
Tuning the Rank-n Update in a Wavefront
Solver for Peak Performance

Sen-ming Chang
Mark A. Johnson

Applications ‘Technology Center
IRM Corporation

Neighborhood Road
Kingston, NY 12401

A hstract

The wavefront solver is a type of linear equation solver that
is suitable for solving the system of linear equations that
arises in many finite-element applications. A new version
of the wavefront solver was recently introduced into the
ANSYSB program that uses a rank-n update. The rank-n
update has properties that allow it to make very efficient use
of a hierarchical memory structure. In addition, the rank-n
update can exploit both vector and parallel processing to
increase its performance. We discuss several general tech-
niques for tuning the rank-n update, using the IBM ES/3090
VF as an example of a computer that incorporates hierar-
chical memory and vector and parallel processing capabili-
ties. We then report the performance of the tuned rank-n
update, both in isolation and in the context of ANSYS jobs.

Keywords: Wavefront solver, Rank-n update, Hierarchical
memory. Vector processing, Parallel processing, IRM
ES/3090 VF.

Introduction

The computalion that dominants many finite-element appli-
cations is assembling and solving a set of linear equations.
One type of linear equation solver is the wavefront solver,
which works on only a small subset of the whole problem,
the wavefront., at any given lime. Rather than assembling
all of the equations at once and then solving them, the
wavefront solver assembles and solves the equations together
in small steps. While assembling new equations adds vsri-
ables to each step, partially solving t.he resulting equations
eliminates variables from subsequent steps. When Irons’
tirst int.roduced the wavefronl method, he proposed elimi-
nating one equation at a time. A large part of the process
of eliminating an equation is updating the remaining
equauons, which is accomplished with a rank-one update
of the matrix representing the equations. Recently Swanson
Analysis Systems, Inc. introduced a new version of the
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-341-8/89/001 l/O257 $1.50

wavefront solver into the ANSYS@ program, a general-
purpose, tinite-element, st.ructural analysis program.2 The
new solver can riiminatc many equations at once, which in-
volves a rank-n updat.c of the remaining rows of the matrix.
We will focus our nttcnt.ion on the matrix update because it.
often accounts for a large portion of the CPU time spent in
the ANSYS program.

Carefully t.uning the mat.rix update to exploit the hardware
features of n comprner can suhstamially increase the per-
formance of the updat.e. We will describe techniques for
taking advantage of such features as hierarchical memory,
vector processing, and paraltcl processing. In particular,
we will examine the properties of the rank-n update that. al-
low it t.o utilize a hierarchical memory structure eniciently.
Although the det,ails of t.uning the matrix update and the
resulting gains in its performance vary on different comput-
ers, the t.echniqucs are st.ill fairly general. We use the IBM
ES/3090 VF as a specific inst.ance of a comput,er with a hi-
erarchical memory and wit.h vector and parallel processing
capahilitics.

Following n more detailed description of the problem being
solved and the architecture of the IlIM 3090 family, we dc-
scribe the tuning techniques as applied t.o t.he rank-n matrix
update. We then give performance results that show the ef-
fect of tuning the update procedure. In addition to repotting
t.he performance of matrix update alone, we show the re-
sulting performance improvement. in the ANSYS program
and discuss the implicntions of Amdnhl’s 1,s~.

Wavefront Solver

The linear equation solves in a finite-element application
assembles nnd solves a svstcm of linear equations having the
form,

/t/Y= v

where A is the positive-detinite global st.itfness matrix, X is
the solution vector, and V is the load vector. Although the
global slinhcss malt-ix may or may not be symmetric, we will

257

-. . .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76263.76291&domain=pdf&date_stamp=1989-08-01

consider only the symmetric case in the following discussion.
Instead of assembling all of the element matrices to form t.he
rull global st.ilTness matrix and then solving the complclc
system of equations., the wavefront method interleaves the
steps that assemble and solve the equat.ions. As the solver
processes each of the elements, it assembles new equations
into the global stin’ness matrix and solves some of the
equations in the par&lly constructed matrix. The elements
involved in the partially constructed matrix constitute the
current wavefront. Although the size of A increases and
decreases during the solution process, it is always much
smaller than the full global stiffness matrix. Thus, the
wavefront solver recluires much less memory to store the
stiKness matrix than solvers that assemble the full matrix.

Because detailed descriptions of the wavefront met.hod al-
ready exist, 3-4 we present only a summary of the steps. In
the following description, the nodes currently in the stillness
matrix are the active nodes.

1. A new element is ‘assembled into the global stiffness
matrix by obtaining its stiffness coenjcients from a
scratch file. If the nodes of the element are being acti-
vated for the fiirst time, their stiflhess coefficients are
added to the global matrix. If the nodes are already
active, their stil’fness coefftcients are summed into the
existing equations.

2. If some nodes are appearing in the global stiffness ma-
trix for the last time, the corresponding equations are
solved in terms of the other active nodes. After rear-
ranging the glo,bal stiffness matrix, A, so that the nv
equations being solved reside in its first nv rows, each
of the nv rows is scaled by its diagonal element and
stored in the matrix 3.

&.&
ji

The remaining rows in h are then updated using the
scaled rows in R and t.he nv rows being eliminat.ed. ac-
cording to the following equation.

k=l

After A has been updated, t.he nv equations are elimi-
nated from A, and the corresponding nodes are deac-
tivated, decreasing the size of the global st.iffness matrix
and making space available for subsequent steps. The
matrix B is stored in a scratch file for use in the subse-
quent back substitution.

3. Steps I and 2 are repeated until all of the elements in
the problem have been processed. After assem,hling the
last element, the numher of equat.ions equals the num-
ber of unknowns, allowing the remaining equations to
he solved explicitly.

4. 'I‘hc rcslllring trinngulari7cd matrix in Ihe scratch file is
IIW~ irk a back suhsliluliot~, completing Ihe solution
process.

The original version of Ihc wnvcfront solver eliminat.cs only
one equntioll at ;I time, so it can use only one row to update
the remaining rows nr the global E8tifFness matrix. Such an
update procrdurc is called a rank-,nne update of the matrix.
I lowevrr. the new version of the wave(i-ont solver eliminates
multiple equations in n single s~cp, allowing the use of a
rank-n update. ‘l‘hc rank-n rlpdate WCS all the rows being
eliminated to update t.hc remaining rows of the global
stimness mat.rix. In order to IJSC a rank-n updale, the solver
continues to assemhtc new etcmcnts into the global stif’filess
matrix untif a prederermined number of rows can be elimi-
nated together. The solver ttlen uses the rank-n update in
the process of eliminating the rows from I.he matrix.

In the remainder of this paper, we will focus on I.he matrix
update hecause it accounts Tar most of the CPU time spent
in the wavcfront solver. In turn. the wavefront solver ac-
counts for a large porl.ioll of the CPU t.ime consumed by
many ANSYS johs, especially those performing linear static
analysis. The advantage of using the rank-n update instead
of t,he rank-one update is that the rank-n update performs
many updates at once and thus allows more opportunity for
tuning. While the rank-one update is a matrix-vector oper-
ation, the rank-n update is a matrix-matrix operation, which
can olten bc tuned or, use a hierarchical memory structure
very efficiently.

Architectural Description

The various techniques for tuning t.he rank-n update apply
to many comput.ers that have hierarchical memory slruc-
tures and support vector and parallel processing. Ilowever,
we apply our techniques to the IrIM ES/309C) VF to make
the following discussion more clear and concrete. Before
investigating the techniques for improving the performance
of the rank-n update, we briefly summarize the relevant.
features of the 3090 family.

The hierarchical memory in the 3090 consists of cache, main
memory, expanded st.oragr, and disk storage. Although the
wavefronl solver IJSCS expanded storage to contain its large
scratch files, the rank-n update deals with only the cache and
main memory. The cache is a four-way, set-associative
memory organized int.o I28 byte cache lines, having a t.otal
size of 64 khytcs on the 3090 and 3090E models and I.28
khytcs OII Ihc 3fl9OS models. Depending on the addressing
pattern of’ a program, the efTect.ive size of the cache can vary
from its full size down to only Tour cache lines. When data
is addressed \vi(.tl a stride hct.ween adjacent elements that is
divisihtc hy a high power nf two. the cache tines compete for
space in ~hc four-way, set-associat.ive scheme, reducing the

258

eflective size of the cache. We wit\ see the effect of ignoring
stride in the section on performance.

The veclor architecture of the 3090 family consists of 16
shorr-precision or 8 long-precision vector registers and a
variety of vector instructions. Each of the vector registers
can contain at most 128 elements on the 3090 and 3090E
models and 256 elements on the 3090s models. The length
of the vector registers is the vector section size (VSS) and is
the largest number of elements that a single vector insl.ruc-
tion can process. The vector instructions have a variety of
addressing modes, including register-register operations and
memory-register operations. The memory-register opet-
ations allow only one memory access per element. If t-he
data that the memory operand addresses resides in the
cache, memory-register operations are as fast as register-
register operations. However, if the data does not reside in
the cache, the resulting cache miss slows the execution of the
memory-register operation. Although most of the vector
instructions perform a single operation on each element, se-
veral inst.ructions perform both a multiplication and an ad-
dition or a subtraction on each element. The compound
operations execute in the same length of time as the single
operation, so they should be used wherever possible.

The IBM ES/3090 family of computers has models with
from one to six processors, and software support is available
to allow parallel processing. Each of the processors in a
multiprocessor system share the same main memory, ex-
panded st.orage, and disk storage, but each processor has its
own cache, whose integrity is guaranteed by the hardware.
The software support that we used is the VS FORTRAN
Muldtasking Facility (MTF), which has been part of the VS
FORTRAN library since Version 1 Release 4. The MTF
allows the main task to dispatch a subroutine as a subtask
on another processor and t.o synchronize the main task with
the completion of the dispatched subroutine. Such a simpfe
interface was completely adequate for enabling the rank-n
update to exploit parallel processing.

Tuning The Rank-n Update

FORTRAN Implementation

As we mentioned previously, the input lo the rank-n update
procedure consists of the global stiffness matrix, A, and a
matrix, D, containing the scaled rows being eliminated.
Figure I” illustrates the storage order of A, which is the up-
per triangular portinn of fhe square matrix representing the
currenlly active nodes. Figure I also illustrates t.he storage
order of D. Example 1 gives a simple FORTRAN imple-
mentation of the rank-n update algorithm, where n is the
total numher of rows in A. and nv is the numher of rows

1

1

1

1 7

;I

n n

i 1

env-4

Figure 1. lte storage order of matrices A and R that.
Ihc rank-n update uses. The size of A is
n, and t.he number of rows being eliminated
is nv.

being eliminated. The rank-one update can be recovered
from the more general rank-n update by eliminating the ar-
gument nv and the loop over nv on line 10 of Example 1.

1 subroutine rankn (A, n, R, nv, ka, kh, ja, jb)
2 integer in, ir, jr,, jr, n, nv, ka, kh, ja, jb, i, j, k
3 double precision A(*), l3(n, nv)
4
5 in = n-ja + 1
6 ir = (in * (in - 1)) i 2
7 dolOj = ja,min(n-ka + I,jb)
8 jn = n
9 jr = (n * (n - I)) / 2

10 do 20 i = 1, nv
II do 30 k = ka, minfin, kb)
I2 A(ir + k) = A(ir + k) - R(in, i) * A(jr + k)
13 3n continue
I4 jn = jn - 1
1s jr - ,jr - jn
I6 2n continue
17 in = in - I
18 ir = ir - in
I9 10 continue
213 rclrirn
21 Clld

Examplr I.

Rather than updating the whole matrix in the example, we
allow the programmer lo specify A range of rows (ja to jh)
and columns (ka t.o kh) to lIpdate. As WC ivill describe later,
the additional flrxihilily is necessary in a version of the
wavefronl solver Ihnt rxploils parallel processing.

259

Cache Usage

In both the rank-one and the rank-n updates, the row or
rows being eliminated are used many times once they are
loaded into the cache. However, the rank-one update uses
each row that is being updated in only one operation (line
12 of Example 1) during the update. In contrast, the the
rank-n update uses each row being updated in nv oper-
ations, resulting in much more effective use of the hierar-
chical memory. I,ncreasing the number of rows being
eliminated improves the usage of cache and thereby im-
proves performance, as long as all the rows being eliminated
can remain in the cache.

Since the cache is relatively small and we want to make the
number of rows being eliminated as large as possible without
overflowing cache, we modified the basic algorithm to re-
duce the cache requirements of each row. The modification
consists of updating strips of the matrix, as Figure 2 illus-
trates. Each strip consists of a range of columns of the ma-
trix being updated. The modified algorithm requires that
only a portion of each row being eliminated reside in cache,
so more such rows can be used without overflowing the
cache. In the next section, we will discuss vector processing
considerations and examine the balance between the width
of each strip and the number of rows being eliminated.

In the basic algorithm, the rows being eliminated were con-
tiguous in their storage order, so they efficiently filled the
cache. In contrast, the modified algorithm uses only seg-
ment of each such row, and the segments are not contiguous.
The noncontiguous segments may or may not fill the cache
efliciently, depending on the stride between adjacent seg-
ments. As we mentioned in the description of the IBM
3090’s cache, certain strides, such as those divisible by a high
power of two, cause competition for the certain cache lines
in the four-way, set-associative scheme. A technique for
ensuring that the cache is fdled eficiently, regardless of the
stride between adjacent segments, is to copy the segments
o[the rows being eliminated int.o a contiguous block.5 The
storage space and the amount of time required for the
copying operation are small under all circumstances because
the size of the cache limits the amount of data that must be
copied for each strip.

Vector Processing

The loop over k in Example 1 is the loop that is most suit-
able for vectorization because it produces suficiently long
vectors with a unit stride. The IBM VS FORTRAN Version
2 compiler will vectorize the loop over k, using a compound
operation that perrrorms both the multiplicat.ion and the
subtraction on line 12 of Example I. llowever, the vector
A(ir + k) is loaded from memory and stored back to
memory during each iteration of the loop over i. Such re-
dundant loads and !stores can olIen be eliminated by moving

I-

I-

\

\

\

nv

T

n-nv

1

Figure 2. An example of the use of ka and kb to di-
vide the matrix being updated into strips.
A good choice for the width of each strip
is the vector section size (VSS) of the ma-
chine.

the vector loop oubidc other loops, e.g., by changing the
order of the loops over i and k in Example l.s Unfortu-
nately, such a technique will not work in Example 1 because
of the complicated addressing that the storage order of ma-
trix A’ requires. We eliminated the redundant loads and
stores in the rank-n update by programming it in assembler,
rather than in FORTRAN. We note that if a rank-one up-
da1.e were used instead, the loop over i would not he present,
and a load and store would he necessary for each multiply-
subtract operation.

The asscmhler implementation of the rank-n update consists
of the following steps.

1. I,oad a scgmcnl of 111e row being updated into a vector
regisler.

2. I .oad the scale factor, B(in, i) in line I2 of Example 1,
inlo n scalar ffoaling-point register.

3 . . Perform a vector multiply-subtract operation on the
segment of the row being updated, using a memory
operand IO obtain the segment of A(jr + k), a row
being climinalcd.

4. Repeat steps 2 and ? for all nv rows being eliminated.

5. Store the updated scpmenl of the row loaded in step 1
hack inlo matrix A.

260

increasing the number of operations performed on each
segment of a row between loading it and storing it improves
the performance of the update procedure. Eliminating many
rows at once both reduces the overhead of loads and stores
and improves the usage of the cache, as long as the cache
does not overflow. If the cache overflows, cache misses de-
grade the performance of the rank-n update, negating the
benents of further reducing the overhead of loads and stores.
As we mentioned in the section describing the architecrure
of the IRM 3090 family, memory-register cjperadons are as
fast as register-register operations if t.he memory operand
resides in cache. So in step 3 of the assembler algorithm,
we are able to use a memory operand, which allows a loop
over the nv rows being eliminated without sacrificing per-
formance, In contrast, Hessel et a1.3 used register-registei
operations, limiting the number of operations between load-
ing and storing a row to one less that the number of registers.

In order to increase the number of rows being eliminated
w&.hout overflowing the cache, we updated the matrix in
strips. The width of each strip should be small so that seg-
ments of many rows can reside in the cache simultaneously.
However, making the strips too narrow reduces the vector
performance because short vectors have a relatively greater
overhead associated with them. We achieved a good bal-
ance between the two effects by choosing the width of each
strip to be the vector section size of the machine. Such a
choice ensures that most vector operations use maximum
length vectors, giving optimal performance, while allowing
segments of an adequate mJmber of rows to reside in the
cache simultaneously.

Parallel Processing

The reason that we are able to reduce cache requirements
by operating on strips of the matrix being updated is that
each of the strips is independent of the others, i.e., they do
not share data. Since the strips are independent, they can
be updated in parallel if more than one processor is avail-
able. The IBM ES/3090 family can have up to six process-
ors, so parallel processing can reduce the turnaround time
of a high-priority job. Of course, enabling an application
program, such as the ANSYS program, to exploit parallel
processing does not guarantee that a reduction in elapsed
time will occur when the job is run. Whether a user has the
dispatching priority to acquire mrJltiple processors while
running a parallel job is a political decision that is onen
made by such people as system administrators.

We follow three guidelines when enabling an application
program for parallel processing.6 The first guideline is that
the total CPU time of a parallel run should not he signif-
icantly larger than the CPU time of a serial run of the same
problem. Although t.he purpose of parallel processing is to

261

reduce the elnpscd lime of a job. t.he total CPU time, the slJm
of the CPU times OII each or t.hc processors, does not. de-
crease. In fact, it always increases by some amount because
of the overhead in handling the parallel tasks. The first
guideline reminds the programmer to minimize the overhead
of parallel processing. The second g!Jideline is that parallel
performance should not. cnmc at the expense of the vector
performance. Thus, making the strips of the mat,rix nar-
rower than the VSS in order to increase the mJmber of par-
allel pieces is not an acceptable solution because doing so,
would degrade vector performance. Since degrading vector
performance increases i.hc CPU time of a job, the second
guideline is really a specific instance of the first one. The
third guideline is that a parallel job sho\Jld effectively use all
of the processors that are available to it. To avoid having
some processors waiting while others are computing, the
computational load of each parallel task should be as nearly
balanced as possible.

For the overhead of a parallel application to he relatively
small, the amount of CPU tirne reqtJired to compute a piece
of the prohlem must he large compared to the overhead of
handling the parallel task. Problems with larger independ-
ent picccs have smaller parallel overheads when t.he same
utilities control the parallel processors. Since the size of the
independent pieces of rhe IJpdate increases with the rank of
the updat.e when the matrix size is consrant, updates involv-
ing more rows being eliminated incur smaller parallel over-
heads. The rank-n update with its potential for a large grain
size is a good match for the VS FORTRAN Multitasking
Facility, which provides facilities for controlling parallel
tasks.

Satisfying the second and third guidelines reqrJires that the
update he divided into pieces that are nearly equal in size
and Ihat. have a vector length of t.he VSS. in order to in-
crease olJr flexibility in dividing the update into independent
pieces while maintaining an adequate vect.or length, we en-
abled t.he rank-n algorit.hm to IJpdate only the range of rows
specified by ja and jh in Example I. In addition, we wrote
two additional subroutines, MUI,TI and DRIVER. that
enable the rank-n update 1.0 rlJn in parallel. If the user
specifies that more than one processor should be used to
perform the rank-n update, MULTI partitions the update
into nearly equal pieces, based on the mJmber of floating-
point operations in each piece. For instance, Figure 3 shows
how a matrix would be divided among four processors. The
numbers in the matrix indicate the processor on which each
piece would run. After partitioning the matrix, MULTI calls
the IMTF rorJtine DSPTCII to invoke DRIVER in each of
the parallel t.asks. Each insf.ance of DRIVER then calls the
rank-n update for each of the portions of the matrix assigned
to it. For instance, in Figure 3 we see that the piece of the
matrix assigned to processor 3 actually consists of portions
of two strips.

4 3

i

2

\

1

2
\

Figure 3. An example of distributing among four
processors a matrix to be updated. Care-
fully choosing the sizes of the pieces that
are assigned to each processor balances the
computational load of each processor.

Performance

Having described tlechniques that enable the tank-n update
to exploit the cache, vector processing, and parallel proc-
essing, we now discuss its performance. We begin by re-
porting the performance of the rank-n update itself. We then
examine its performance in the context of the ANSYS pro-
gram, an application which’heavily uses the rank-n update.
The performance measurements for the ANSYS jobs illus-
trate Amdahl’s Law’ and show that the scalar performance
of the computer’limits the speedup of the application.

Rank-n Update Performance

We measured the performance of the rank-n update with a
program that timed the update for dimerent values of matrix
size and rank of the update. Varying both parameters al-
lowed us to det.ermine how effectively the update used the
cache, vector processing, and parallel processing under
varying conditions. In particular, the measurements show
the ranges of matrix size and rank of the update that attain
the best performance. As we mentioned previously, in-
creasing the rank of the update improves cache reuse as long
as the cache does not overflow. The performance measure-
ments guide us in (choosing the rank of the update to use in
t.he wavefront solver and indicate how sensitive the per-

formancc of the update is to the particular chnice. In all of
the measurcmcnts, WC divided the tot.al number of floating-
point operations in the update hy the t.ime for the update to
obtain the values in terms of millions of floating-point oper-
ations per second (Mflops).

Figure 4 shows the pcrforrnancc of two versions of the
rank-n update on Ihe IRM 3090 Models 180 and 180s.
We performed the measurements on dedicated machines
running the MV:/XA 2.2.0 operating system. The rank of
the update is 32. and the matrix size, n, varies from about
100 to 2100. We show the performance of both our original
rank-n upda1.c and the new version, in which we improved
the usage of cache. In our origin.al version, we neglected to
copy the segments of the rows being eliminated into a con-
tiguous block. Clearly, many values of n cause inefficient
use of the cache, degrading performance. The new version
performs the copying operation, so it reduces the effects as-
sociated with having a st.ride that is divisible by a high power
of two. The remaining narrow valleys in the plot of the
performance result from cache misses involving the stride
of the I3 matrix. Unfortunately, the wavefront solver gener-
at.es the I3 matrix in Ihe stride-one direction, and the rank-n
update uses it. only once, so WC cannot improve the overall
performance by simply creating B in the transposed order.
The difference between the 3090 and 3090s models is mostly
due to cycle time improvements thal resull in a nearly con-
stant speedup of about 1.4. tlowever, the 3090s model also
reduces the effect of stride on performance because of its
larger cache.

Figure 5 shows the performance of the same two versions
of the rank-n update on the same models as Figure 4. In
Figure 5 the size of the matrix is fixed at 1502 and the rank
of the update, nv, varies from I IO 50. WC see that both

new
100s

erg

Figure 4. The performance of the rank-32 update as
a funcl.ioti of malrix size. Performance
measures of I.WO versions of the rank-n up-
date on 111~ II%M 3090 Models 180 and
IHIS arc ploltcd.

262

now
1eos

erg

new

180

erg

o-

n-

.-

4

3,-
::

In

n-

Figure 5. The performance of the rank-n update for Figure 5. The performance of the rank-n update for
a matrix of size 1502 as a filnrt;nn nr the a matrix of size 1502 as a function of the
rank of the update. Perforr rank of the update. Performance measures
of two versions of the rank- of two versions of the rank-n update on the
IBM 3090 Models 180 and IBM 3090 Models 180 and 18llS are plot-
ted. ted.

Figure 6. Figure 6. The speedup in The speedup in elapsed time of the parallel
rank-32 update as a fimction of lhe number
of processors on a dedicated IBM 3090
Mode! 6OOS. ‘The size of the tnatrix being
updated is indicated for each plot.

versions of the update first increase in performance as nv
increases. As we mentioned previously. the improvements
in performance result from increasing the reuse of cache and
from reducing the overhead of load and store operations.
However, the rank at which cache overflows, causing cache
misses and degrading performance, occurs at a lower value
of nv in the original version of the update. Copying the
segments of the rows being eliminated into a contiguous
block clearly improves the eficiency of filling the cache, in-
creasing the eflective size of the cache. In addition to in-
creasing the maximum performance of the update, the range
of good performance is substantially larger, as both Figures
4 and 5 illustrate.

We now examine the effect of parallel processing on the
performance of the rank-n update. First, we check to see
how well we satisfied our first and second guidelines for
parallel processing, which state that the increase in total
CPU time should be small. We measured the total CPU
times of the parallel updates and computed the CPU over-
head, the increase in the tot.al CPU time over that of the se-
rial update, for each measurement. A parallel rank-32
update of a matrix of size 200 running on six processors has
a CPU overhead of less than 4%, which decreases to much
less than 1% as t.he size of the matrix increases to 1000.

Figure 6 illustrates the speedup in elapsed time that parallel
processing achieves for a rank-32 update of several sizes of
matrices on a dedicated IBM 3090 Model 600s. Because
the overhead is small and the computational loads of the
processors are balanced, the speedup for the large matrices
is nearly equal to the number of processors. The parallel
speedups clearly indicate that we satisfied all three guidelines
for parallel processing. We measured a maximum value of

595 Mflops during a rank-32 update of a mat,rix of size 2000
on a dedicatelf IfIM 3091) Model 6flOS running the IMVSEA
2.2.0 operating system.

Application Performance

Obtaining large Mflop numbers is rewarding, but to under-
stand the true relevance of such numbers, we must examine
them in the conlext of an application that incorporates the
rank-n update. We provide such a context with the ANSYS
program, which introduced a new version of the wavefront
solver that invokes the rank-n update. Swanson Analysis
Systems, Inc. provides several ANSYS benchmarks for
measuring t.he performance of t,he ANSYS program. The
benchmarks arc stat.ic analysis problems that study a
cantilevered plate with a force loading applied to the free end
of the plate. Eight.-node, t.hree-dimensional solid
isoparametric elements (ANSYS SllF4S) represent the
plate. ‘l’hc plate has one element through its thickness, while
the numher of e1emertl.s along its length and width vary in
each of Ihe benchmarks. We reporl. results for the S3
benchmark. which uses IO elements along the length and
300 clemcnts along t,he widt,h of the plate. The S3
benchmark contains 6622 nodes and 18060 degrees of fiiee-
dom, and its maximum and RMS wavefronts are 1818 and
1619, respectively. We have reported results for other
ANSYS benchmarks previously.’

Figure 7 shows the spccdup in elapsed time of the ANSYS
S3 benchmark as a function of the Mflops in the rank-n
update. I‘he Mflop numhcrs for each of the data points are
typical values for each version of l.he rank-n update on se-
veral 1Rh’I 3090s mod&. Starting from Ihe left of Figure
7, the data poinls represent t,he scalar rank-one update, the

263

Figure 7. An illustration of Amdahl’s Law. As the
perf’trmance of the rank-n update in-
creases, the speedup of the ANSYS S3
benchmark increases more and more
slowly. If the remaining scalar component
of the job were reduced, the speedup would

follow a higher curve, as illustrated.

vector rank-one update, and the vector rank-n updates on
one, two, four, and six processors. Clearly, the speedup of
S3 increases more and more slowly as the performance of
the rank-n update increases, illustrating Amdahl’s Law.
We can closely fit the data points in Figure 7 with the func-
tion:

s = 1

(l-P)+(+)
mnkn

where S is speedup in elapsed time of the ANSYS program
over itr scalar versi.on, p is the portion of the scalar job spent
in the rank-n update, and S,onkn is the speedup of the rank-n
update over its scalar version. In Figure 7, the curve that
follows the data points uses p = .948.

Running on the six processors of the IBM 3090 Model 600s.
the ANSYS program that uses the rank-n update achieves
a speedup of 14.7 over the scalar version. Even if the num-
ber of Mflops obtained by the rank-n subroutine could be
increased without ‘bound, the speedup of the S3 benchmark
would be improved by only 31% over the speedup achieved
on the IBM 3090 Model 600s. On the other hand, if the
portion of the ANSYS job outside the rank-n update were
decreased from 5.2% to 4% in the scalar version, the
speedup of the S3 benchmark would follow the higher curve
in Figure 7, where p = .96. In that case, the speedup on the
IBM 3090 Model 600s would be 21 ?/n greater than it is for
the current version. Thus, we see that the scalar perform-
ance of the comput.er affects the speedup of the ANSYS job
much more strongly than an additional improvement of
rank-n update. The portion of the ANSYS job outside the

rank-n update is vcrg important I~ccausc t.he rank-n update
COIISII~~S ;1 smaller frnctior, of ihe elapsed time of the job
as its prrformancc improves. Further improvements in the
rank-n update ~vould yield little improvement in the ANSYS
program on the fl3M 3090 blodel hlIOS, unless the other
portions 01” the program wcrc improved substantially. Of
course, further improvements in the rank-n update would
have a significantly larger effcc~ on ANSYS jobs running on
only one processor.

Conclusions

The new wavcfront solver in the ANSYS program uses a
rank-n update, which cnn be implemented more efftciently
than the rank-one update of the older solver, especially on
a machine with hierarcllicat memory. Carefully tuning the
rank-n update to exploit the cache and the vector processing
capability nf the IBM ESi3090 VT; achieved large reductions
in both CPU time and elapsed lime for the ANSYS jobs t.hat
we timed. In addition, lhe rank-n update is suitable for
parallel processing, which can further reduce the elapsed
I.imc of an ANSYS job. i3ecausc the performance of the
mat.rix update increased so much from the scalar, rank-one
version to the vector-parallel, rank-n version, the perform-
ance of Ihc remainder of the ANSYS job limits the overall
speedup. l3esides achieving good performance, the parallel
rank-n update incurs a CPU overhead of only a few percent,
indicating that we satisfied our guidelines for parallel proc-
essing.

Acknowledgements

We rhank S. A. Murgie, P. Narducci, J. A. Swanson, 1..
Wagner. and C. R. Rogers of Swanson Analysis Systems,
Inc. for their assistance with the ANSYS program.

References

1. il. hq. Irons, A Frontal Solution Program for Finite
Eicnterrr Ann/ysi.r, International Journal for Numerical
Methods in Engineering 2 (1970) 5.

2. G. J. lIeSalvo and R. W. (‘iorman, ANSYS Engineer-
ing Ano(ysis Ifsrr’s Mrmud, (Swanson Analysis Sys-
t,ems. Inc., I louslnn. Pennsylvania, 1987).

3. R. t lessel, RI. Mysxewski, G. Brussino, J. Swanson,
and I.. Wagner, Timing t/w ANSYS Kernel LSOLVE
for n Pnrtrfl~l C‘omputer, Supetcomput.ing ‘XX, No-
vembcr 14- 18. 198% Orlando. Florida.

4. E. Ilinton and D. Ii. J. 0wen, Finite Element Pro-
gromming, (Academic Press, 1977) pp. 170-206.

264

5 -. R. Liu and N. Strother, Programming in VS Fortran 7. G. hl. Amdahl, AFlPS Conference Proceedings 30

on the IRM 3090 for Maximum Veclor Pcrformflnce, (Thc~mpson. \Vnsliingtori I>.(‘,., 1967) 483.

Computer 21 (June, 1988) 65. 8. S. $1. Chnng and M. .i\. Johnson, An Improved Version

6. R. C. Agarwal and F. Gustavson. A Pmdlcl Impfc-
of rhr A IL’S Y&F‘ Progrnm for the IBM .3090 ?‘F, ANSYS
1989 Confcrcncc Procerdings, 4-75.

menlation of Matrix Multiplication and LIJ

Factori<alion on IRM 3090, Il3M Symposium on Par-

allel Processing, October 19-21, 1988, Poughkeepsie, ANSYS is a regislered tradrmark of Swanson Analysis
New York. Syslcms. Inc.

265

