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Abstract 
Conventional algorithms for computing large 

one-dimensional fast Fourier transforms (FFTs), 
even those algorithms recently developed for vec- 
tor and parallel computers, are largely unsuitable 
for systems with external or hierarchical memory. 
The principal reason for this is the fact that most 
FFT algorithms require at least m complete passes 
through the data set to compute a 2*-point FFT. 

This paper describes some advanced techniques 
for computing an ordered FFT on a computer with 
external or hierarchical memory. These algorithms 
(1) require as few as two passes through the exter- 
nal data set, (21) employ strictly unit stride, long 
vector transfers between main memory and exter- 
nal storage, (3) require only a modest amount of 
scratch space in main memory, and (4) are weIl 
suited for vector and parallel computation. 

Performance figures are included for implemen- 
tations of some of these algorithms on Cray super- 
computers. Of interest is the fact that a main mem- 
ory version outperforms the current Gray library 
FFT routines on the Cray-2, the Cray X-MP, and 
the Cray Y-MP systems. Using all eight processors 
on the Cray Y-MP, this main memory routine runs 
at nearly two g.igafIops. 

Introduction 
The development of numerous advanced archi- 

tecture computers has posed a considerable chal- 
lenge to computer scientists. Many numeric algo- 
rithms that were completely satisfactory for tradi- 
tional serial computers are unsatisfactory for these 
advanced systems. This phenomenon is particu- 
larly pronounced in the case of algorithms for eval- 
uating one dimensional fast Fourier transforms. 
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One reason for this difhculty is the fact that 
many modern computers, particularly those with 
interleaved main memories, do very poorly with 
data that is accessed with a memory stride that is 
a large power of two. By far the most popular sizes 
of data to be transformed using FFTs are powers of 
two, and traditional implementations of FFTs for 
such data sets involve heavy use of power of two 
memory strides. Fortunately, it is possible to de- 
vise alternative FFT algorithms that do not rely on 
power of two strides. Indeed, some FFT algorithms 
can be performed using exclusively unit stride data 
access in inner computational loops [2], [3], [4], [7], 
[8]. Even for systems with external or hierarchical 
memory systems, these unit stride algorithms are a 
definite improvement over conventional algorithms, 
since unit strides reduce the frequency with which 
data must be accessed from external memory. 

However, virtually all conventional FFT algo- 
rithms, and even most of the advanced algorithms 
recently designed for vector computers, still require 
at least m passes through the data set to compute 
a 2m-point FFT. Since such external data access is 
usually a crucial bottleneck in such computations, 
it would be highly desirable to reduce this number 
to a bare minimum. 

The Basic 6‘Four Step” FFT Algorithm 

There is one algorithm in the FFT literature that 
is quite effective in reducing the number of passes 
through the dataset. Recently variants of this al- 
gorithm were featured in papers by Agarwal and 
Cooley [l, p. 1501 and Swarztrauber [8, p. 202 - 
203]., Swarztrauber used thk technique as a start- 
ing point for a very efficient hypercube FFT, and 
both of these papers noted the suitability of this 
algorithm for systems with nonlocal memory sys- 
tems, including hierarchical. and distributed mem- 
ory designs. However, as it turns out, this algo- 
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rithm was actually first presented over twenty years 
ago in a paper by Gentleman and Sande [6, p. 5691. 
This early paper even described the application of 
this algorithm to a system with hierarchical mem- 
ory. Unfortunately, this algorithm appears to have 
been largely forgotten, as a number of recent papers 
have suggested much less efficient methods. 

This algorithm, which shah hereafter be referred 
to as the “four step” FFT algorithm, can be stated 
very succinctly. Let n = 7~1722 be the size of the 
transform. Note that rt does not necessarily need 
to be a power of two. On many systems, the imple- 
mentation of this algorithm is most efficient when 
nr and nz: are as close as possible to Jn. In the fol- 
lowing and hereafter, matrices will be assumed to 
be stored in memory columnwise as in the Fortran 
language. The FFT of n complex input data values 
can then be obtained by performing the following 
four steps: 

1. 

2. 

3. 

4. 

Perform nr simultaneous nz-point FFTs on the 
input data considered as a nr x n2 complex 
matrix. 

Multiply the resulting data, considered as a 
nl x n2 matrix Ajk, by efiujkln. The f sign 
is the sign of the transform. 

Transpose the resulting nl xn2 complex matrix 
into a 722 x 711 matrix. 

Perform n2 simultaneous nr-point FFTs on the 
resulting n2 x nl matrix. 

Several important features of this algorithm should 
be noted: tist of all, note that both of the si- 
multaneous FFT steps can be performed using ex- 
clusively unit stride data access, which is optimal 
on virtually any computer system. Secondly, this 
algorithm produces an ordered transform - it is 
not necessary to perform a bit reversal permuta- 
tion, which is inefficient on many advanced com- 
puter systems. Finally, note that only three passes 
through the external data set are required to per- 
form this algorithm - the second step can be per- 
formed on a block of data after the fist step, before 
it is returned to memory. 

The four step FFT algorithm actually requires a 
slightly larger number of floating-point arithmetic 
operations than conventional FFT algorithms. In 
the common case where n is a power of two, the 

number of floating-point operations for the three 
computational steps is 5nln210g2 n2 + 6nln2 + 
5n2nl log2 nl = 5nlog2 n + 6n. This is 6n more 
than the count for conventional FFTs. 

Main Memory Performance Results using 
the Four Step FFT 

In spite of its slight operation count handicap, 
the four step FFT algorithm is remarkably efficient 
even for a single processor vector computer trans- 
forming data in main memory. As can be seen in 
tables 1 and 2, a straightforward implementation of 
this scheme is up to 10% faster than Cray’s library 
routine on the Cray-2 and up to 20% faster than 
Cray’s library routine on the Cray Y-MP. The per- 
centage results on the Cray X-MP are very close 
to those on the Cray Y-MP, which is to be ex- 
pected since the CPU and memory designs of the 
X-MP and Y-MP systems are very similar, differ- 
ing mainly in speed of operation. For these tests, 
the four step FFT algorithm was implemented us- 
ing a simple Fortran program; assembly code was 
employed only within the Cray library simultane- 
ous FFT routine (CFFTMLT), which is called by 
this Fortran program to perform steps 1 and 4. 
The transpose step (step 3) was performed with- 
out power of two strides by employing a diagonal 
technique, as mentioned in [4, p. 851. The Cray- 
2 library 1-D FFT routine (CFFTB) used in table 
1 is an assembly-coded implementation of an al- 
gorithm described by the author in a previous pa- 
per [4]. The Cray Y-MP library 1-D FFT routine 
(CFFTZ) used in table 2 is essentially the same rou- 
tine that has been available for some time on the 
Cray X-MP systems. 

The CPU times shown in both tables 1 and 2 
are for forward 2m-point FFTs followed by inverse 
FFTs, averaged over ten trials. All mega6ops per- 
formance figures in these tables are computed based 
on 1077~2~ floating-point operations, even though 
the four step routine performs slightly more than 
this figure. These tests were run in a typical day- 
time environment, and so the results reflect a nor- 
mal amount of memory bank contention. The com- 
puters used for these tests belong to the Numeri- 
cal Aerodynamic Simulation (NAS) Systems Divi- 
sion at NASA Ames Research Center. This par- 
ticular Cray-2 system has a clock period of 4.1 
nanoseconds (ns), and has 268 million words of 80 
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ns DRAM tin memory. The Cray Y-MP system 
used for these teists has a clock period of 6.3 ns and 
33 million words of bipolar main memory. This Y- 
MP system was the first Y-MP delivered by Cray. 
Newer Y-IMP systems have a faster clock (6 ns), and 
thus these results would be correspondingly better 
on the newer systems. 

The results listed in tables 1 and 2 are single pro- 
cessor results - no attempt was made to employ 
more than one processor. However, with the new 
“autotasking” feature now available on Cray sys- 
tems, it is possible to study the performance of a 
program using all available processors, with only a 
minimm of changes to the source code. When au- 
totasking was invoked on the Fortran program men- 
tioned above, performance levels very nearly eight 
times the single processor levels were achieved on 
the eight proces;sor Y-MP. These results are shown 
in table 3. This very high speedup underscores the 
suitability for the four step FFT algorithm for par- 
allel processing. 

FFTs on Data in External or Hierarchical 
Memory Systems 

The Cray-2 is noted for its very large main mem- 
ory. Most Cray-2 systems include 268 million 64 
bit words of main memory, although recently Cray 
has shipped a 5136 million word system. However, 
the performance of the Cray-2 on many codes in 
a normal production environment is not outstand- 
ing, due to severe memory bank contention, a di- 
rect result of the relatively slow operation speed 
of DRAM memory chips. Most Cray X-MP and 
Y-MP systems utilize a faster technology (bipo- 
lar) in main memory, so that memory bank con- 
tention is very much reduced. However, bipolar 
memory chips are not available in nearly the den- 
sity of equivalent generation DRAM chips, and so 
as a result the largest main memory currently avail- 
able for Y-MP systems is 33 million 64 bit words. 
Y-MP systems typically have eight CPUs, so this 
means an average of only four million words per 
processor. Systems that support interactive as well 
as batch users must be even more restrictive in the 
amount of main memory that can be allocated to 
a single job. 

As a result, users of the Cray X-MP and Y-MP 
systems who wish to perform large one dimensional 
FFTs are led to consider utilizing the solid state 

Size 
m 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

l- Four Step FFT 
Time MFLOPS 

0.0005 42.5 
0.0008 60.9 
0.0013 76.4 
0.0021 106.6 
0.0036 137.8 
0.0074 143.8 
0.0145 158.5 
0.0300 163.9 
0.0559 187.5 
0.1248 178.6 
0.2426 194.5 
0.4971 200.4 
1.0260 204.4 

T Time MFLOPS 
0.0004 57.2 
0.0006 81.8 
0.0010 106.0 
0.0021 109.4 
0.0038 130.6 
0.0073 145.2 
0.0138 165.7 
0.0327 150.2 
0.0660 159.0 
0.1260 176.8 
0.2555 184.7 
0.5763 172.9 
1.1863 176.8 

Cray Library FFT 

Table 1: The Four Step. FFT vs. Cray’s Library 
Routine on the Cray-2 

Size 
m 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Four Step FFT 
Time MFLOPS 

0.0003 68.68 
0.0005 102.24 
0.0008 128.16 
0.0013 168.91 
0.0024 201.90 
0.0049 215.88 
0.0103 222.57 
0.0212 231.67 
0.0443 236.78 
0.0935 238.39 
0.1976 238.81 
0.4117 241.96 
0.8587 244.23 

Cray Library FFT 
Time MFLOPS 

0.0001 137.85 
0.0003 151.88 
0.0006 161.27 
0.0013 168.08 
0.0028 173.51 
0.0060 178.09 
0.0126 181.86 
0.0265 185.24 
0.0557 188.26 
0.1167 190.97 
0.2439 193.44 
0.5090 195.70 
1.0635 197.20 

Table 2: The Four Step FFT vs. Cray’s Library 
Routine on the Cray Y-MP 
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Size Time MFLOPS Speedup 
12 0.00079 625.09 3.096 
13 0.00138 771.49 3.574 
14 0.00218 1053.61 4.734 
15 0.00376 1308.07 5.646 
16 0.00667 1571.73 6.638 
17 0.01318 1699.03 7.089 
18 0.02566 1838.72 7.700 
19 0.05275 1888.53 7.865 
20 0.10882 1927.12 7.891 

Table 3: Cray Y-MP Performance of the Four Step 
FFT Using Eight Processors 

disk (SSD) available on these systems. SSD sys- 
tems with a capacity of up to 536 million words 
are now available on the Y-MP. Users of the ETA- 
10 or the IBM 3090/VF systems have an analo- 
gous choice in utilizing the virtual memory sys- 
tem, which is a large semiconductor memory simi- 
lar to the Cray SSD, but which does not require ex- 
plicit programmer input/output comman ds. Users 
on other systems can even consider utilizing disk 
drives, although the relative slowness of such de- 
vices compared to main memory is a bottleneck 
even with the best of algorithms. 

In addition to minimizing the number of data 
accesses to an external memory device, an obvi- 
ous consideration in designing an efficient algo- 
rithm for such systems is to minimize the amount of 
scratch space required in main memory. Clearly if 
an external memory algorithm requires a substan- 
tial scratch array in main memory, then the largest 
transform size will again be limited by the available 
main memory. In addition, it will be assumed in 
the following that the amount of external memory 
is also limited and must be conserved. It will also 
be assumed for the time being that the final result 
in external memory must be physically ordered - 
index schemes or “virtual” orderings of external 
blocks will not be allowed. 

Reducing the Scratch Space Requirement in 
the Four Step FFT 

As presented above, a straightforwardimplemen- 
tation of the four step FFT algorithm requires 
scratch space for several different purposes. These 

are as follows: 

l 2n cells for the precomputed root of unity ta- 
ble. 

l 2n cells of scratch space for the simultaneous 
FFT steps. 

l 2n cells of scratch space for the transpose step. 

The scratch space requirement for the simultane- 
ous FFT steps can easily be reduced by noting that 
the nl simultaneous nz-point FFTs (i.e. in step 1 
of the four step FFT) may be performed in batches 
of v rows, where v is the natural vector length of 
the system being used. If the simultaneous FFTs 
employ an algorithm, such as the Stockham FFT, 
which requires a scratch array the same size as the 
input data array, then only 4vq scratch cells are 
required. This figure may be reduced by one half 
if an in-place algorithm can be efficiently used for 
the simultaneous FFTs. Note that if the individual 
processors do not rely on vector processing, then 
only one row need be fetched at a time, and these 
scratch space figures drop to only 4nz cells and 2nZ 
cells, respectively. For step 4 of the four step FFT, 
the corresponding scratch space figures may be ob- 
tained by replacing n2 by nl in the above discus- 
sion. 

However, the scratch space requirements for the 
simultaneous FFT steps in reality are dependent 
more on the block size b of an efficient input /output 
(I/O) transfer between main and external memory. 
In other words, if the natural I/O block length is 
128, then 128 rows of the nl x ns complex matrix 
should be fetched into main memory, or else the 
I/O operations will be highly inefficient. Thus it 
follows that a main memory scratch space of size 
2bn2 + 2wn2 is needed for the first step of the four 
step algorithm. In an similar manner, the last step 
of the four step FFT requires 2bnl + 2vnl scratch 
cells. The second term of each of these expressions 
may be omitted if an in-place algorithm can be ef- 
ficiently used for simultaneous FFTs in main mem- 
ory. 

The scratch space for the two FFT steps could be 
reduced to virtually zero ifan FFT algorithm some- 
what more complicated than the four step FFT 
were used. This algorithm is as follows: 

1. Transpose the input data set, considered as a 
nl x 122 complex matrix, into a n2 x nl matrix. 
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2. 

3. 

4. 

5. 

6. 

Perform ni individual nz-point one dimen- The storage requirements for those subsets of U 
sional FFTs on the resulting 922 x nl matrix. array that must be precomputed are as follows: 

Multiply the resulting nr x nl complex matrix 
&j by ,fWn. 

Descrintion 
Upper-left basic block 

Size 
2ab 

Transpose the resulting n2 x nl matrix into a 
n1 x 712 matrix. 

Perform n2 individual nr -point one dimen- 
sional FFTs on the resulting nr x n2 matrix. 

“Spikes” from top edge 2an2/b 
“Spikes” from left edge 2bnlJa 
Block corners 2nlab 

If we assume that nl = n2 = a2 = b2 (which is an 

Transpose the resulting nl xn2 complex matrix 
into a n2 x 711 matrix. 

optimal choice), then the total space is only Sfi 
cells, a sufhciently sm.alI amount that this data can 
be kept in main memory. In tests of this scheme on 
Cray systems, the author merely selected a and b to 
be 64, the natural vector length. With this choice, 
only a few thousand cells of main memory are re- 
quired even for multimillion point transforms. Per- 
formance tests of FFTs using this scheme indicates 
that it adds only about five percent to the total 
run time (for larger transforms), and the accuracy 
of the dynamically calculated roots is excellent. 

This algorithm, which could be termed by anal- 
ogy the “six step” FFT algorithm, is very well 
suited for distr.ibuted memory systems, as the in- 
dividual one dimensional FFTs can be performed 
in individual processors. Its main memory scratch 
requirement is only 4n2 cells for step 2 and 4nl 
cells for step 5 (per processor). As before, if an in- 
place FFT algorithm can be efficiently used in main 
memory, then these figures can be reduced by one 
half. However,, there are other ways of perform- 
ing FFTs on systems such as MIMD hypercubes 
[8], and the six step FFT has the serious disad- 
vantage of requiring an additional two transpose 
steps, which typically are the chief bottlenecks on 
any system with a distributed or external memory. 

Reducing the size of the precalculated root of 
unity table used in step 2 of the four step FFT algo- 
rithm is somewhat trickier. Nonetheless, it can be 
reduced in size to virtually zero with only a slight 
increase in overall run time, by using what may 
be termed the dynamic block scheme for roots of 
unity. The full size n1 x n2 root of unity table can 
be written as iY(j, k) = ajk where Q = e*2*i/n. Let 
B(T, 8) denote a block of dimensions a x b within 
the matrix U. Note that 

= U(j, k)U(j, sb)U(ra, k)U(m, sb) 

Thus an a x b lblock B(T, s) in the interior of 27 can 
be dynamicaRy computed as follows: 

B(T, s) = top left block [i.e. B(O,O)] 

x “spike” from top edge 

x “spike” from left edge 

x upper left corner element of B( T, s) 

Transposing Arrays in External Memory 
The transpose step (step 3 of the four step FFT) 

is perhaps the most challenging to perform efli- 
ciently on a data set residing in external memory. 
Before discussing this matter in detail, it should be 
recalled that the array to be transposed consists of 
complex data. In the folIowing discussion it will 
be assumed that the real and imaginary parts of 
this data are stored in completely separate mem- 

ory locations, not interleaved as is the Fortran con- 
vention. In this way the problem of transposing a 
complex array reduces to transposing two real ar- 
rays. In fact, separate storage of real and imaginary 
data avoids a significant performance degradation 
in computing with complex data on a number of 
systems, including the ETA-10 and the Gay-2. 

Probably the most efficient algorithm currently 
known to transpose data in external storage is due 
to Fraser [5]. A particularly attractive aspect of 
this algorithm is that it can easily be tuned for 
maximum efficiency on a given system. It is easier 
to exhibit au example of Fraser’s algorithm than to 
precisely state it. Suppose one wishes to transpose 
a 28 x 27 matrix, which resides on an external ran- 
dom access dataset, into a 2’ x 2’ matrix. Suppose 
also that the size of an efficient I/O block is 64 = 2*, 
that two main memory buffers of size 512 = 2’ are 
available, and that an external scratch dataset of 
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size 216 is available. Let the notation (0 1 2 . . . 
12 13 14) denote the binary digit positions in the 
reverse binary expansion of an index in the 216-long 
input array. Then the steps required to transpose 
this array can be compactly presented as follows: 

El 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Ml 0 1 2 3 4 6 8 9 10 11 12 13 14 6 7 
M2 8 9 10 0 1 2 3 4 5 11 12 13 14 6 7 
E2 8 9 10 0 1 2 11 12 13 14 3 4 6 6 7 
Ml 8 9 10 0 1 2 11 12 13 14 3 4 6 6 7 
M2 8 9 10 11 12 13 0 1 2 14 3 4 5 6 7 
El 8 9 10 11 12 13 14 0 1 2 3 4 6 6 7 

The notation at the beginning of each line indicates 
the source of the data in each operation: El de- 
notes external dataset number 1, M2 denotes main 
memory buffer number 2, etc. Note that the trans- 
fers between external memory and main memory 
only alter locations 6 through 14, and leave lo- 
cations 0 through 5 unchanged (i.e., 64-long con- 
tiguous blocks are preserved), and that transfers 
between two main memory buffers only alter loca- 
tions 0 through 8 (i.e. only affect data within a 
single 512-long main memory buffer). 

The first step, from external to main, involves 
fetching contiguous blocks of size 64 from disk with 
a block stride of four (i.e. fetch the fist 64-long 
block, skip three blocks, fetch the fifth 64-long 
block, etc.). The first step is done in batches of 
8 blocks, so that 512 words are fetched to one of 
the main memory buffers before proceeding. The 
second step, which is performed between the two 
main memory buffers, is to transpose the resulting 
512-long array, considered as a 64 x 8 matrix, into 
a 8 x 64 matrix. In the third step, the eight 64-long 
blocks in the main memory buffer are stored out 
to external memory, this time with a block stride 
of eight. This completes one pass through the ex- 
ternal data set. In the next pass, eight contigu- 
ous 64-long blocks are fetched into main memory, 
and the resulting 512-long array is transposed in 
a block fashion that preserves 8-long contiguous 
sections. Finally, the resulting 64-long blocks are 
stored back to external memory, again in a man- 
ner that achieves a certain block permutation. The 
array has now been transposed in just two passes. 
With an adjustment of the parameters (for exam- 
ple, with a block size of 32 and a memory buffer 
size of 1024), the transposition could be achieved 
in a single pass. 

Even from the above example, the power and 
generality of F!raser’s technique can be appreciated. 
Unfortunately, Fraser’s algorithm cannot in general 
be performed in place (i.e. using only one external 
dataset), unless one relaxes the requirement for a 
physically transposed array (by utilizing pointers to 
index the external data blocks instead). However, 
in special cases typical of common FFT sizes, there 
are other methods that can be done in place and 
still produce a physically transposed array. 

Consider first the case where nr = nr, so that the 
matrix is square. In that case a block interchange 
technique can be used to transpose the array in a 
single pass, in place. This can be done by sim- 
ply considering the external nr x n2 matrix to be 
decomposed into square blocks of size b on a side, 
where b is the block size of an efficient I/O oper- 
ation. The square blocks down the diagonal can 
be transposed simply by fetching the blocks one 
at a time into main memory, transposing them us- 
ing any efficient main memory scheme, and storing 
the resulting matrices back in the same locations. 
The off-diagonal square blocks can be fetched in 
opposing pairs, transposed in main memory, and 
then stored back in opposite locations. One dif- 
ficulty in applying this scheme is when the main 
memory block size b is a power of two (which it 
almost always is). Transposing matrices whose di- 
mensions are powers of two in main memory, using 
the straightforward scheme, results in severe mem- 
ory bank conflicts on many vector supercomputers. 
However, such arrays can be transposed completely 
without bank conflicts by fetching and storing op- 
posite diagonals, as is described in [4, p. 851. The 
main memory scratch space requirement for the en- 
tire scheme is 2b2 cells. 

For the common case of power of two FFTs, 
it can be assumed that either nl = 122 or else 
nl = 2n2. In the second case, it does not ap- 
pear possible to transpose the array in one pass, 
in place, using only full bloch I/O transfers. How- 
ever, such arrays can be transposed in just two 
passes, in place, using only full block transfers, as 
follows. First, consider the nl x nr external array 
as two blocks of size n2 x n2, and transpose each 
of these two square blocks in place, as described in 
the previous paragraph. This completes the first 
pass. Now consider the resulting data array in ex- 
ternal memory to be a n2 x nr matrix. Inspection 
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of an example shows that the columns of the re- 
sulting array need to be de-interleaved - column 
2j, 0 5 j < nz needs to be moved to column j, 
and column 2j + 1 needs to be moved to column 
j + n2 (here the columns are numbered beginning 
with zero). This de-interleaving could be done b 
rows at a time using a main memory scratch ar- 
ray of size bnl, but this task can be done more 
efficiently and without need of substantial scratch 
space by moving the columns in permutation cy- 
cles. For exampIle, suppose ni = 8 and n2 = 4, so 
that after the block transpose operations we have a 
4 x 8 matrix. Then the first cycle would consist of 
storing column 11 in main memory, moving column 
2 to column 1, c:olumn 4 to column 2, and column 
1 (from main mtemory) to column 4. The second 
cycle would consist of storing column 3 in main 
memory, moving column 6 to column 3, column 
5 to column 6, and column 3 (from main mem- 
ory) to column 5. Columns 0 and 7 do not need 
to be moved. Note that this column movement 
procedure requires only 2n2 cells of main memory 
scratch space. The dominant scratch space require- 
ment for this case is thus 2b2 (for each of the two 
square block transpositions), the same as the case 
n1 = n2. 

Performance Results Using the Minimal 
Scratch Space FFT 

The above procedure has been implemented 
and tested on ,the Cray Y-MP, using one proces- 
sor and the SSD external memory device. The 
SSD I/O primitives SSREAD and SSWRITE were 
called directly from the Fortran program. As be- 
fore, the Cray library simultaneous FFT routine 
(CFFTMLT) was used in steps one and four of the 
four step algorithm. This routine is not an in-place 
FFT, so that a scratch array in addition to the 
space for the d.ata is required. Since the SSD is a 
rather limited resource, Fraser’s algorithm was not 
employed for the transpose steps - the in-place 
schemes described in the previous section were em- 
ployed instead. The block length b for efficient I/O 
transfers between main memory and SSD (or be- 
tween main memory and disk) on the Cray Y-MP 
system is 512. 

Table 4 includes results not only for an actual ex- 
ternal memory (SSD) implementation of the above 
scheme on the Cray Y-MP, but also for a modified 

Size 

1: 
17 
18 
19 
20 
21 
22 

usiq 
Time 

0.0704 
0.1574 
0.2897 
0.6391 
1.2263 
2.7007 
5.2996 

Uemor y 
MFLOPS 

149.00 
141.59 
162.90 
155.86 
171.02 
163.07 
174.12 

Time 
0.1169 
0.2529 
0.3094 
0.6908 
1.3065 
2.8179 
5.6132 

Ush< SSD 

1 

MFLOPS 
89.68 
88.10 

152.52 
144.21 
160.52 
156.29 
164.39 

Table 4: Minimal Scratch Space FFT Performance 
Results 

version of the program where the Fortran routines 
handling I/O actually just transfer data to a block 
of main memory, ins teading of referencing the Cray 
SSD primitives. With the latter figures one can ac- 
tually see how much of the performance degrada- 
tion is due to the algorithm and how much is due 
to inefficiencies in the Cray I/O system routines. 

Performing an FFT with Only Two Passes 

The schemes that have been described so far 
produce a physically ordered FFT on an external 
dataset in three or four passes. If one is willing to 
relax the requirement that the final result be phys- 
ically ordered, or if one is willing to aliow a scratch 
dataset in external memory of the same size as the 
input dataset, then the entire FFT o:peration can 
be performed in only two passes (subject to cer- 
tain conditions). The author is indebted to Paul 
N. Swarztrauber for this observation. 

As in the four step FFT above, it will be as- 
sumed in the following that n = nln2 and that b 
is the block size for efficient I/O operation. Also, 
all references to matrices will, as before, assume 
columnwise storage. For simplicity, it will be as- 
sumed for the time being that two buffers of size 
2bnl cells each are available in main memory, al- 
though it will later be see:n that only one bufFer 
this large is necessary. Similarly, it will be assumed 
for the time being that a scratch dat;aset equal in 
size to the input dataset is available in the external 
memory device, although it will be seen later than 
this scratch dataset is not n.ecessary if one does not 
mind using pointers. This algorithm can then be 
stated as fohows. 
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1. 

2. 

3. 

4. 

Consider the data in external memory as a n1 x 
n2 complex matrix. Fetch the data b rows at a 
time into one of the main memory buffers. For 
each batch of b rows, perform b simultaneous 
nz-point FFTs on the b x n2 array in main 
memory, using the second main memory buffer 
as a scratch array. 

Multiply the resulting data in each batch by 
appropriate roots of unity as in the four step 
algorithm. 

Transpose each of the resulting b x n2 complex 
matrices into a n2 x b matrix, using the second 
main memory bu.tFer as a scratch array, and 
store the resulting data on the scratch dataset 
in contiguous order. Store successive batches 
of data in successive contiguous sections on the 
scratch dataset. 

Consider the resulting data in the scratch 
dataset as a n2 x n1 complex matrix. Fetch 
the data b rows at a time into one of the main 
memory buffers. For each batch of b rows, 
perform b simultaneous nl-point FFTs on the 
b x nl array in main memory, using the second 
main memory buffer as a scratch array, and 
return the resulting b rows to the same loca- 
tions on external storage from which they were 
fetched. 

As before, this FFT is an ordered transform - 
no bit reversal transposition is necessary. The re- 
duction of the number of passes from three to two 
is accomplished by combining the four step FFT 
with Fraser’s transposition algorithm. 

Let T = =(nl, n2). Then at least one main 
memory buffer of size 2br is required in the above 
to hold b rows of the fetched data. However, the 
second main memory buffer ten be sharply reduced 
in size in many cases of interest. The additional 
scratch requirement for performing the simultane- 
ous FFTs in steps 1 and 4 can be reduced to only 
2vr by performing the FFTs in batches of o rows, 
where v is the natural vector length of the system. 
If an in-place algorithm is used for the simultaneous 
FFTs, then this scratch requirement can be com- 
pletely eliminated. 

Also, in the most common case of power of two 
transforms, the additional scratch space needed for 

performing the main memory transpose in step 3 
above can be reduced to only 2~ cells by apply- 
ing techniques similar to those mentioned above 
for transposing power of two arrays in external 
memory. One difference in this case is that the 
second dimension n2 can be much larger than the 
fist dimension b. Nonetheless, the basic scheme of 
transposing the square sub-blocks in place and then 
moving columns in permutation cycles can also be 
applied for this application. 

Main memory space to hold precomputed roots 
of unity can be reduced from 2n to only 8~ by 
using the dynamic block method described above. 
Thus the total main memory storage requirement 
for power of two transforms can be reduced to only 
2(b + 5)r cells using this algorithm. 

The requirement for a separate scratch dataset in 
external memory can be eliminated by utilizing a 
block indexing scheme. At the end of step 3 above, 
the blocks of data then in main memory can be re- 
turned to the same set of blocks in external mem- 
ory horn which they were fetched, provided a table 
is maintained of where they are kept. Actually, 
a table is not even necessary - the permutation 
involved here is a simple index digit permutation. 
However, the ultimate user of the transformed data 
would also need to use the same indexing mecha- 
nism to access the data. 

This “two pass” FFT algorithm has been imple- 
mented on the Cray Y-MP using SSD. A separate 
SSD scratch array was used instead of the virtual 
block scheme just mentioned. This implementa- 
tion also employed many of the sa,me procedures 
discussed above to conserve main memory scratch 
space. The resulting performance figures are shown 
in table 5. As expected, these results are even 
higher than the SSD figures in table 4. In fact, the 
performance figures listed in figure 5 are almost as 
high as those for Cray’s main memory FFT, which 
are listed in table 2. 

Conclusion 

The performance figures in tables 4 and 5 show 
that very large FFTs can be efficiently computed 
using a Cray Y-MP with SSD. In fact, with 33 mil- 
lion words of main memory and 268 million words 
of SSD, it should be possible to perform a FFT 
as large 8s 22s = 268,435,456 points, provided the 
SSD device can hold precisely 228 data elements 
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Scratch 
Space 

:!07178 
668266 
668330 

1328426 
1328682 
2649130 
2650154 -- 

Using SSD 

Table 5: Two Pass FFT Performance Results 

and no fewer. Such favorable results might not be 
possible on other systems with slower I/O to ex- 
ternal memory, but the techniques that have been 
presented should greatly improve the performance 
reduction that otherwise occurs. 

Another important limiting factor in performing 
very large FFTs in external memory, which has 
not been mentioned yet, is the fact that there is 
often a signific~ant wall clock delay in performing 
I/O of any sort, even if the CPU time performance 
is acceptable. Wall clock performance is partic- 
ularly important when one is using almost all of 
main memory, so that other jobs cannot be utiliz- 
ing CPU resources when one’s own job is waiting 
for I/O. Such wall clock delays can be mitigated 
by overlapping computation and I/O where possi- 
ble, and by performing several I/O operations con- 
currently, provided the overall system I/O band- 
width is not a limiting factor. Also, Cray personnel 
have indicated to the author that for such applica- 
tions it may be possible to utilize an I/O system 
primitive known as “listio”. This primitive allows 
data to be acce:ssed in SSD in sequences of contigu- 
ous blocks with a constant skip distance between 
blocks, with significantly better performance. This 
is exactly the situation in all of the algorithms men- 
tioned above, and thus such an I/O function could 
be expected to substantially improve the wall clock 
performance ojf this FFT scheme, and perhaps the 
CPU time performance as well. 
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