considerations also dictate 

a limit on S. We present the results of some empirical 

experiments to obtain realistic comparisons between specific 

topologies, and to select values of S to optimize the delivered 

bandwidth. 

3.1 Empirical  e x p e r i m e n t s  

A set of programs available under the ORACLE simula- 

tion system at University of Illinois were used to produce the 

adjacency data for the topologies concerned, and to compute 

the average number of hops for each specific topology. These 

numbers were used to obtain the delivered bandwidth as 

before. The results are shown in Figure 6 and Figure 7. 

The mesh appears as a special case, with S=2, on both the 

graphs. Each curve refers to a fixed number of PZS. For 

example, the top curve for the LDLMs shows the delivered 

bandwidths of 3600 PE systems arranged as 60x60 matrix, 

with various bus-spans. The leftmost point (S--2) 

corresponds to a mesh, and yields a net delivered bandwidth 

equal to 240 times that of an individual bus. Using buses 

that connect 6 PEs each (S=6), the effective bandwidth rises 

by more than 35~ to 320, which turns out to be optimal for 

3600 PEs. 

The graphs clearly demonstrate the superiority of 

bus-based design (i.e. S>2). Also, it can be seen that rela- 

tively short buses are enough to obtain the optimal perfor- 

mance. For the topologies considered, for both sets of 

curves, the maximum is obtained for bus spans of 6 or less. 

4 L o e a l i s e d  e o m m u n l e a t l o n  

As we saw above, when uniformly distributed global 

communication is required, the 2-dimensional topologies we 

looked at  provide only O(~/-N) delivered bandwidth 

although there are N PEs waiting for these messages. Thus, 

global communication leads to a communication bound sys- 

tem. Fortunately, for a significant class of applications, glo- 

bal communication can be avoided. Consider the parallel 

execution of functional programs (or logic programs, or any 

algorithm with divide-and-conquer flavor). Every task typ- 

ically spawns smaller sub-tasks, collects and combines 

results from the sub-tasks, and returns them. The sub- 

tasks can be executed on any PB; in particular, it is possible 

to spawn the sub-tasks on a Pz within a pre-specified neigh- 

borhood around the PE that is executing the parent task. 

The neighborhood is specified in terms of a bound on the 

number of hops. Smaller the neighborhood, smaller is the 

number of hops each message has to travel (each message is 

either a create-stsb-task message or a response from a sub-  

task), and smaller is the required bandwidth. However, for 

uniform distribution of work, i t  is preferable to have access 

to a larger pool of PZs for allocating a sub-task.  This is true 

of many dynamic load balancing strategies such as those 

described in [6] and [7]. The problem then is to maximize 

the number of PEs in the neighborhood while satisfying the 

bandwidth requirements. 

We have shown elsewhere [7] that  the DLM provides 

opportunities for optimizing the neighborhood, and that  

DLMs with S > 2  provide significantly larger neighborhoods 

than the meshes of same size. We simply cite this result 
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here to point to another communication structure for which 

DLM performs better than the mesh. 

5 A r b i t r a r y  c o m m u n i c a t i o n  s t r u c t u r e s  

Now we consider arbitrary communication structures. 

Let the application require that messages be sent to PZs at 

distance of i with probability q~. (Recall that by diatance 
we mean the simple Manhattan distance which does not 

depend on the span of the buses). To compute the net 

bandwidth that is avaliable to an application, we compute 

average number of hops a message in the application travels, 

for each of the three topologies. The formula for the 

number hops that we have to use now is: 

v~M 

hop,,(N,S)- E q, hop,(,,S,~) s.1 
i--I 

where hops(r,8,i) is the average number of hops needed 
reach PEa at distance i, in a topology r, with a bus-span of 

S. 

For r = mesh, the number of hops is identical to the 

distance, and we get: 
v~M 

ho|,~,,--(N,S)- E q~ i s.2 

For a DLM, Aop#(DLM, S,i)--2i/S. (Recall: i-AX+A Y). So, 
v~ v~M 

2i 2 
hop~N,S) - Z q, -- = --E q, i s.3 

For the LDLM, the number of hops are not the same for all 

the PZS at distance i, because they depend on max(AX, AY). 

Figure 8 shows all the PES at a distance of i from the source 

PZ at (0,0). By the various symmetries involved, it su~ces 

to compute the average hops for the strip of i/2 PZS dark- 

ened in the figure. For all these P~.s, the X co-ordinate is 

larger than the Y co-ordinate. The number of hops needed 

to reach a Pz at (K,_) is then 2K/S. As K varies from i/2 to 

i, we get 

i 

hopf( ,~Lu,8,i) = Z Z 2K - 
i/2 k-~/~ S 

i 
4 4 3i=+2i 3i+2 3i 

i8 ,..~/, i8 8 28 28 

Examining Figure 8 carefully, it  can be seen that  the 

formula is not exact for PZs beyond a distance of VN' /2 .  It 

computes the average for all the PZs (some of them 

hypothetical) along the line AC, while we are interested in 
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Average hops for the LDLM: 
PEs at the distance i from the source 

Figure  8 

the strip AB. However, the average for the strip AC is 

clearly larger than that  for AB. So, the formula 5.4 really 

gives an upper bound on the average number of hops. I.e. 

3i 
Aops'( U>L.,S ,i) < --. 5.5 

28 

Substituting equation 5.5 in 5.1, we get: 

3i 3 

;=~ 28 28 if, 
5.6 

The results of these calculations are shown in the 

table below. 

Number of buses 

Average Hops 

Delivered bandwidth 

Ratios 

Mesh 

2N 

Eq~ i 

2N 

/~qi i 

DLM LDLM 

4N/S 4N/S 

2 3 

S 28 

8N > - -  2N 

~q~ i 3~q~ i 

> 1.333 

Table H: Arbitrary communication structures 

(all the sums in the table range from i=1 to ~/-N) 

The results are similar to those for 'global communication': 

The mesh and the DLM perform equally well (again, the DLM 

may be better because of the conservative calculation of 

hops), and the LDLM performs provably better than the 

mesh. The advantages of fewer hops also argue in favor of 

bus topologies, as before. 

Notice that  the results apply as long as the approxi- 

mations used to derive them are valid. In particular, the 

expressions used for hops(r,S,i) are valid only for i>>S. 
For most communication structures (i.e. distributions of ql) 

this is a valid approximation. However, in a communication 

structure known as 'sphere of locality'  [9], where q;=0 for all 

i > R ,  i t  is valid only if the radius of the 'sphere', R, is 

sufficiently larger than the span of buses, S. An interesting 

and important  case is that  of communication within a dis- 

tance of 1 only. Obviously the equations do not apply, as 

R = I .  Intuitively, the buses provide connections to PZs 

beyond a distance of 1, which are of no use for the commun- 

ication required in the application. Thus for purely systolic 

algorithms, and other algorithms that  do need only the 

near-neighbor communication (such as many low-level 

vision algorithms) the mesh provides better bandwidth than 

the bus topologies. Again, if the application needs a mix of 

near-neighbor and global communication, a bus topology 

may be worth investigating. 

6 D i s c u s s i o n  

The use of buses may seem to present a problem: 

resolving the contention for a bus. However, a mesh is not 

immune from that  problem either, unless one has dedicated 

uni-directional channels, which doubles the cost of ports for 

each PE. More important,  i t  is relatively simple to resolve 

the contention by using a round robin strategy with an 

appropriate protocol. No expensive hardware such as that  

used for ethernets is needed. Many real multi-processors, 

such as ELXI and S/Net  [1] have been designed around a 

single bus. For the practical importance of keeping the 

length of buses short, the reader is referred to [1] 

Prasanna kumar [8] has proposed the use of row and 

column buses in addition to the regular mesh connections. 

He demonstrates many algorithms that  run e~ciently on 

such a topology. We believe that  a bus spanning V ~  PEs 

will be impractical beyond systems with a few hundred PEs. 

I t  might  be useful, then, to consider the topologies discussed 

in this paper for such applications. A group at MITRE has 

also proposed [4] a different variety of planar bus topologies 

that  are particularly suitable for wafer scale implementa- 

tion. 

We considered only the topologies with a wrap 

around. I t  seems reasonable to assume that  similar relation- 

ships will hold between the versions of the corresponding 

topologies without the wrap-around connections. We plan 
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to conduct more empirical calculations to confirm that. 

7 Conclusion 

We derived the average 'internode distance', in terms 

of the number of hops, for a bus topology called the Double 

Lattice-Mesh. We proposed a variant of this topology, the 

laddered DLM, that minimizes the average and the worst- 

case number of hops. We showed that for a variety of com- 

munication requirements, the DLM and the LDLM perform 

better than the mesh. For the case of global communica- 

tion, we also confirmed the results by empirical calculations 

for specific topologies. Although all the topologies con- 

sidered have the same asymptotic order of performance (e.g. 
for global communication, all provide O(V~) bandwidth}, 

the bus topologies are better by a multiplicative constant. 

Therefore we can state that for most applications where a 

mesh can be used, a bus topology such as a DLM or LDLM will 

perform better. The one important exception involves appli- 

cations that need communication within a very narrow 

neighborhood, such as purely systolic algorithms. Here, the 

large number of channels of a mesh proves advantageous. 
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