
FFTs in External or Hierarchical Memory

David H. Bailey
NASA Ames Research Center

Moffett Field, CA 94035

Abstract
Conventional algorithms for computing large

one-dimensional fast Fourier transforms (FFTs),
even those algorithms recently developed for vec-
tor and parallel computers, are largely unsuitable
for systems with external or hierarchical memory.
The principal reason for this is the fact that most
FFT algorithms require at least m complete passes
through the data set to compute a 2*-point FFT.

This paper describes some advanced techniques
for computing an ordered FFT on a computer with
external or hierarchical memory. These algorithms
(1) require as few as two passes through the exter-
nal data set, (21) employ strictly unit stride, long
vector transfers between main memory and exter-
nal storage, (3) require only a modest amount of
scratch space in main memory, and (4) are weIl
suited for vector and parallel computation.

Performance figures are included for implemen-
tations of some of these algorithms on Cray super-
computers. Of interest is the fact that a main mem-
ory version outperforms the current Gray library
FFT routines on the Cray-2, the Cray X-MP, and
the Cray Y-MP systems. Using all eight processors
on the Cray Y-MP, this main memory routine runs
at nearly two g.igafIops.

Introduction
The development of numerous advanced archi-

tecture computers has posed a considerable chal-
lenge to computer scientists. Many numeric algo-
rithms that were completely satisfactory for tradi-
tional serial computers are unsatisfactory for these
advanced systems. This phenomenon is particu-
larly pronounced in the case of algorithms for eval-
uating one dimensional fast Fourier transforms.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. lro copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM089791-341-8/89/0011/0234$1.50

One reason for this difhculty is the fact that
many modern computers, particularly those with
interleaved main memories, do very poorly with
data that is accessed with a memory stride that is
a large power of two. By far the most popular sizes
of data to be transformed using FFTs are powers of
two, and traditional implementations of FFTs for
such data sets involve heavy use of power of two
memory strides. Fortunately, it is possible to de-
vise alternative FFT algorithms that do not rely on
power of two strides. Indeed, some FFT algorithms
can be performed using exclusively unit stride data
access in inner computational loops [2], [3], [4], [7],
[8]. Even for systems with external or hierarchical
memory systems, these unit stride algorithms are a
definite improvement over conventional algorithms,
since unit strides reduce the frequency with which
data must be accessed from external memory.

However, virtually all conventional FFT algo-
rithms, and even most of the advanced algorithms
recently designed for vector computers, still require
at least m passes through the data set to compute
a 2m-point FFT. Since such external data access is
usually a crucial bottleneck in such computations,
it would be highly desirable to reduce this number
to a bare minimum.

The Basic 6‘Four Step” FFT Algorithm

There is one algorithm in the FFT literature that
is quite effective in reducing the number of passes
through the dataset. Recently variants of this al-
gorithm were featured in papers by Agarwal and
Cooley [l, p. 1501 and Swarztrauber [8, p. 202 -
203]., Swarztrauber used thk technique as a start-
ing point for a very efficient hypercube FFT, and
both of these papers noted the suitability of this
algorithm for systems with nonlocal memory sys-
tems, including hierarchical. and distributed mem-
ory designs. However, as it turns out, this algo-

234

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76263.76288&domain=pdf&date_stamp=1989-08-01

rithm was actually first presented over twenty years
ago in a paper by Gentleman and Sande [6, p. 5691.
This early paper even described the application of
this algorithm to a system with hierarchical mem-
ory. Unfortunately, this algorithm appears to have
been largely forgotten, as a number of recent papers
have suggested much less efficient methods.

This algorithm, which shah hereafter be referred
to as the “four step” FFT algorithm, can be stated
very succinctly. Let n = 7~1722 be the size of the
transform. Note that rt does not necessarily need
to be a power of two. On many systems, the imple-
mentation of this algorithm is most efficient when
nr and nz: are as close as possible to Jn. In the fol-
lowing and hereafter, matrices will be assumed to
be stored in memory columnwise as in the Fortran
language. The FFT of n complex input data values
can then be obtained by performing the following
four steps:

1.

2.

3.

4.

Perform nr simultaneous nz-point FFTs on the
input data considered as a nr x n2 complex
matrix.

Multiply the resulting data, considered as a
nl x n2 matrix Ajk, by efiujkln. The f sign
is the sign of the transform.

Transpose the resulting nl xn2 complex matrix
into a 722 x 711 matrix.

Perform n2 simultaneous nr-point FFTs on the
resulting n2 x nl matrix.

Several important features of this algorithm should
be noted: tist of all, note that both of the si-
multaneous FFT steps can be performed using ex-
clusively unit stride data access, which is optimal
on virtually any computer system. Secondly, this
algorithm produces an ordered transform - it is
not necessary to perform a bit reversal permuta-
tion, which is inefficient on many advanced com-
puter systems. Finally, note that only three passes
through the external data set are required to per-
form this algorithm - the second step can be per-
formed on a block of data after the fist step, before
it is returned to memory.

The four step FFT algorithm actually requires a
slightly larger number of floating-point arithmetic
operations than conventional FFT algorithms. In
the common case where n is a power of two, the

number of floating-point operations for the three
computational steps is 5nln210g2 n2 + 6nln2 +
5n2nl log2 nl = 5nlog2 n + 6n. This is 6n more
than the count for conventional FFTs.

Main Memory Performance Results using
the Four Step FFT

In spite of its slight operation count handicap,
the four step FFT algorithm is remarkably efficient
even for a single processor vector computer trans-
forming data in main memory. As can be seen in
tables 1 and 2, a straightforward implementation of
this scheme is up to 10% faster than Cray’s library
routine on the Cray-2 and up to 20% faster than
Cray’s library routine on the Cray Y-MP. The per-
centage results on the Cray X-MP are very close
to those on the Cray Y-MP, which is to be ex-
pected since the CPU and memory designs of the
X-MP and Y-MP systems are very similar, differ-
ing mainly in speed of operation. For these tests,
the four step FFT algorithm was implemented us-
ing a simple Fortran program; assembly code was
employed only within the Cray library simultane-
ous FFT routine (CFFTMLT), which is called by
this Fortran program to perform steps 1 and 4.
The transpose step (step 3) was performed with-
out power of two strides by employing a diagonal
technique, as mentioned in [4, p. 851. The Cray-
2 library 1-D FFT routine (CFFTB) used in table
1 is an assembly-coded implementation of an al-
gorithm described by the author in a previous pa-
per [4]. The Cray Y-MP library 1-D FFT routine
(CFFTZ) used in table 2 is essentially the same rou-
tine that has been available for some time on the
Cray X-MP systems.

The CPU times shown in both tables 1 and 2
are for forward 2m-point FFTs followed by inverse
FFTs, averaged over ten trials. All mega6ops per-
formance figures in these tables are computed based
on 1077~2~ floating-point operations, even though
the four step routine performs slightly more than
this figure. These tests were run in a typical day-
time environment, and so the results reflect a nor-
mal amount of memory bank contention. The com-
puters used for these tests belong to the Numeri-
cal Aerodynamic Simulation (NAS) Systems Divi-
sion at NASA Ames Research Center. This par-
ticular Cray-2 system has a clock period of 4.1
nanoseconds (ns), and has 268 million words of 80

235

ns DRAM tin memory. The Cray Y-MP system
used for these teists has a clock period of 6.3 ns and
33 million words of bipolar main memory. This Y-
MP system was the first Y-MP delivered by Cray.
Newer Y-IMP systems have a faster clock (6 ns), and
thus these results would be correspondingly better
on the newer systems.

The results listed in tables 1 and 2 are single pro-
cessor results - no attempt was made to employ
more than one processor. However, with the new
“autotasking” feature now available on Cray sys-
tems, it is possible to study the performance of a
program using all available processors, with only a
minimm of changes to the source code. When au-
totasking was invoked on the Fortran program men-
tioned above, performance levels very nearly eight
times the single processor levels were achieved on
the eight proces;sor Y-MP. These results are shown
in table 3. This very high speedup underscores the
suitability for the four step FFT algorithm for par-
allel processing.

FFTs on Data in External or Hierarchical
Memory Systems

The Cray-2 is noted for its very large main mem-
ory. Most Cray-2 systems include 268 million 64
bit words of main memory, although recently Cray
has shipped a 5136 million word system. However,
the performance of the Cray-2 on many codes in
a normal production environment is not outstand-
ing, due to severe memory bank contention, a di-
rect result of the relatively slow operation speed
of DRAM memory chips. Most Cray X-MP and
Y-MP systems utilize a faster technology (bipo-
lar) in main memory, so that memory bank con-
tention is very much reduced. However, bipolar
memory chips are not available in nearly the den-
sity of equivalent generation DRAM chips, and so
as a result the largest main memory currently avail-
able for Y-MP systems is 33 million 64 bit words.
Y-MP systems typically have eight CPUs, so this
means an average of only four million words per
processor. Systems that support interactive as well
as batch users must be even more restrictive in the
amount of main memory that can be allocated to
a single job.

As a result, users of the Cray X-MP and Y-MP
systems who wish to perform large one dimensional
FFTs are led to consider utilizing the solid state

Size
m
8
9

10
11
12
13
14
15
16
17
18
19
20

l- Four Step FFT
Time MFLOPS

0.0005 42.5
0.0008 60.9
0.0013 76.4
0.0021 106.6
0.0036 137.8
0.0074 143.8
0.0145 158.5
0.0300 163.9
0.0559 187.5
0.1248 178.6
0.2426 194.5
0.4971 200.4
1.0260 204.4

T Time MFLOPS
0.0004 57.2
0.0006 81.8
0.0010 106.0
0.0021 109.4
0.0038 130.6
0.0073 145.2
0.0138 165.7
0.0327 150.2
0.0660 159.0
0.1260 176.8
0.2555 184.7
0.5763 172.9
1.1863 176.8

Cray Library FFT

Table 1: The Four Step. FFT vs. Cray’s Library
Routine on the Cray-2

Size
m
8
9

10
11
12
13
14
15
16
17
18
19
20

Four Step FFT
Time MFLOPS

0.0003 68.68
0.0005 102.24
0.0008 128.16
0.0013 168.91
0.0024 201.90
0.0049 215.88
0.0103 222.57
0.0212 231.67
0.0443 236.78
0.0935 238.39
0.1976 238.81
0.4117 241.96
0.8587 244.23

Cray Library FFT
Time MFLOPS

0.0001 137.85
0.0003 151.88
0.0006 161.27
0.0013 168.08
0.0028 173.51
0.0060 178.09
0.0126 181.86
0.0265 185.24
0.0557 188.26
0.1167 190.97
0.2439 193.44
0.5090 195.70
1.0635 197.20

Table 2: The Four Step FFT vs. Cray’s Library
Routine on the Cray Y-MP

236

Size Time MFLOPS Speedup
12 0.00079 625.09 3.096
13 0.00138 771.49 3.574
14 0.00218 1053.61 4.734
15 0.00376 1308.07 5.646
16 0.00667 1571.73 6.638
17 0.01318 1699.03 7.089
18 0.02566 1838.72 7.700
19 0.05275 1888.53 7.865
20 0.10882 1927.12 7.891

Table 3: Cray Y-MP Performance of the Four Step
FFT Using Eight Processors

disk (SSD) available on these systems. SSD sys-
tems with a capacity of up to 536 million words
are now available on the Y-MP. Users of the ETA-
10 or the IBM 3090/VF systems have an analo-
gous choice in utilizing the virtual memory sys-
tem, which is a large semiconductor memory simi-
lar to the Cray SSD, but which does not require ex-
plicit programmer input/output comman ds. Users
on other systems can even consider utilizing disk
drives, although the relative slowness of such de-
vices compared to main memory is a bottleneck
even with the best of algorithms.

In addition to minimizing the number of data
accesses to an external memory device, an obvi-
ous consideration in designing an efficient algo-
rithm for such systems is to minimize the amount of
scratch space required in main memory. Clearly if
an external memory algorithm requires a substan-
tial scratch array in main memory, then the largest
transform size will again be limited by the available
main memory. In addition, it will be assumed in
the following that the amount of external memory
is also limited and must be conserved. It will also
be assumed for the time being that the final result
in external memory must be physically ordered -
index schemes or “virtual” orderings of external
blocks will not be allowed.

Reducing the Scratch Space Requirement in
the Four Step FFT

As presented above, a straightforwardimplemen-
tation of the four step FFT algorithm requires
scratch space for several different purposes. These

are as follows:

l 2n cells for the precomputed root of unity ta-
ble.

l 2n cells of scratch space for the simultaneous
FFT steps.

l 2n cells of scratch space for the transpose step.

The scratch space requirement for the simultane-
ous FFT steps can easily be reduced by noting that
the nl simultaneous nz-point FFTs (i.e. in step 1
of the four step FFT) may be performed in batches
of v rows, where v is the natural vector length of
the system being used. If the simultaneous FFTs
employ an algorithm, such as the Stockham FFT,
which requires a scratch array the same size as the
input data array, then only 4vq scratch cells are
required. This figure may be reduced by one half
if an in-place algorithm can be efficiently used for
the simultaneous FFTs. Note that if the individual
processors do not rely on vector processing, then
only one row need be fetched at a time, and these
scratch space figures drop to only 4nz cells and 2nZ
cells, respectively. For step 4 of the four step FFT,
the corresponding scratch space figures may be ob-
tained by replacing n2 by nl in the above discus-
sion.

However, the scratch space requirements for the
simultaneous FFT steps in reality are dependent
more on the block size b of an efficient input /output
(I/O) transfer between main and external memory.
In other words, if the natural I/O block length is
128, then 128 rows of the nl x ns complex matrix
should be fetched into main memory, or else the
I/O operations will be highly inefficient. Thus it
follows that a main memory scratch space of size
2bn2 + 2wn2 is needed for the first step of the four
step algorithm. In an similar manner, the last step
of the four step FFT requires 2bnl + 2vnl scratch
cells. The second term of each of these expressions
may be omitted if an in-place algorithm can be ef-
ficiently used for simultaneous FFTs in main mem-
ory.

The scratch space for the two FFT steps could be
reduced to virtually zero ifan FFT algorithm some-
what more complicated than the four step FFT
were used. This algorithm is as follows:

1. Transpose the input data set, considered as a
nl x 122 complex matrix, into a n2 x nl matrix.

237

2.

3.

4.

5.

6.

Perform ni individual nz-point one dimen- The storage requirements for those subsets of U
sional FFTs on the resulting 922 x nl matrix. array that must be precomputed are as follows:

Multiply the resulting nr x nl complex matrix
&j by ,fWn.

Descrintion
Upper-left basic block

Size
2ab

Transpose the resulting n2 x nl matrix into a
n1 x 712 matrix.

Perform n2 individual nr -point one dimen-
sional FFTs on the resulting nr x n2 matrix.

“Spikes” from top edge 2an2/b
“Spikes” from left edge 2bnlJa
Block corners 2nlab

If we assume that nl = n2 = a2 = b2 (which is an

Transpose the resulting nl xn2 complex matrix
into a n2 x 711 matrix.

optimal choice), then the total space is only Sfi
cells, a sufhciently sm.alI amount that this data can
be kept in main memory. In tests of this scheme on
Cray systems, the author merely selected a and b to
be 64, the natural vector length. With this choice,
only a few thousand cells of main memory are re-
quired even for multimillion point transforms. Per-
formance tests of FFTs using this scheme indicates
that it adds only about five percent to the total
run time (for larger transforms), and the accuracy
of the dynamically calculated roots is excellent.

This algorithm, which could be termed by anal-
ogy the “six step” FFT algorithm, is very well
suited for distr.ibuted memory systems, as the in-
dividual one dimensional FFTs can be performed
in individual processors. Its main memory scratch
requirement is only 4n2 cells for step 2 and 4nl
cells for step 5 (per processor). As before, if an in-
place FFT algorithm can be efficiently used in main
memory, then these figures can be reduced by one
half. However,, there are other ways of perform-
ing FFTs on systems such as MIMD hypercubes
[8], and the six step FFT has the serious disad-
vantage of requiring an additional two transpose
steps, which typically are the chief bottlenecks on
any system with a distributed or external memory.

Reducing the size of the precalculated root of
unity table used in step 2 of the four step FFT algo-
rithm is somewhat trickier. Nonetheless, it can be
reduced in size to virtually zero with only a slight
increase in overall run time, by using what may
be termed the dynamic block scheme for roots of
unity. The full size n1 x n2 root of unity table can
be written as iY(j, k) = ajk where Q = e*2*i/n. Let
B(T, 8) denote a block of dimensions a x b within
the matrix U. Note that

= U(j, k)U(j, sb)U(ra, k)U(m, sb)

Thus an a x b lblock B(T, s) in the interior of 27 can
be dynamicaRy computed as follows:

B(T, s) = top left block [i.e. B(O,O)]

x “spike” from top edge

x “spike” from left edge

x upper left corner element of B(T, s)

Transposing Arrays in External Memory
The transpose step (step 3 of the four step FFT)

is perhaps the most challenging to perform efli-
ciently on a data set residing in external memory.
Before discussing this matter in detail, it should be
recalled that the array to be transposed consists of
complex data. In the folIowing discussion it will
be assumed that the real and imaginary parts of
this data are stored in completely separate mem-

ory locations, not interleaved as is the Fortran con-
vention. In this way the problem of transposing a
complex array reduces to transposing two real ar-
rays. In fact, separate storage of real and imaginary
data avoids a significant performance degradation
in computing with complex data on a number of
systems, including the ETA-10 and the Gay-2.

Probably the most efficient algorithm currently
known to transpose data in external storage is due
to Fraser [5]. A particularly attractive aspect of
this algorithm is that it can easily be tuned for
maximum efficiency on a given system. It is easier
to exhibit au example of Fraser’s algorithm than to
precisely state it. Suppose one wishes to transpose
a 28 x 27 matrix, which resides on an external ran-
dom access dataset, into a 2’ x 2’ matrix. Suppose
also that the size of an efficient I/O block is 64 = 2*,
that two main memory buffers of size 512 = 2’ are
available, and that an external scratch dataset of

238

size 216 is available. Let the notation (0 1 2 . . .
12 13 14) denote the binary digit positions in the
reverse binary expansion of an index in the 216-long
input array. Then the steps required to transpose
this array can be compactly presented as follows:

El 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Ml 0 1 2 3 4 6 8 9 10 11 12 13 14 6 7
M2 8 9 10 0 1 2 3 4 5 11 12 13 14 6 7
E2 8 9 10 0 1 2 11 12 13 14 3 4 6 6 7
Ml 8 9 10 0 1 2 11 12 13 14 3 4 6 6 7
M2 8 9 10 11 12 13 0 1 2 14 3 4 5 6 7
El 8 9 10 11 12 13 14 0 1 2 3 4 6 6 7

The notation at the beginning of each line indicates
the source of the data in each operation: El de-
notes external dataset number 1, M2 denotes main
memory buffer number 2, etc. Note that the trans-
fers between external memory and main memory
only alter locations 6 through 14, and leave lo-
cations 0 through 5 unchanged (i.e., 64-long con-
tiguous blocks are preserved), and that transfers
between two main memory buffers only alter loca-
tions 0 through 8 (i.e. only affect data within a
single 512-long main memory buffer).

The first step, from external to main, involves
fetching contiguous blocks of size 64 from disk with
a block stride of four (i.e. fetch the fist 64-long
block, skip three blocks, fetch the fifth 64-long
block, etc.). The first step is done in batches of
8 blocks, so that 512 words are fetched to one of
the main memory buffers before proceeding. The
second step, which is performed between the two
main memory buffers, is to transpose the resulting
512-long array, considered as a 64 x 8 matrix, into
a 8 x 64 matrix. In the third step, the eight 64-long
blocks in the main memory buffer are stored out
to external memory, this time with a block stride
of eight. This completes one pass through the ex-
ternal data set. In the next pass, eight contigu-
ous 64-long blocks are fetched into main memory,
and the resulting 512-long array is transposed in
a block fashion that preserves 8-long contiguous
sections. Finally, the resulting 64-long blocks are
stored back to external memory, again in a man-
ner that achieves a certain block permutation. The
array has now been transposed in just two passes.
With an adjustment of the parameters (for exam-
ple, with a block size of 32 and a memory buffer
size of 1024), the transposition could be achieved
in a single pass.

Even from the above example, the power and
generality of F!raser’s technique can be appreciated.
Unfortunately, Fraser’s algorithm cannot in general
be performed in place (i.e. using only one external
dataset), unless one relaxes the requirement for a
physically transposed array (by utilizing pointers to
index the external data blocks instead). However,
in special cases typical of common FFT sizes, there
are other methods that can be done in place and
still produce a physically transposed array.

Consider first the case where nr = nr, so that the
matrix is square. In that case a block interchange
technique can be used to transpose the array in a
single pass, in place. This can be done by sim-
ply considering the external nr x n2 matrix to be
decomposed into square blocks of size b on a side,
where b is the block size of an efficient I/O oper-
ation. The square blocks down the diagonal can
be transposed simply by fetching the blocks one
at a time into main memory, transposing them us-
ing any efficient main memory scheme, and storing
the resulting matrices back in the same locations.
The off-diagonal square blocks can be fetched in
opposing pairs, transposed in main memory, and
then stored back in opposite locations. One dif-
ficulty in applying this scheme is when the main
memory block size b is a power of two (which it
almost always is). Transposing matrices whose di-
mensions are powers of two in main memory, using
the straightforward scheme, results in severe mem-
ory bank conflicts on many vector supercomputers.
However, such arrays can be transposed completely
without bank conflicts by fetching and storing op-
posite diagonals, as is described in [4, p. 851. The
main memory scratch space requirement for the en-
tire scheme is 2b2 cells.

For the common case of power of two FFTs,
it can be assumed that either nl = 122 or else
nl = 2n2. In the second case, it does not ap-
pear possible to transpose the array in one pass,
in place, using only full bloch I/O transfers. How-
ever, such arrays can be transposed in just two
passes, in place, using only full block transfers, as
follows. First, consider the nl x nr external array
as two blocks of size n2 x n2, and transpose each
of these two square blocks in place, as described in
the previous paragraph. This completes the first
pass. Now consider the resulting data array in ex-
ternal memory to be a n2 x nr matrix. Inspection

239

of an example shows that the columns of the re-
sulting array need to be de-interleaved - column
2j, 0 5 j < nz needs to be moved to column j,
and column 2j + 1 needs to be moved to column
j + n2 (here the columns are numbered beginning
with zero). This de-interleaving could be done b
rows at a time using a main memory scratch ar-
ray of size bnl, but this task can be done more
efficiently and without need of substantial scratch
space by moving the columns in permutation cy-
cles. For exampIle, suppose ni = 8 and n2 = 4, so
that after the block transpose operations we have a
4 x 8 matrix. Then the first cycle would consist of
storing column 11 in main memory, moving column
2 to column 1, c:olumn 4 to column 2, and column
1 (from main mtemory) to column 4. The second
cycle would consist of storing column 3 in main
memory, moving column 6 to column 3, column
5 to column 6, and column 3 (from main mem-
ory) to column 5. Columns 0 and 7 do not need
to be moved. Note that this column movement
procedure requires only 2n2 cells of main memory
scratch space. The dominant scratch space require-
ment for this case is thus 2b2 (for each of the two
square block transpositions), the same as the case
n1 = n2.

Performance Results Using the Minimal
Scratch Space FFT

The above procedure has been implemented
and tested on ,the Cray Y-MP, using one proces-
sor and the SSD external memory device. The
SSD I/O primitives SSREAD and SSWRITE were
called directly from the Fortran program. As be-
fore, the Cray library simultaneous FFT routine
(CFFTMLT) was used in steps one and four of the
four step algorithm. This routine is not an in-place
FFT, so that a scratch array in addition to the
space for the d.ata is required. Since the SSD is a
rather limited resource, Fraser’s algorithm was not
employed for the transpose steps - the in-place
schemes described in the previous section were em-
ployed instead. The block length b for efficient I/O
transfers between main memory and SSD (or be-
tween main memory and disk) on the Cray Y-MP
system is 512.

Table 4 includes results not only for an actual ex-
ternal memory (SSD) implementation of the above
scheme on the Cray Y-MP, but also for a modified

Size

1:
17
18
19
20
21
22

usiq
Time

0.0704
0.1574
0.2897
0.6391
1.2263
2.7007
5.2996

Uemor y
MFLOPS

149.00
141.59
162.90
155.86
171.02
163.07
174.12

Time
0.1169
0.2529
0.3094
0.6908
1.3065
2.8179
5.6132

Ush< SSD

1

MFLOPS
89.68
88.10

152.52
144.21
160.52
156.29
164.39

Table 4: Minimal Scratch Space FFT Performance
Results

version of the program where the Fortran routines
handling I/O actually just transfer data to a block
of main memory, ins teading of referencing the Cray
SSD primitives. With the latter figures one can ac-
tually see how much of the performance degrada-
tion is due to the algorithm and how much is due
to inefficiencies in the Cray I/O system routines.

Performing an FFT with Only Two Passes

The schemes that have been described so far
produce a physically ordered FFT on an external
dataset in three or four passes. If one is willing to
relax the requirement that the final result be phys-
ically ordered, or if one is willing to aliow a scratch
dataset in external memory of the same size as the
input dataset, then the entire FFT o:peration can
be performed in only two passes (subject to cer-
tain conditions). The author is indebted to Paul
N. Swarztrauber for this observation.

As in the four step FFT above, it will be as-
sumed in the following that n = nln2 and that b
is the block size for efficient I/O operation. Also,
all references to matrices will, as before, assume
columnwise storage. For simplicity, it will be as-
sumed for the time being that two buffers of size
2bnl cells each are available in main memory, al-
though it will later be see:n that only one bufFer
this large is necessary. Similarly, it will be assumed
for the time being that a scratch dat;aset equal in
size to the input dataset is available in the external
memory device, although it will be seen later than
this scratch dataset is not n.ecessary if one does not
mind using pointers. This algorithm can then be
stated as fohows.

240

1.

2.

3.

4.

Consider the data in external memory as a n1 x
n2 complex matrix. Fetch the data b rows at a
time into one of the main memory buffers. For
each batch of b rows, perform b simultaneous
nz-point FFTs on the b x n2 array in main
memory, using the second main memory buffer
as a scratch array.

Multiply the resulting data in each batch by
appropriate roots of unity as in the four step
algorithm.

Transpose each of the resulting b x n2 complex
matrices into a n2 x b matrix, using the second
main memory bu.tFer as a scratch array, and
store the resulting data on the scratch dataset
in contiguous order. Store successive batches
of data in successive contiguous sections on the
scratch dataset.

Consider the resulting data in the scratch
dataset as a n2 x n1 complex matrix. Fetch
the data b rows at a time into one of the main
memory buffers. For each batch of b rows,
perform b simultaneous nl-point FFTs on the
b x nl array in main memory, using the second
main memory buffer as a scratch array, and
return the resulting b rows to the same loca-
tions on external storage from which they were
fetched.

As before, this FFT is an ordered transform -
no bit reversal transposition is necessary. The re-
duction of the number of passes from three to two
is accomplished by combining the four step FFT
with Fraser’s transposition algorithm.

Let T = =(nl, n2). Then at least one main
memory buffer of size 2br is required in the above
to hold b rows of the fetched data. However, the
second main memory buffer ten be sharply reduced
in size in many cases of interest. The additional
scratch requirement for performing the simultane-
ous FFTs in steps 1 and 4 can be reduced to only
2vr by performing the FFTs in batches of o rows,
where v is the natural vector length of the system.
If an in-place algorithm is used for the simultaneous
FFTs, then this scratch requirement can be com-
pletely eliminated.

Also, in the most common case of power of two
transforms, the additional scratch space needed for

performing the main memory transpose in step 3
above can be reduced to only 2~ cells by apply-
ing techniques similar to those mentioned above
for transposing power of two arrays in external
memory. One difference in this case is that the
second dimension n2 can be much larger than the
fist dimension b. Nonetheless, the basic scheme of
transposing the square sub-blocks in place and then
moving columns in permutation cycles can also be
applied for this application.

Main memory space to hold precomputed roots
of unity can be reduced from 2n to only 8~ by
using the dynamic block method described above.
Thus the total main memory storage requirement
for power of two transforms can be reduced to only
2(b + 5)r cells using this algorithm.

The requirement for a separate scratch dataset in
external memory can be eliminated by utilizing a
block indexing scheme. At the end of step 3 above,
the blocks of data then in main memory can be re-
turned to the same set of blocks in external mem-
ory horn which they were fetched, provided a table
is maintained of where they are kept. Actually,
a table is not even necessary - the permutation
involved here is a simple index digit permutation.
However, the ultimate user of the transformed data
would also need to use the same indexing mecha-
nism to access the data.

This “two pass” FFT algorithm has been imple-
mented on the Cray Y-MP using SSD. A separate
SSD scratch array was used instead of the virtual
block scheme just mentioned. This implementa-
tion also employed many of the sa,me procedures
discussed above to conserve main memory scratch
space. The resulting performance figures are shown
in table 5. As expected, these results are even
higher than the SSD figures in table 4. In fact, the
performance figures listed in figure 5 are almost as
high as those for Cray’s main memory FFT, which
are listed in table 2.

Conclusion

The performance figures in tables 4 and 5 show
that very large FFTs can be efficiently computed
using a Cray Y-MP with SSD. In fact, with 33 mil-
lion words of main memory and 268 million words
of SSD, it should be possible to perform a FFT
as large 8s 22s = 268,435,456 points, provided the
SSD device can hold precisely 228 data elements

241
,-, ”

.- ,.. ,

Scratch
Space

:!07178
668266
668330

1328426
1328682
2649130
2650154 --

Using SSD

Table 5: Two Pass FFT Performance Results

and no fewer. Such favorable results might not be
possible on other systems with slower I/O to ex-
ternal memory, but the techniques that have been
presented should greatly improve the performance
reduction that otherwise occurs.

Another important limiting factor in performing
very large FFTs in external memory, which has
not been mentioned yet, is the fact that there is
often a signific~ant wall clock delay in performing
I/O of any sort, even if the CPU time performance
is acceptable. Wall clock performance is partic-
ularly important when one is using almost all of
main memory, so that other jobs cannot be utiliz-
ing CPU resources when one’s own job is waiting
for I/O. Such wall clock delays can be mitigated
by overlapping computation and I/O where possi-
ble, and by performing several I/O operations con-
currently, provided the overall system I/O band-
width is not a limiting factor. Also, Cray personnel
have indicated to the author that for such applica-
tions it may be possible to utilize an I/O system
primitive known as “listio”. This primitive allows
data to be acce:ssed in SSD in sequences of contigu-
ous blocks with a constant skip distance between
blocks, with significantly better performance. This
is exactly the situation in all of the algorithms men-
tioned above, and thus such an I/O function could
be expected to substantially improve the wall clock
performance ojf this FFT scheme, and perhaps the
CPU time performance as well.

References

1. Agarwal, R. C., and Cooley, J. W., “Fourier
Transform and Convolution Subroutines for
the IBM 3090 Vector Facility”, IBM Journal

Time MFLOPS
0.0824 127.26
0.1659 134.34
0.2705 174.44
0.5607 177.67
1.1960 175.35
2.4966 176.40
5.1872 177.89

of Research and Development, vol. 30 (1986),
p. 145 - 162.

2. Armstrong, J., “A Multi-Algorithm Approach
to Very High Performance 1D FFTs”, Journal
of Supercomputing, to appear.

3. Bailey, D. H., “A High-Performance Fast
Fourier Transform Algorithm for the Crag-2”,
Journal of Supercomputing, vol. 1 (1987), p.
43 - 60.

4. Bailey, D. I-I., “A High.xPerformance FFT Al-
gorithm for Vector Supercomputers”, Interna-
tional Journal of Supercompu ter Applications
vol. 2 (1988), p. 82 - 87.

5. Fraser, D., “Array Permutation by Index-Digit
Permutation”, Journal of the Association for
Computing Machinery, vol. 23 (1.976), p. 298
- 309.

6. Gentleman, W. M., and !&de, G., “Fast
Fourier Transforms - For Fun and Profit”,
AFIPS Proceedings, vol. 29 (1966), p. 563
- 578.

7. Swarztrauber, P. N., “FFT Algorithms for
Vector Computers”, Parallel Computing, 1
(1984), p. 45 - 63.

8. Swarztrauber, P. N., “Multiprocessor FFTs”,
Parallel Computing, vol. 5 (1987), p. 197 -
210.

242

