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We describe a novel method for authenticating multicast packets that is robust against packet
loss. Our focus is to minimize the size of the communication overhead required to authenticate the
packets. Our approach is to encode the hash values and the signatures with Rabin’s Information
Dispersal Algorithm (IDA) to construct an authentication scheme that amortizes a single signature
operation over multiple packets. This strategy is especially efficient in terms of space overhead,
because just the essential elements needed for authentication (i.e., one hash per packet and one
signature per group of packets) are used in conjunction with an erasure code that is space optimal.
Using asymptotic techniques, we derive the authentication probability of our scheme using two
different bursty loss models. A lower bound of the authentication probability is also derived for one
of the loss models. To evaluate the performance of our scheme, we compare our technique with four
other previously proposed schemes using empirical results.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information
Systems]: Security and Protection—authentication

General Terms: Algorithms, Security

Additional Key Words and Phrases: Digital signatures, multicast, Information Dispersal Algorithm
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1. INTRODUCTION

Fueled by the explosive growth of the Internet and growing demand for novel
types of group communications, multicast has received a lot of attention in re-
cent years. In multicast, a single copy of packets is sent by the sender and routed
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to every receiver within the multicast group via multicast-enabled routers. For
a wide range of applications, multicast is an efficient and natural way of com-
municating information. Some examples include information broadcasts (e.g.,
news feeds, weather updates, and stock quotes), multiparty videoconferencing,
and software updates. For successful implementation, many of these applica-
tions will require varying degrees of security requirements (i.e., confidentiality
and authentication).

Confidentiality for multicast transmissions can be provided using techniques
that utilize symmetric (secret) key cryptography. Confidentiality would be pro-
vided by encrypting the message with the secret key being shared by the sender
and the receivers of the multicast group before transmission. Consequently,
off-the-shelf solutions such as the Advanced Encryption Standard (AES) can be
readily employed for this purpose. For confidentiality, the main concern is the
complexity involved in key management (e.g., key distribution, revocation, and
group updates).

The solution to the authentication problem for unicast transmission is well
known. For example, efficient hash-based message authentication codes (MAC)
known as HMACs can be employed. However, this solution is inadequate for the
multicast setting. The difficulty of the problem lies in the fact that preventing
the forgery of packets by a colluding group of receivers precludes the use of
any MAC-based scheme, if small communication (space) overhead is required,
and time synchronization between the sender and the receiver is difficult to
maintain. The rationale for this argument is given in Section 2.1. Without using
symmetric key cryptosystems, the most obvious way of providing authentication
is to sign each individual packet using the sender’s digital signature. However,
the computation overhead of current signature schemes is too high to make this
practical. According to Wong and Lam [1998], a Pentium II 300 MHz machine
devoting all of its processor time can only generate 80 512-bit RSA signatures
per second. Clearly, this approach is not practical.

Packet loss is another important issue that needs to be considered. While
this may not be a problem for applications using reliable transport protocols
(e.g., TCP/IP), it is a serious issue for multicast applications that use UDP over
IP-Multicast. Because UDP only provides best-effort service, packet loss can
be high. Therefore, while the content being broadcast might be able to bear
packet losses, the authenticity of a nonnegligible percentage of the received
packets might not be verifiable by the receiver, if the authentication scheme is
not robust against loss.

Techniques for reliable multicast exist, such as Scalable Reliable Multicast
(SRM) [Floyd et al. 1997] and Reliable Adaptive Multicast Protocol (RAMP)
[Koifman and Zabele 1996], but they are complex and not yet standardized.
Within the Internet Engineering Task Force (IETF), the Reliable Multicast
Transport (RMT) working group is chartered to standardize reliable one-to-
many transport protocols for bulk data. Because it is difficult for a single pro-
tocol to meet the requirements of all multicast applications, the RMT working
group is standardizing three protocol instantiations, one from each of the fol-
lowing three categories: (i) a NACK-based protocol, (ii) a tree-based ACK pro-
tocol, and (iii) an asynchronous layered coding protocol that uses forward error
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correction (FEC). The Digital Fountain model [Byers et al. 1998] is a scheme
that belongs to the third category [Luby et al. 2002], and provides reliable one-
to-many transport of bulk data using Tornado codes [Luby et al. 1997]. The
standardization of the reliable multicast protocols by the RMT working group
is not yet complete. Moreover, dissemination of information via broadcast (op-
posed to multicast) protocols incurs loss, and hence packet loss remains as an
important issue in the authentication of packet streams.

Our approach to multicast message authentication is based on the technique
of signature amortization, that is, amortizing a single signing operation over
multiple packets. Our technique is especially efficient in space overhead, be-
cause just the essential elements needed for authentication (i.e., one hash per
packet and one signature per block of packets) are used in conjunction with
an erasure code that is space optimal. Note that our approach is similar to the
RMT working group’s third category of protocol instantiation with the differ-
ence that we are using FEC techniques to encode authentication information
and not the data itself.

We also show how our approach can readily be extended to combat denial-of-
service (DoS) attacks, where the attacker inserts bogus packets into the mes-
sage stream. This problem is raised in Luby et al. [2002] within the context of re-
liable multicast protocols. One solution is to implement additional functionality
into the multicast router or the receiver’s computer so that the source IP address
can be screened against a list of authentic transmitter addresses. This solution
can be easily defeated, however, if the attacker has the capability to spoof source
addresses. The techniques discussed in Section 6 avoid this weakness.

In the next section, we briefly discuss related work and give an overview of
erasure codes. The rationale for our approach, along with the detailed authen-
tication/verification procedure, is given in Section 3. In Section 4, we derive the
asymptotic authentication probability of our scheme using two different bursty
loss models. A lower bound of the authentication probability is also derived for
one of the loss models. In Section 5, we evaluate the performance of our tech-
nique, comparing it with four other previously proposed schemes. Techniques
for thwarting DoS attacks are given in Section 6. Finally, concluding remarks
are given in Section 7.

2. TECHNICAL BACKGROUND

2.1 Related Work

Multicast authentication schemes can be divided into two major classes—
unconditionally secure authentication and computationally secure authenti-
cation. Pioneering research on unconditionally secure authentication was done
by Simmons [1984] and later extended to the multicast setting by Desmedt et al.
[1992]. As the name suggests, unconditionally secure authentication provides
very strong security guarantees, but is less practical than computationally se-
cure techniques. Our focus is on computationally secure methods.

In computationally secure multicast authentication, two approaches can be
taken. One approach is to use Message Authentication Codes (MAC), and the
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other is to utilize digital signatures. Schemes based on MACs do not require
any computationally intensive computations. The asymmetric MAC scheme pro-
posed by Canetti et al. [1999] and the Timed Efficient Stream Loss-tolerant Au-
thentication (TESLA) proposed by Perrig et al. [2000] fall into this category. The
asymmetric MAC scheme is vulnerable to collusion attacks and is not scalable,
because the size of the authentication information increases as the number of
receivers increases. Using TESLA, packet streams can be authenticated with
a small communication overhead, but this method requires time synchroniza-
tion between the sender and the receivers, which might not be feasible in large
multicast groups. In their recent work, Boneh et al. [2001] showed that one
cannot build an efficient (in terms of communication overhead) collusion resis-
tant multicast authentication scheme solely based on MACs. Although TESLA
is resistant to collusion attacks and its communication overhead is small, the
result of Boneh et al. is still valid, because TESLA uses a digital signature (e.g.,
RSA signature) to “bootstrap” the first packet of an authentication chain.

If MAC-based techniques are not employed, the obvious alternative is to use
digital signatures. The biggest challenge in using digital signatures for authen-
tication is the computationally intensive nature of the asymmetric-key-based
signatures. For this reason, previous authentication schemes approached this
problem in two directions—designing faster signature techniques and amortiz-
ing a signature operation over multiple packets.

In general, making the signature scheme faster comes at the cost of increased
space overhead. Rohatgi [1999] proposes using a combination of k-time signa-
tures and certificates for the k-time public keys (created with a regular signa-
ture scheme) to authenticate packets. Despite its improvement over the one-
time signature scheme, this method still requires a space overhead on the order
of several hundred bytes per packet.

Perrig [2001] proposes a one-time signature scheme called BiBa, which has
two important advantages over regular signature schemes—its signature gen-
eration and verification times are significantly faster. This implies that each
packet can be individually signed (via a BiBa signature) at a rate that is fast
enough to match the packet transmission rate. By individually signing each
packet, there is no need to buffer packets for authentication or verification,
and thus reducing delay. Hence, for applications such as the broadcast of stock
quotes, which require the authentication of real-time data, the broadcast au-
thentication protocol based on the BiBa signature scheme might be appropri-
ate. However, BiBa also has limitations. Its security is dependent on the time
synchronization maintained between the sender and the receivers, and the
maximum allowable time synchronization error between the sender and the
receivers, which we denote as τ, limits the authentication rate. Because τ has
to be set at a feasible value, there is a practical limitation on the authentication
rate. For applications that require the sender to authenticate packets that have
relatively fast transmission rates (e.g., video streams), this can be a problem.
Another point to consider is the size of the communication overhead created
by the BiBa authentication protocol. With reasonable parameter values, each
BiBa signature size is 100–200 bytes, and a new set of public keys, whose size
is on the order of 10 KB, needs to be transmitted at regular intervals.
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Many schemes based on signatures attempt to reduce the computation and
communication overhead by amortizing a single signature operation over mul-
tiple packets. For example, Wong and Lam [1998] employ Merkle’s authentica-
tion trees [Merkle 1989] to reduce the size of the authentication information and
sign multicast packets. However, because each packet is individually verifiable,
every packet needs to contain a signature with the authentication information,
which requires a large communication (space) overhead.

If individual packet verification is relaxed so that the verification of a packet
is dependent on other packets, then the communication overhead can be re-
duced substantially. In this approach, verification of each packet is not guaran-
teed and instead is assured with a certain probability. The scheme proposed by
Perrig et al., called Efficient Multi-chained Stream Signature (EMSS) [Perrig
et al. 2000] takes this approach and uses a combination of hash functions and
digital signatures to authenticate packets. EMSS is an extension of Gennaro
and Rohatgi’s stream signing technique [Gennaro and Rohatgi 1997]. The basic
idea is as follows: A hash of packet P1 is appended to packet P2, whose hash is
in turn appended to P3. If a signature packet, containing the hash of the final
data packet (i.e., P3) along with a signature of the hash, is sent after P3, then
nonrepudiation is achieved for all three packets. In essence, hash values act as
chains (or directed edges) between the packets so that they form a single string
that can be signed by one digital signature. To reduce the verification delay,
a stream of packets is divided into blocks, and the above process is repeated
for every block. EMSS achieves relatively high verification rates at the cost of
increased space overhead and delayed verification. Throughout the paper, we
will use the term verification rate to denote the number of verifiable packets of
the stream divided by the number of received packets of the stream.

Golle and Modadugu [2001] propose a scheme similar to EMSS called the
augmented chain technique. They propose a systematic method of inserting
hashes in strategic locations so that the chain of packets formed by the hashes
will be resistant to a burst loss. The chain of packets constructed using this
method is parameterized by the integer variables a and p; a chain of packets
can sustain a burst loss of up to p(a − 1) packets in length. To reduce the
verification delay, a stream is divided into blocks of packets, and each block is
constructed using the augmented chain technique with only the last packet in
the block being signed.

In Miner and Staddon [2001], the authors propose a similar authentica-
tion scheme, based on hash chaining techniques, specifically designed to resist
multiple bursts. In the construction of their scheme (called the piggybacking
scheme), n packets are partitioned into r equal-sized priority classes. The sig-
nature packet is the first packet in the highest priority class. It is assumed that
the packets in the highest priority class are spaced evenly throughout the block
so that two consecutive packets of the highest priority class are located exactly r
packets apart. By constructing the hash chains using the piggybacking scheme,
packets in the ith priority class can tolerate xi bursts of size at most bi = kir,
where ki is a parameter dependent on the configuration of the hash chains.

In their recent work, Pannetrat and Molva [2002] propose a stream au-
thentication scheme that is similar to our approach (initially published in
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Park et al. [2002]). They propose to authenticate real-time data streams by
piggybacking the current block’s encoded authentication information (via an
erasure code) onto the next block. Using this method, no packets need to be
buffered by the sender but, of course, additional buffering is needed at the re-
ceiver. The same technique can readily be applied to our authentication scheme.

2.2 Erasure Codes

When a stream of packets is sent via the Internet, a fraction of the packets is
lost during transit. A standard solution to this problem is to retransmit data
that are not received. In some applications, this solution is not practical. An
alternative solution is to use forward error correction (FEC) techniques. Among
FEC codes, erasure codes are of particular interest to our application. We briefly
review the basic characteristics of two well-known erasure codes—Information
Dispersal Algorithm (IDA) [Rabin 1989] and Tornado codes [Luby et al. 1997].

IDA was originally developed as an algorithm for providing reliable storage
or transmission of information in distributed systems. The basic idea of IDA is to
process the source, say a file F , by introducing some amount of redundancy and
splitting the result into n pieces, which are then transmitted. Reconstruction of
F is possible with any combination of m pieces, where m ≤ n. Each distributed
piece is of size |F |/m, which clearly shows that the scheme is space optimal.
The space overhead can be controlled by adjusting the parameters n and m;
ratio n/m determines the space overhead incurred by the encoding process.

Unlike IDA, Tornado codes can encode and decode data in linear time. The
number of segments needed for decoding is slightly larger than the number of
preencoded segments, and thus they are suboptimal in terms of space overhead.
Specifically, for a set of n segments, encoding with Tornado codes increases the
number to n/(1− p(1+ ε)), where 0 < p < 1 and 0 < ε < 1. If the receiver
acquires more than 1 − p fraction of the encoded segments, then the original
data segments can be reconstructed with high probability in time proportional
to n ln(1/ε).

3. OUR SCHEME FOR STREAM AUTHENTICATION

3.1 Rationale for our Approach

In EMSS, there are three factors that affect the verification rate—number of
signature packets, number of hashes contained in the signature packet, and
number of hashes contained in the data packet. The number of hashes in the sig-
nature and data packets is always greater than one, improving the robustness
to packet loss at the cost of increased overhead. This tradeoff is unavoidable,
but can be done more efficiently using erasure codes. This is best illustrated
using the following simple example.

The sender transmits the hash of a packet appended to k other packets
for increased resistance to loss. We assume that a block consists of n packets
and packet loss is independent. The probability that at least one out of the k
packets will reach the destination is 1 − qk , where q is the loss probability.
The space overhead would be k · h, where h is the size of the hash. Using the
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same overhead, one can encode the hash using IDA and append the n encoded
segments to n packets. The minimum number of encoded segments needed for
reconstruction of the hash is only m = dn/ke, where dxe denotes the smallest
integer not less than x. The probability that the hash can be reconstructed
successfully at the receiver is given by

1−
m−1∑
i=0

(
n
i

)
(1− q)iqn−i. (1)

Instead of using IDA, the sender could also use probabilistic codes such as
Tornado codes. In this case, the minimum number of segments needed for de-
coding is

m = n(1− p) =
⌈

n
k

(
1+ ε(k − 1)

ε + 1

)⌉
, (2)

where p and ε are the performance parameters of the Tornado code (see
Section 2.2). The probability of successful reconstruction of the hash is given
by (1) using the value of m specified by (2). It is obvious that the probability
given by (1) is higher than 1 − qk , and the probability for IDA is higher than
that for the Tornado code.

The above example suggests that using an erasure code to encode the hash
values would be more efficient than simply appending duplicate hashes to the
packets. As an extended version of EMSS, Perrig et al. [2000] suggest using
universal hash functions or IDA to split the packet’s hash value into multiple
pieces before appending them onto other packets. This certainly produces a
more loss-resistant scheme with the same amount of communication overhead.
However, it introduces complexities—the time-consuming process of encoding
and decoding must be performed for each hash. This can be a bottleneck, espe-
cially when multiple hashes are used per packet. We suggest a simple method
of avoiding this problem at the cost of sender delay. Instead of encoding individ-
ual hashes, we suggest concatenating all the hashes within the block to form a
single piece before encoding. This strategy requires only one encoding/decoding
per block.

The main advantage of EMSS is that there is no sender delay incurred by the
authentication process—a given packet can be transmitted immediately after
its hash value is computed without the need to buffer other packets. This can
be an advantage in situations where data are generated in real time, and im-
mediate dissemination is crucial. However, for some multicast applications, the
sender has a priori knowledge of at least a portion of the data (e.g., prerecorded
news footage) and some sender delay is tolerated. In fact, most authentication
schemes incur some degree of sender delay [Golle and Modadugu 2001; Miner
and Staddon 2001; Wong and Lam 1998].

If a certain amount of sender delay is allowed, then a more significant prob-
lem can be addressed. It is obvious that the delivery of the signature pack-
ets is crucial for any authentication scheme. In previous work [Golle and
Modadugu 2001; Miner and Staddon 2001; Perrig et al. 2000], performance
results (both analytical and empirical) were based on the assumption that the
signature packets are received. The authors suggest accomplishing this task
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Fig. 1. Receiver delay caused by sending multiple copies of the signature packet.

by empowering the receivers to request retransmissions of the lost signature
packets or sending multiple copies of the signature packet. However, the re-
transmission of signature packets can put considerable strain on the resources
of the sender and the network, especially in large multicast networks. Yajnik
et al. [1996] observe packet loss characteristics of actual multicast sessions, and
show that considerable amounts of the packets would need to be retransmit-
ted, if reliable multicast services are to be provided through retransmissions.
In one particular data set, 62.6% of the packets was lost by at least one receiver.
This implies that retransmission would have been necessary for 62.6% of the
packets.

Sending multiple copies of the signature packet can be an alternate solu-
tion, but this also has drawbacks. Signature packets are generally large (e.g.,
128 bytes, if 1024-bit RSA is used), and sending these packets several times
can increase the communication overhead noticeably. Moreover, because ac-
tual losses in the Internet are highly correlated and bursty, each copy of the
signature packet would have to be interspersed uniformly among the packets
to ensure maximum effectiveness. If copies of the signature packets are dis-
tributed in the current block, then this would cause sender delays in schemes
that utilize hash-chaining techniques with edges directed backwards (i.e., hash
of a packet is appended to the packets following it)—schemes such as EMSS.
The sender delay is incurred because data packets in the block cannot be trans-
mitted before the replicas of the signature packet are interspersed among the
data packets.

The obvious alternative is to distribute the copies in the next block to avoid
the sender delay. However, this can cause increased delay on the receiver side—
a receiver might have to buffer a maximum of 2n data packets before verifying
a given packet, where n is the number of data packets per block. This case is
illustrated as a simple example in Figure 1. In the figure, circles and squares
represent data packets and signature packets, respectively. The first two sig-
nature packets in the (i+ 1)th block are assumed to be lost and are represented
as darkened squares. The receiver needs to buffer Di,1, Di,2, Di+1,1, and Di+1,2
before verifying the data packets of the ith block (i.e., Di,1 and Di,2) using Si
(signature packet of the ith block).

Considering these problems, the obvious alternative is to apply FEC tech-
niques to the signature packets. We can easily make the signature packets
robust against packet loss by using erasure codes and appending each en-
coded piece to the data packets. For our authentication scheme, we employ
IDA instead of probabilistic codes such as Tornado codes. Tornado codes can
encode/decode data very rapidly (i.e., linear time), but do so with a high prob-
ability only when the number of segments to encode is large. For this reason,
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Tornado codes are appropriate when a large number (hundreds to thousands)
of segments are being encoded [Weatherspoon 2001]. We use IDA because the
encoding involves a fairly small number of segments, and IDA has the added
advantage of being space optimal. It should be noted that our authentication
scheme is independent of the type of erasure code, and other erasure codes (e.g.,
Tornado codes) that have other attractive properties can be employed.

3.2 Signature Amortization Using IDA

To reduce the computation burden of signing each packet, two approaches can
be taken—designing faster signature techniques and amortizing a single sig-
nature operation over multiple packets. Our main focus is reducing the size
of the authentication overhead, and therefore we took the second approach,
which offers better space efficiency. We propose a scheme that employs IDA to
amortize a single digital signature over a block of packets. Our scheme, ap-
propriately named Signature Amortization using IDA (SAIDA), is designed to
provide space-efficient authentication even in high packet-loss environments.
The following steps describe the authentication procedure in detail:

1. Let ‖ denote concatenation. A stream of packets is first divided into groups
(or blocks). We denote a stream as 0 = G1‖G2‖. . . , where each group Gi
is a concatenated string of n packets (i.e., Gi = P(i−1)n+1‖· · ·‖Pin), and each
packet Pi ∈ {0, 1}κ for some constant κ. The same operations are performed
on every group, so we will only focus on the first group.

2. A packet hash H(Pi), i = 1, . . . , n for each packet is computed using a hash
function H.

3. The packet hashes are concatenated to form F 1 = H(P1) ‖· · ·‖H(Pn) of size
N (i.e., F 1 consists of N characters). Let ci represent the ith character in F 1.
In practice, ci may be considered as an eight-bit byte, and all calculations
are done in Z257 or GF (28). One copy of F 1 is stored in a buffer while another
copy is divided into blocks of length m as follows:

F 1 = (c1, . . . , cm), (cm+1, . . . , c2m), . . . , (cN−m+1, . . . , cN ).

To simplify the following discussion, let Si = (c(i−1)m+1, . . . , cim), 1 ≤ i ≤
N/m.

4. Choose n vectors ai = (ai1, . . . , aim), 1 ≤ i ≤ n, such that for every subset of
m different vectors are linearly independent, as specified in Rabin [1989].

5. Using vectors ai = (ai1, . . . , aim), 1 ≤ i ≤ n, F 1 is processed and divided into
n segments as

F 1
i = (ai · S1, ai · S2, . . . , ai · SN/m), i = 1, . . . , n,

where ai · Sk = ai1 · c(k−1)m+1 + · · · + aim · ckm. It follows that |F 1
i | = |F 1|/m.

6. The group hash is computed by taking the hash of the other copy of F 1,
that is, HG(G1) = H(F 1) = H(H(P1) ‖· · ·‖H(Pn)), where HG(G1) denotes
the group hash of the first group of packets.

7. The group hash is signed by a digital signature scheme using the sender’s
private key Kr and denoted as σ (Kr , HG(G1)). This value is IDA encoded
using the same set of vectors to yield σ1(Kr , HG(G1)), . . . , σn(Kr , HG(G1)).
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Fig. 2. Authenticated packet stream.

Although this procedure was explained as a separate step for clarity, the
signature can be concatenated with F 1 before applying IDA, so that only
one encoding procedure per group is necessary.

8. Each signature segment (created in the seventh step) and hash segment
(created in the fifth step) are concatenated with the corresponding packet to
form an authenticated packet. A group of n authenticated packets combine
to form an authenticated group, which is expressed as

σ1(Kr , HG(G1))
∥∥F 1

1

∥∥P1, . . . , σn(Kr , HG(G1))
∥∥F 1

n

∥∥Pn.

An instance of an authenticated packet stream is illustrated in Figure 2. The
verification of the stream is straightforward. Assuming that at least m packets
are received, the receiver can successfully reconstruct F 1 and σ (Kr , HG(G1))
from any combination of m packets as follows:

1. Assume that segments F 1
1 , . . . , F 1

m are received. Using the m pieces, it is
readily seen that

A ·

 c1
...

cm

 =
 a1 · S1

...
am · S1

 ,

where A = (aij )1≤i, j≤m is an m×m matrix whose ith row is ai.
2. Because A is invertible, S1 can be obtained from

S1 =

 c1
...

cm

 = A−1 ·

 a1 · S1
...

am · S1

 .
3. Using the same procedure, S2, . . . , SN/m can be obtained, and F 1 is recon-

structed by concatenating these values.
4. The same technique is applied to reconstruct σ (Kr , HG(G1)).
5. All the packets in G1 can be verified using F 1 and σ (Kr , HG(G1)).

For SAIDA, the trade-off between verification rate and communication over-
head can be readily governed by changing the parameters n (number of encoded
segments) and m (minimum number needed for decoding). Note that the space
overhead (determined by n/m) only applies to the authentication information
(i.e., hashes and signatures) and not to the data itself. Specifically, (n/m) M
represents the space overhead incurred after the IDA encoding process, where
M is the size of the authentication information.
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4. AUTHENTICATION PROBABILITY

4.1 Loss Models

It is well known that actual packet losses in a network are bursty rather than
independent in nature. In this section, using asymptotic techniques, we derive
the authentication probability of SAIDA using two different bursty loss mod-
els. We define the authentication probability as Pr{Pi verifiable | Pi is received},
where Pi represents the ith packet of a block. This definition is adopted from
Miner and Staddon [2001]. Note that this is different from the verification rate
referred to in Section 2.1. We use this term to denote the number of verifi-
able packets divided by the number of received packets of a stream. In the
simulation experiments of Section 5, we use verification rate as the perfor-
mance measure, because its value can be directly calculated from the simulation
data.

The authentication probability is directly affected by the loss behavior of the
network. In Yajnik et al. [1999], it is shown that the 2-state Markov chain can
accurately model bursty loss patterns in certain cases, and hence we adopt this
model as one of our loss models. Throughout the paper, we denote this model
as the 2-state Markov Chain (2-MC) loss model.

In Miner and Staddon [2001], the authors derive an authentication proba-
bility lower bound (for the piggybacking scheme) based on a bursty loss model,
which is motivated by ideas in the theory of error-correction codes. We denote
this model as the Biased Coin Toss (BCT ) loss model. We choose this model
for our analyses in Sections 4.2 and 4.3 because it facilitates the direct com-
parison of the authentication probability lower bound between SAIDA and the
piggybacking scheme.

For fixed n and m, finding the analytical expression for the authentication
probability seems to be extremely difficult, and hence we use asymptotic tech-
niques in our analyses. In the analyses, results from renewal theory are applied.

4.2 Asymptotic Authentication Probability under the 2-State Markov
Chain Model

The 2-MC loss model is defined as follows:

4.2.1 2-MC Loss Model. The loss process is modeled as a discrete-time
Markov chain with two states—0 and 1—representing no loss and loss, respec-
tively. It is defined by the four transition probabilities (i.e., p00, p11, p01, and
p10). The stationary probabilities (the long-run proportion of transitions that
are into a given state) are denoted as π0 and π1 = 1−π0. The expected burst-loss
length β, and probability of loss q can be expressed using the four parameters
of the Markov chain.

We represent this loss process as a discrete-time binary time series {Si}i=∞i=1
taking values in the set {0, 1}. Before deriving the authentication probability,
we need the following lemmas. To express our main result (i.e., Proposition 1),
it is convenient to represent the four transition probabilities in terms of the
stationary probabilities and β.
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LEMMA 1. The four transition probabilities can be expressed using β, π0, and
π1 as follows:

p10 = 1
β

, p01 = π1

βπ0
, p11 = 1− 1

β
, p00 = 1− 1

β

(
1
π0
− 1
)
.

PROOF. Let B be a random variable representing the length of a consecutive
string of losses in steady state. Then the expected burst length is β = E[B] =
(µ00 − 1)/p01, where µi j denotes the expected number of transitions until the
chain enters state j given that it is presently in state i. The value of µ00 can
be written as an infinite sum of k f k

00, where f n
i j denotes the probability that,

starting in i, the first transition into j occurs at time n. Hence,

µ00 =
∞∑

k=1

k f k
00 = p00 + p01 p10

∞∑
k=0

pk
11(k + 2) = 1+ p01/p10.

Substituting this value forµ00 in the above expression for β, we get β = 1/p10. It
follows that p10 = 1/β.Now, using the relation between stationary probabilities
π0 and π1, we obtain

π0 = π0 p00 + π1 p10 = π0(1− p01)+ π1 p10.

Substituting the value 1/β for p10 and solving for p01, we obtain p01 = π1/(βπ0).
The remaining transition probabilities p00 and p11 can be obtained from the
relation p00 = 1− p01 and p11 = 1− p10, respectively.

The following lemma is needed for the proof of Lemma 3.

LEMMA 2. Let T denote the number of transitions between successive visits
to state 1. Then the following holds:

E[T 2] = 2π0

π1

(
1

p01

)
+ 1
π1
.

PROOF. The 2-MC loss model is an irreducible, positive recurrent Markov
chain, and hence visits to a given state constitute a renewal process. Hence,
visits to state 1 is a (renewal) event, and a new cycle begins with each visit
to state 1. By the theory of renewal reward processes, the long-run average
reward per unit time is equal to the expected reward earned during a cycle
divided by the expected time of a cycle. We can form a renewal reward process
by imagining that a reward is given at every time instant that is equal to the
number of transitions from that time onward until the next visit to state 1.
Then the expected reward earned during a cycle divided by the expected time
of a cycle is given by

E[T+ (T− 1)+ (T− 2)+ · · · + 1]
E[T ]

= E[T 2 + T ]
2E[T ]

= E[T 2]
2E[T ]

+ 1
2
.

Because the long-run average reward per unit time is the same as the average
number of transitions it takes to transition into state 1, it follows that

E[T 2]
2E[T ]

+ 1
2
=

1∑
i=0

πiµi1. (3)
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Solving for E[T 2] and using the fact that E[T ] = µ11 = 1/π1, we obtain

E[T 2] = 2π0µ01 + 1
π1

. (4)

By conditioning on the next state visited, we obtain µ01 = 1 + p00µ01, which
can be solved to obtain µ01 = 1/p01. Substituting this result into (4) gives the
desired result.

LEMMA 3. Define N (n) as the number of visits to state 1 by time n. Then for
all k

Pr
{

N (n)− η
σ

< k
}
→ 8(k) as n→∞,

where η = nπ1, σ 2 = π1π0n(2βπ0 − 1), and 8(k) is the standard normal distri-
bution function.

PROOF. Visits to state 1 constitute a renewal event, and hence N (n) is a
delayed (general) renewal process. By Ross [1996, Theorem 3.3.5], the following
holds:

Pr
{

N (n)− η
σ

< k
}
→ 8(k) as n→∞,

where η = n/E[T ] and σ 2 = nVar(T )/(E[T ])3.

Using the relation E[T ] = µ11 = 1/π1, we obtain η = nπ1. The variance of T
is given by (using Lemma 2 for E[T 2]):

Var(T) = E[T 2]− 1
π2

1

= 2π0π1 + p01(π1 − 1)
p01π

2
1

.

Using Var(T) (given above) and E[T ] = 1/π1, we obtain

σ 2 = π1n(2π0π1 + p01(π1 − 1))/p01.

Substituting p01 with the value derived in Lemma 1, we obtain σ 2 =
π1π0n(2βπ0 − 1), and the desired result follows.

Note that because σ 2 is nonnegative, we conclude that β ≥ 1/(2π0). In the
following corollary, we generalize Lemma 3 to include the case when k (on the
left-hand side of the equation) is a function of n.

COROLLARY 1. Define FN (n)(x) = Pr{(N (n)− η)/σ < x}. Let g (n) denote some
function of n, and define k such that lim

n→∞ g (n) = k. Then the following holds:

FN (n)(g (n))→ 8(k) as n→∞.
PROOF. Fix ε > 0. Then there exists an N such that for all n ≥ N ,

|g (n)− k| < ε (i.e., k− ε < g (n) < k+ ε). Hence, for all n ≥ N , FN (n)(k− ε) ≤
FN (n)(g (n)) ≤ FN (n)(k+ε), because FN (n) is a monotonically increasing function.
Applying Lemma 3 to the above inequalities, we obtain

8(k − ε) ≤ lim inf
n→∞ FN (n)(g (n)) ≤ lim sup

n→∞
FN (n)(g (n)) ≤ 8(k + ε).
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These inequalities hold for arbitrarily small ε, so by the continuity of 8 we
obtain the desired result.

Now we state our main result—derivation of the asymptotic authentication
probability for SAIDA assuming the 2-MC loss model. As before, it is assumed
that a block consists of n packets, and the minimum number of segments re-
quired for decoding is m. The result stated by Proposition 1 holds for n→ ∞.
To obtain a nontrivial result, we let m increase as n becomes large, but in
such a way that it grows more slowly than n. Specifically, we let n → ∞ and
m = nπ0 − γ√n for some fixed constant γ .

PROPOSITION 1. The authentication probability of the ith packet in the block
is given by the following expression when the minimum number required for
decoding is m = nπ0 − γ√n:

Pr{Pi is verifiable | Pi is received} → 8(k) as n→∞,

where k = γ /√π1π0(2βπ0 − 1).

PROOF. Define the renewal process {N (0), N (1), . . .} as follows: N (0) = 0,
and N (n−i) is the number of packet losses between Pi+1 and Pn (the last packet
in the block).

We can see that Pr{Pi verifiable | Pi is received} is lower bounded by the
probability of the number of packet losses between Pi+1 and Pn being less than
n−m− (i−1)+1. This is because having at most n−m− (i−1) losses after Pi
guarantees that we can verify Pi regardless of what happened before Pi. Hence,

Pr{Pi verifiable | Pi is received} ≥ Pr{N (n− i) < n−m− (i − 1)+ 1}.
Note that if i ≥ n−m+ 2, then the above inequality holds trivially. Now, let

y = γ
√

n+ i(π1 − 1)+ 2√
π1π0(n− i)(2βπ0 − 1)

.

Then,

Pr

{
N (n− i)− π1(n− i)√
π1π0(n− i)(2βπ0 − 1)

< y

}
= Pr{N (n− i) < n−m− (i − 1)+ 1}. (5)

Now, using a similar approach, we find the upper bound. The authentication
probability is upper bounded by the probability of the number of packet losses
between Pi+1 and Pn being less than n−m+ 1. This is because the verification
of Pi implies that at most n−m packet losses can be tolerated after Pi. Hence,

Pr{Pi verifiable | Pi is received} ≤ Pr{N (n− i) < n−m+ 1}.
Note that if i ≥ m, then the above inequality holds trivially. Now, let

z = γ
√

n+ π1i + 1√
π1π0(n− i)(2βπ0 − 1)

.
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Fig. 3. Plot of n/m versus n for π0 = 0.8 and γ = 1.

Then,

Pr

{
N (n− i)− π1(n− i)√
π1π0(n− i)(2βπ0 − 1)

< z

}
= Pr{N (n− i) < n−m+ 1}. (6)

Hence, the authentication probability is lower bounded by (5) and upper
bounded by (6). Define

k = γ√
π1π0(2βπ0 − 1)

.

Comparing the values of y , z, and k for fixed i and n → ∞, it follows that
lim
n→∞ y = lim

n→∞ z = k. Therefore, the lower bound and the upper bound for
the authentication probability are asymptotically the same (for fixed i and
n→∞), and the following holds by Corollary 1:

Pr{Pi verifiable | Pi is received} → 8(k) as n→∞.
Proposition 1 reveals an interesting relationship between n, n/m, and the

authentication probability. According to the proposition, if π0, β, and γ are con-
stant, then the asymptotic authentication probability is also constant. Suppose
that γ > 0, which is equivalent to π0 > m/n. This corresponds to the case
when the asymptotic authentication probability is greater than 0.5. Because
m = nπ0 − γ√n, increasing n (while keeping γ constant) increases m in such a
way that the value of n/m decreases. This behavior can be observed in Figure 3,
where n/m versus n is plotted for γ = 1 and π0 = 0.8. The value of n/m has
significance, because it determines the space overhead caused by the IDA en-
coding process—a decrease in n/m results in a decrease in space overhead. To
elaborate, this means that for γ > 0, by increasing n, a constant (asymptotic)
authentication probability can be maintained while decreasing n/m. This sug-
gests that the authentication probability can be improved, while a constant
space overhead is maintained, by increasing the number of packets per block.
This hypothesis was confirmed using simulations. Figure 4 shows the change in
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Fig. 4. Authentication probability versus n.

authentication probability as n is increased (while keeping n/m = 1.5, π0 = 0.8,
and β = 8 constant and π0 > m/n). The solid curve represents the authenti-
cation probability obtained from simulations, and the dotted curve represents
the value of 8(k) given in Proposition 1. As hypothesized, the values of the two
curves increase as n is increased, although n/m is kept constant.

From the above result, we can conclude that it would be advantageous to
make the block size large, if relatively large verification delays (at the receiver)
are tolerated. By making the block size large, the sender can decrease the space
overhead incurred by the authentication process without affecting performance
(i.e., authentication probability).

4.3 Asymptotic Authentication Probability under the Biased Coin Toss Model

The BCT loss model is defined as follows:

4.3.1 BCT Loss Model. Let 0 < q < 1, and let b ≥ 1 be an integer. For all
i, a burst of length b packets begins with packet Pi (i.e., loss includes Pi) with
probability q.

For b = 1, this model is equivalent to the 2-MC loss model with p01 = p11 = q
and p10 = p00 = 1 − q (hence π1 = q). This has the effect of removing the de-
pendence of Si+1 on Si (for all i), and hence, the loss (or no loss) of packets is
determined by independent tosses of a q-biased coin. For b > 1, this model pro-
duces bursty loss patterns, whereas for b = 1, it produces independent packet
losses.

We can use the techniques applied in Section 4.1 to derive the asymptotic
authentication probability of SAIDA under the BCT loss model. The same tech-
niques are also applicable in this case, because the BCT loss process can be mod-
eled as a discrete-time Markov chain with b+1 states: 0, 1, . . . , b (see Figure 5).
In this Markov chain, state 0 represents no loss and states 1 through b denote
packet loss. The transitions into state 0 are renewal events (in the deriva-
tions of Section 4.1, visits to state 1 represented renewal events). To derive
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Fig. 5. BCT loss process modeled as a Markov chain.

the asymptotic authentication probability under the BCT model, we need to
find the variance of T0, where T0 denotes the number of transitions between
successive visits to state 0.

LEMMA 4. The variance of T0 is given by:

Var(T0) = 2
(1− q)b

b∑
i=0

πiµi0 − (1− q)b + 1
(1− q)2b ,

where µi0 =



1
(1− q)b , i = 0 or 1

2− q
(1− q)b

∑b(i−1)/2c
i=0

(1− q)2i, i ≥ 2 and even

1
(1− q)b

(
1+ (2− q)

∑bi/2c−1

i=0
(1− q)2i+1

)
, i ≥ 3 and odd

and πi =
{

(1− q)b, i = 0
q(1− q)b−i, 1 ≤ i ≤ b

.

Here, bxc denotes the largest integer not greater than x.

PROOF (SKETCH). Using the same argument used in the proof of Lemma 2
(see (3)), we obtain:

E
[
T 2

0

] = 2
π0

b∑
i=0

πiµi0 − 1
π0
. (7)

By using the relations among the stationary probabilities, we obtain the
following:

πi =
b∑

j=0

π j Pj i, 0 ≤ i ≤ b.

The values of πi stated in the lemma can be obtained by using the above set of
equations and the relation π0 + π1 + · · · + πb = 1.

Conditioning on the next state visited, the following set of equations can be
obtained:

µi0 = 1+
b∑

j=1

Pijµ j 0, 0 ≤ i ≤ b.

ACM Transactions on Information and System Security, Vol. 6, No. 2, May 2003.



Multicast Stream Authentication Using Erasure Codes • 275

Solving for the values of µi0 (using the above set of equations), we obtain the
values of µi0 stated in the lemma.

Now, using (7) and the relation E[T0] = 1/π0, the variance of T0 is given by

Var(T0) = 2
π0

b∑
i=0

πiµi0 − 1
π0
− 1
π2

0

.

Using the relation π0 = (1 − q)b in the above equation, we obtain the desired
result.

Now we state the asymptotic authentication probability under the BCT
model. The same techniques used in the proof of Proposition 1 are applied
here.

PROPOSITION 2. The authentication probability of the ith packet in the block
is given by the following expression when the minimum number required for
decoding is m = nπ0 + γ√n:

Pr{Pi is verifiable | Pi is received} → 1−8(k) as n→∞,

where k = γ /
√

(1− q)3bVar(T0) and Var(T0) is given in Lemma 4.

PROOF. Define the renewal process {M (0), M (1), . . .} as follows: M (0) = 0,
and M (n − i) is the number of packets received among Pi+1, . . . , Pn. We can
see that the authentication probability is lower bounded by the probability of
the number of packets received among Pi+1, . . . , Pn not being less than m− 1.
Hence,

Pr{Pi verifiable | Pi is received} ≥ Pr{M (n− i) ≥ m− 1}
= 1− Pr{M (n− i) < m− 1}.

Now, let

v = γ
√

n+ iπ0 − 1√
((n− i)Var(T0))/(E[T0])3

.

Then,

1− Pr

{
M (n− i)− π0(n− i)√

((n− i)Var(T0))/(E[T0])3
< v

}
= 1− Pr{M (n− i) < m− 1}. (8)

Similarly, the authentication probability is upper bounded by the probability
of the number of packets received among Pi+1, . . . , Pn not being less than m− i.
Hence,

Pr{Pi verifiable | Pi is received} ≤ Pr{M (n− i) ≥ m− i}
= 1− Pr{M (n− i) < m− i}.

Now let

w = γ
√

n+ iπ0 − i√
((n− i)Var(T0))/(E[T0])3

.
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Then,

1− Pr

{
M (n− i)− π0(n− i)√

((n− i)Var(T0))/(E[T0])3
< w

}
= 1− Pr{M (n− i) < m− i}. (9)

Hence, the authentication probability is lower bounded by (8) and upper
bounded by (9). Define

k = γ√
Var(T0)/(E[T0])3

.

Comparing the values of v, w, and k for fixed i and n → ∞, it follows
that lim

n→∞ v = lim
n→∞w = k. Therefore, the lower bound and the upper bound are

asymptotically the same (for fixed i and n → ∞), and the following holds by
Corollary 1:

Pr
{

Pi is verifiable | Pi is received
}→ 1−8(k) as n→∞.

Substituting the value of 1/(1− q)b for E[T0] in k, we obtain the desired
result.

Not surprisingly, Proposition 2 reveals the same relationship between n,
n/m, and the authentication probability—by increasing n, the authentication
probability can be improved while a constant value of n/m is maintained (see
Figure 4).

4.4 Lower Bound of the Authentication Probability

In this section, using the BCT loss model, we derive a lower bound of the au-
thentication probability for SAIDA. According to the loss model, the maximum
number of places where a burst error can occur (and still allow the guaranteed
authentication of Pi) is given by z = b(n−m)/bc. (Recall that n and m denote
the number of encoded segments and the minimum number needed for decod-
ing, respectively.) Because the loss of a packet is determined by the flip of a
q-biased coin, the probability that z or fewer coin tosses result in losses lower
bounds the authentication probability. Hence, the authentication probability is
bounded as follows:

Pr{Pi verifiable | Pi received}

≥


∑z

j=0

(
n− b

j

)
q j (1− q)n−b− j , if i > b− 1∑z

j=0

(
n− i

j

)
q j (1− q)n−i− j , if i ≤ b− 1

.

The above derivation takes into account the fact that none of the z coin tosses
can occur in the b− 1 packets immediately preceding Pi, because it is assumed
that the packet was received. For i ≤ b− 1, this would be i − 1 packets imme-
diately preceding Pi.

In Minor and Staddon [2001], authors derive a lower bound of the au-
thentication probability (for the piggybacking scheme) based on the BCT loss
model. The lower bound is given by the following expression (see Minor and
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Fig. 6. Authentication lower bounds.

Staddon [2001] for derivation):

Pr{Pi verifiable | Pi received}

×
 ≥

∑z ′

j=0

(
i − 1− b

j

)
q j (1− q)i−1−b− j , if i > b+ 1+ z ′

= 1, if i ≤ b+ 1+ z ′,

where z ′ = min{xi, bbi/bc}. Parameters xi and bi denote the maximum number
and the maximum size of the bursts that can be tolerated, respectively. Note that
this lower bound was derived assuming that the signature packet was received,
whereas the lower bound for SAIDA was derived without this assumption.

In Figure 6, we plot the lower bounds of the two schemes as the communica-
tion overhead (per packet) is increased. Because the lower bound changes with
the position of the packet, the average lower bound (among n packets) is used.
Note that the lower bound of SAIDA resembles a distorted staircase function.
This is because of the floor function within the expression for the lower bound
of SAIDA. The following parameters were used:r signature size = 128 bytes, hash size = 16 bytes;r n = 128, b = 4, q = 0.2, bi= 48;r parameter xi is increased from one to twelve in increments of one;r values for m: {67, 45, 34, 28, 23, 20, 17, 16, 14, 13, 12, 11}.

5. PERFORMANCE EVALUATION

5.1 Overhead Comparison

We compare our solution with four previously proposed schemes—
authentication tree, EMSS, augmented chain, and the piggybacking scheme.
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Table I. Performance Criteria

Criterion Explanation
sender delay on the sender side (in number of data packets) before the first
delay packet in the block can be transmitted
receiver delay on the receiver side (in number of data packets) before
delay verification of the first packet in the block is possible
computation number of hashes and signatures computed by the sender per block
overhead
communication size of the authentication information required for each packet
overhead
verification number of verifiable packets of the entire stream divided by the total
rate number of received packets of the stream

Table II. Comparison of the Authentication Schemes

Authentication Augmented
Tree EMSS Chain Piggybacking SAIDA

sender delay n 1 p n n
receiver delay 1 n n 1 [m, n]
computation 2n – 1, 1 n+ 1, 1 n+ 1, 1 n+ 1, 1 n+ 1, 1
overhead
communication σ + 1+ (h+ 1) log2 n variable variable variable variable
overhead
verification 1.0 variable variable variable variable
rate

For the comparison, we only consider schemes that amortize a signing opera-
tion over multiple packets. Table II summarizes the five authentication schemes
based on the performance criteria explained in Table I. Its values were obtained
based on the following assumptions:r All five schemes employ a block size of n packets.r Communication overhead of the authentication tree was obtained for a tree

of degree two and assuming a signature size of σ and a hash size of h.r The augmented chain is parameterized by the integer variables a and p,
where p < n.r For SAIDA, n is the number of encoded segments, and m is the minimum
number needed for decoding.

According to Table II, the verification rate for the schemes EMSS, aug-
mented chain, piggybacking, and SAIDA is not constant and actually depends
on the communication overhead. The authentication tree technique has the
favorable property of guaranteeing the verification of every received packet,
but at the cost of a larger communication overhead—an overhead on the or-
der of several hundred bytes would be required for practical block sizes. Note
that the receiver delay for SAIDA is not fixed—it could be anywhere in the
interval [m, n]. We emphasize that SAIDA’s advantage over the other schemes
is the ability to obtain high verification rates with minimal communication
overhead (see Section 5.2). By strategy, our scheme trades off sender and re-
ceiver delay for an improvement in verification rate. Note that the technique of
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Fig. 7. Verification rate versus communication overhead.

Pannetrat et al. [2002] can be applied to SAIDA to remove the sender delay at
the cost of increased receiver delay and vice versa.

5.2 Trade-off Between Verification Rate and Communication Overhead

As mentioned earlier, if the requirement on individual packet verification is
relaxed, then the communication overhead can be reduced substantially. In this
approach, verification of each packet is not guaranteed and instead is assured
with a certain probability. EMSS, augmented chain, piggybacking, and SAIDA
fall into this category, and as expected, there is a trade-off between verification
rate and communication overhead for these schemes.

For the augmented chain method, the number of hash chains per packet is
not a variable parameter. However, multiple copies of the signed packet can
be transmitted to increase the verification rate. The same technique can be
applied to the piggybacking scheme to improve performance. For simulations
of the piggybacking scheme, we assume that there is only one priority class
(i.e., priority class 0) with x0 = 2 and b0 = 29. In SAIDA, higher verification
rates can be achieved by increasing the value of n/m. The tradeoff between
performance and communication overhead in EMSS was already discussed in
Section 3.1.

Figure 7 shows the verification rate for the four probabilistic authentica-
tion schemes—augmented chain, EMSS, piggybacking, and SAIDA. To simu-
late bursty loss patterns, we use the 2-MC loss model defined in Section 4.1
with a packet loss probability of 0.2. The choice of 0.2 as the loss probability
was motivated by the fact that, in general, the receiver loss rate is greater for
multicast compared to unicast. In Yajnik [1999], the authors, using actual net-
work measurements, showed that the loss rates for multicast sessions are much
higher (more than twice) compared to their corresponding unicast sessions.
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Table III. Simulation Parameters for Figure 7

Scheme Simulation Parameters
General loss prob. = 0.2, avg. burst length = 8, block size = 128,
Parameters size of hash = 16 bytes, size of signature = 128 bytes
EMSS length of hash chain is uniformly distributed over [1, 127]
Augmented Chain p = 6 and a = 15
Piggybacking x0 = 2 and b0 = 29
SAIDA n = 128, m = {90, 80, 60, 42, 32, 26}

Fig. 8. Verification rate versus packet loss probability.

Some multicast sessions were observed to have loss rates exceeding 20% [Yajnik
et al. 1996, 1999]. The simulation parameters are given in Table III.

For EMSS, verification rates were obtained by simulating numerous combi-
nations of the three factors discussed in Section 3.1. The two clusters of markers
represent the simulation results for EMSS—the left cluster represents EMSS
implemented with two hashes appended per data packet and the right cluster
represents EMSS implemented with four. Each cluster is composed of three
types of markers—circle markers represent implementations with a single sig-
nature packet per block, while the triangle and asterisk markers represent
implementations with two and three signature packets per block, respectively.
Each type of marker was used several times to represent the different number
of hashes appended in the signature packet. The number of hashes appended
in the signature packet was varied from 15 to 90 in increments of fifteen.

When multicast packets (via UDP) are sent across networks with heavy con-
gestion or route failures, packet loss can be high. Furthermore, conditions for
the network can change abruptly during a relatively short time period. Even
if the verification rate of the packets was satisfactory at the start of reception,
it could deteriorate rapidly as the loss rate increases in the network. We per-
formed experiments to examine the effect of increased packet loss on the robust-
ness of the authentication scheme. Figure 8 shows the change in verification
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Table IV. Simulation Parameters for Figure 8

Scheme Simulation Parameters
General avg. burst length = 8, block size = 128,
Parameters size of hash = 16 bytes, size of signature = 128 bytes

EMSS

length of hash chain is uniformly distributed over [1, 64],
number of hashes per signature packet = 5,
number of hashes per data packet = 2,
number of signature packets per block = 1

Augmented number of signature packets per block = 1
Chain p = 6 and a = 15

Piggybacking
number of signature packets per block = 1
x0 = 2 and b0 = 29

SAIDA n = 128, m = 65

rate as the space overhead is kept constant (space overhead for the four schemes
is the same), and the packet loss probability is increased. The authentication
overhead per packet is fixed at 34 bytes. Again, the 2-MC loss model is used.
The simulation parameters are given in Table IV.

6. MAKING SAIDA ROBUST AGINST DENIAL-OF-SERVICE ATTACKS

Consider the following DoS attack: an attacker inserts bogus packets in the
packet stream to interfere with the reconstruction process of SAIDA. Recall
that IDA is an erasure code that is robust against missing segments of in-
formation, and is not robust against modified segments (either intentional or
unintentional). If one or more of the IDA encoded segments (which are used
in the reconstruction) are modified during transit, the receiver has no way of
detecting this, and the reconstruction of the original message fails. Although
UDP, which is used by multicast applications, provides a simple way of detect-
ing errors within a packet via the UDP checksum [Comer 1995 p. 182], this
does not protect against intentional alteration of the packet. By inserting bo-
gus packets (with valid checksums) within the packet stream, an attacker can
successfully interrupt multicast application services. Rabin [1989] proposes a
solution to combat this type of an attack by cryptographically fingerprinting
the IDA encoded segments—this enables the receiver to verify which encoded
segments were modified and which were not. Although this solution is effective
against attackers that are outside the multicast group, it does not prevent at-
tacks carried out by malicious users who are members of the multicast group
(see Rabin [1989] for details).

In Krawczyk [1993], an improved solution, which uses a new cryptographic
tool called distributed fingerprints, is proposed that does not suffer from the
drawback mentioned above. Krawczyk’s approach is to use IDA in combination
with an error-correcting code, which is robust against information modification
as well as loss. As expected, error-correcting codes add more redundancy in
the encoding process compared to erasure codes. The amount of redundancy
is commonly measured by a parameter known as the blowup factor, which is
defined as the ratio between the total size of the encoded information and the
size of the original information. For IDA, the blowup factor is n/ (n− t), where
t is the maximum allowable number of missing encoded segments, and n is the
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total number of encoded segments. According to Lemma 1 given in Krawczyk
[1993], an error-correcting code that can recover the original information in the
presence of up to α altered segments and t missing segments has a blowup factor
lower bounded by n/(n− t − 2α). Codes such as Reed–Solomon codes achieve
this bound.

In terms of computation complexity, error-correcting codes, using straight-
forward implementations, can encode and decode in time O(n2). Using more
sophisticated techniques, encoding and decoding times of O(n log n) and
O(n log2 n) are possible, respectively [Blahut 1984]. For values of n appropriate
to our problem, it is generally viewed that encoding and decoding can be done
in real time.

Using Krawczyk’s approach, we can modify SAIDA so that it is robust against
DoS attacks of the type discussed above. The following steps describe the mod-
ified authentication procedure:

1. Apply Steps 1 through 7 (of Section 3.2) to create IDA encoded segments of
F 1 and σ (Kr , HG(G1)).

2. Concatenate σi and F 1
i to form σi ‖ F 1

i for i = 1, . . . , n. Here, σi denotes
σi(Kr , HG(G1)).

3. For σi ‖ F 1
i , i = 1, . . . , n, compute its fingerprint H(σi ‖ F 1

i ) using a collision-
resistant hash function H, and then concatenate these values to form a
single string Ä = H(σ1 ‖ F 1

1 ) ‖· · ·‖H(σn ‖ F 1
n ).

4. Encode Ä with an error-correcting code (e.g., Reed–Solomon code) to obtain
ω1, . . . , ωn.

5. Concatenate each signature segment σi, hash segment F 1
i , and ωi with the

corresponding packet to form an authenticated packet. That is, create the
following:

σi(Kr , HG(G1)) ‖ F 1
i ‖ωi ‖ Pi, for i = 1, . . . , n.

The resulting authenticated packets are transmitted.

The verification procedure is as follows. We assume that t (number of missing
segments) and α (number of altered segments) are small enough so that IDA
and the error-correcting code are able to reconstruct the original information.

1. Using the decoding algorithm of the error-correcting code, reconstructÄ. Let
the string H(σ1 ‖ F 1

1 ) ‖· · ·‖H(σn ‖ F 1
n ) represent the reconstructed Ä.

2. For each authenticated packet that is received, extract its signature seg-
ment and hash segment, concatenate the two values, and hash it, which
we denote as H(σ̃i ‖ F̃ 1

i ). Compare this value with the corresponding part of
Ä (i.e., H(σi ‖ F 1

i )). If H(σi ‖ F 1
i ) = H(σ̃i ‖ F̃ 1

i ), then the signature segment
σ̃i and hash segment F̃ 1

i are considered to be legitimate (i.e., unmodified).
Otherwise, the signature and hash segments are considered to be modified.

3. Employing the decoding algorithm of IDA (see Section 3.2), reconstruct F 1

and σ (Kr , HG(G1)) using only legitimate segments.

In Krawczyk [1993], it was shown that the distributed fingerprint scheme
is asymptotically (in the size of the original message) space optimal. If the
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distributed fingerprint scheme (with Reed–Solomon encoding) is applied to
SAIDA, the resulting authentication space (or communication) overhead per
block is given by the following:

n(nh+ s)
n− t − α +

n2h
n− t − 2α

,

where h denotes the size of the hash and s denotes the size of the signature.
Here, we assumed that the same hash function is used to compute the packet
hashes and the fingerprints. The resulting authentication scheme can recon-
struct the original authentication information in the presence of up to α modi-
fied packets and t lost packets.

7. CONCLUSIONS

Through our results, we showed that SAIDA is an efficient method for multicast
stream authentication that is highly robust against packet loss. For the same
amount of communication overhead, it achieved the highest verification rate
among all the probabilistic schemes that were examined. Table II suggests that
there is no single scheme that is superior in all aspects. Depending on the delay,
computation, and communication-overhead requirements, different schemes
are appropriate for different applications. We expect that our scheme’s high
tolerance for packet loss and low communication-overhead requirement will
make it useful in many multicast applications. As already mentioned, SAIDA
might not be appropriate in situations where the data to be sent are generated
in real time, and immediate broadcast of it is crucial. Our scheme will be most
useful in cases where the sender has a priori knowledge of at least a portion of
the data to be broadcast (e.g., broadcast of prerecorded material).
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