Check for
Updates

Tuning the Rank-n Update in a Wavefront
Solver for Peak Performance

Sen-ming Chang
Mark A. Johnson

Applications Technology Center
IBM Corporation
Neighborhood Road
Kingston, NY 12401

Abstract

The wavefront solver is a type of linear equation solver that
is suitable for solving the system of linear equations that
arises in many finite-element applications. A new version
of the wavefront solver was recently introduced into the
ANSYS® program that uses a rank-n update. The rank-n
update has properties that allow it to make very efficient use
of a hierarchical memory structure. In addition, the rank-n
update can exploit both vector and parallel processing to
increase its performance. We discuss several general tech-
niques for tuning the rank-n update, using the IBM ES/3090
VF as an example of a computer that incorporates hierar-
chical memory and vector and parallel processing capabili-
ties. We then report the performance of the tuned rank-n
update, both in isolation and in the context of ANSYS jobs.

Keywords: Wavefront solver, Rank-n update, Hierarchical

memory, Vector processing, Parallel processing, IBM
ES/3090 VF.

Introduction

The computation that dominants many finite-element appli-
caltions is assembling and solving a set of linear equations.
One type of linear equation solver is the wavefront solver,
which works on only a small subset of the whole problem,
the wavefront, at any given time. Rather than assembling
all of the equations at once and then solving them, the
wavefront solver assembies and solves the equations together
in small steps. While assembling new equations adds vari-
ables to each step, partially solving the resulting equations
eliminates variables from subsequent steps. When Irans'
first introduced the wavefront method, he proposed elimi-
nating one equation at a time. A large part of the process
of eliminating an equation is updating the remaining
equations, which is accomplished with a rank-one update
of the matrix representing the equations. Recently Swanson
Analysis Systems, Inc. introduced a new version of the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1989 ACM 089791-341-8/89/0011/0257 $1.50

257

wavefront. solver into the ANSYS® program, a general-
purpose, finite-element, structural analysis program.2 The
new solver can climinate many equations at once, which in-
volves a rank-n updalte of the remaining rows of the matrix.
We will focus our attention on the matrix update because it
often accounts for a large portion of the CPU time spent in
the ANSYS program.

Carefully tuning the matrix updale to exploit the hardware
featurcs of a computer can substantially increase the per-
formance ol the update. We will describe techniques for
taking advantage of such features as hierarchical memory,
vector processing, and parallel processing. In particular,
we will cxamine the properties of the rank-n update that ai-
low it to ulilize a hierarchical memory structure efficiently.
Although the details of tuning the matrix update and the
resulting gains in its performance vary on different comput-
ers, the techniques are still fairly general. We use the IBM
ES/3090 VI' as a specific instance of a computer with a hi-
erarchical memory and with vector and parallel processing
capabilitics.

Following a more detailed description of the problem being
solved and the architecture of the IBM 3090 family, we de-
scribe the tuning techniques as applied to the rank-n matrix
update. We then give performance resuits that show the ef-
fect of tuning the update procedure. In addition to reporting
the performance of matrix update alone, we show the re-
sulting performance improvement in the ANSYS program
and discuss the implications of Amdahl’s [.aw.

Wavefront Solver

The linear equation solver in a finite-element application
assembles and solves a svstem of linear equations having the
form,

AX =V

where A is the positive-definite global stiffness matrix, X is
the solution vector, and V is the load vector. Although the
global stiffness matrix may or may not be symmetric, we will

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76263.76291&domain=pdf&date_stamp=1989-08-01

consider only the syrmetric case in the following discussion.
Instead of assembling all of the element matrices to form the
full global stiffness matrix and then solving the complete
system of equations, the wavefront method interleaves the
steps that assemble and solve the equations. As the solver
processes each of the elements, it assembles new equations
into the global stiffness matrix and solves some of the
equations in the parlially constructed matrix. The clements
involved in the partially constructed matrix constitute the
current wavefront. Although the size of A increases and
decreases during the solution process, it is always much
smaller than the full global stiffness matrix. Thus, the
wavefront solver requires much less memory to store the
stiffness matrix than solvers that assemble the full matrix.

Because detailed descriptions of the wavefront method al-
ready exist, >4 we present only a summary of the steps. In
the following description, the nodes currently in the stiffness
matrix are the active nodes.

L. A new element is assembled into the global stiffness
matrix by obtaining its stiffness coefficients from a
scratch file. If the nodes of the element are being acti-
vated for the first time, their stiffness coefficients are
added to the global matrix. If the nodes are already
active, their stiffness coefficients are summed into the
existing equations.

2. If some nodes are appearing in the global stiffness ma-
trix for the last time, the corresponding equations are
solved in terms of the other active nodes. After rear-
ranging the global stiffness matrix, A, so that the nv
equations being solved reside in its first nv rows, each
of the nv rows is scaled by its diagonal element and
stored in the matrix B.

Ay

B, = —L
Ay

The remaining rows in A are then updated using the

scaled rows in B and the nv rows being eliminated, ac-

cording to the following equation.

ny
A=A, - ZBkiAkj
P

After A has been updated, the nv equations are elimi-
nated from A, and the corresponding nodes are deac-
tivated, decreasing the size of the global stiffness matrix
and making space available for subsequent steps. The
matrix B is stored in a scratch file for use in the subse-
quent back substitution.

3. Steps 1 and 2 are repeated until all of the elements in
the problem have been processed. After assembling the
last element, the number of equations equals the num-
ber of unknowns, allowing the remaining equations to
be solved explicitly.

258

4. The resulting triangularized matrix in the scratch file is
nsed in a back substitution, completing the solution
process.

The original version of the wavefront solver eliminates only
one equation at a time, so it can use only one row to update
the remaining rows of the global stiffness matrix. Such an
update procedure is called a rank-one update of the matrix.
Tlowever, the new version of the wavefront solver eliminates
multiple cquations in a single step, allowing the use of a
rank-n update. The rank-n update uses all the rows being
eliminated to update the remaining rows of Lhe giobal
stiffness matrix. In order to use a rank-n updale, the solver
continues to assemble new elemenls into the global stiffness
matrix until a predetermined number of rows can be elimi-
nated together. The solver then uses the rank-n update in
the process of eliminating the rows from the matrix.

In the remainder of this paper, we will focus on the matrix
update because it accounts for most of the CPU time spent
in the wavefront solver. In turn, the wavefront solver ac-
counts for a large portion of the CPU time consumed by
many ANSYS jobs, cspecially those performing linear slatic
analysis. The advantage of using the rank-n update instead
of the rank-one update is that the rank-n update performs
many updates at once and thus allows more opportunity for
tuning. While the rank-one updale is a matrix-vector oper-
ation, the rank-n update is a matrix-matrix operation, which
can often be tuned lo use a hierarchical memory structure
very efficiently.

Architectural Description

The various techniques for tuning the rank-n update apply
to many computers that have hierarchical memory struc-
tures and support vector and parallel processing. owever,
we apply our techniques to the IBM ES/3090 VF to make
the following discussion more clear and concrete. Before
investigating the techniques for improving the performance
of the rank-n update, we briefly summarize the relevant
features of the 3090 family.

The hierarchical memory in the 3090 consists of cache, main
memory, cxpanded storage, and disk storage. Although the
wavefronl solver uses expanded storage to contain jts large
scratch files, the rank-n update deals with only the cache and
main memory. The cache is a four-way, set-associative
memory organized into 128 byte cache lines, having a total
size of 64 kbhytes on the 3090 and 3090E models and 128
kbytes on the 0908 models. Depending on the addressing
pattern of a program, the effective size of the cache can vary
from its full size down to only four cache lines. When data
is addressed with a stride between adjacent elements that is
divisible hy a high power of two, the cache lines compete for
space in the four-way, set-associative scheme, reducing the

effective size of the cache. We will see the effect of ignoring
stride in the section on performance.

The veclor architecture of the 3090 family consists of 16
short-precision or 8 long-precision vector registers and a
varicly of vector instructions. Each of the vector registers
can contain at most 128 elements on the 3090 and 3090
models and 256 elements on the 30908 models. The length
of the vector registers is the vector section size (VSS) and is
the largest number of elements that a single vector instruc-
tion can process. The vector instructions have a variety of
addressing modes, including register-register operations and
memory-register operations. The memory-register oper-
ations allow only one memory access per element. I the
data that the memory operand addresses resides in the
cache, memory-register operations are as fast as register-
register operations. However, if the data does not reside in
the cache, the resulting cache miss slows the execution of the
memory-register operation. Although most of the vector
instructions perform a single operation on each element, se-
veral instructions perform both a multiplication and an ad-
dition or a subiraction on each element. The compound
operatlions execute in the same length of time as the single
operation, so they should be used wherever possible.

The IBM ES§/3090 family of computers has models with
from one to six processors, and software support is available
to allow paraliel processing. Each of the processors in a
multiprocessor system share the same main memory, ex-
panded storage, and disk storage, but each processor has its
own cache, whose integrity is guaranteed by the hardware.
The software support that we used is the VS FORTRAN
Multitasking IFacility (MTF), which has been part of the VS
FORTRAN library since Version 1 Release 4. The MTF
aliows the main task to dispatch a subroutine as a subtask
on another processor and to synchronize the main task with
the completion of the dispatched subroutine. Such a simple
interface was completely adequate for enabling the rank-n
update to exploit paralle! processing.

Tuning The Rank-n Update

FORTRAN Implementation

As we mentioned previously, the input to the rank-n update
procedure consists of the global stiffness matrix, A, and a
matrix, B, containing the scaled rows being eliminated.
Figure 1? illustrates the storage order of A, which is the up-
per triangular portion of the square matrix representing the
currently active nodes. Tigurc | also illustrates the storage
order of B. Example 1 gives a simple FORTRAN imple-
mentation of the rank-n update algorithm, where n is the
total number of rows in A, and nv is the number of rows

12 T [F8[77]76[75]74]73]72]71] 70]69 68 |67 T
11 66165164|63]62[62160{ 59]58[57]s56] nv
19 551541531521511501 4948147146} §
45| 44} 43]42]41 [40)39(38 37
g 36[35 {3433 32{31[30 29
7 n 2812726} 25|24 |23)22 n
6 A 21]20{19[18{17 16
5 15{ 14]13]12]11
4 lof ol 8f 7
3 61 5/ 4
2 3 2
1 L L

e v —
Figure 1. The storage order of matrices A and B that
the rank-n update uses. The size of A is

n, and the number of rows being eliminated
is nv.

bheing eliminated. The rank-one update can be recovered
from thc more general rank-n update by eliminating the ar-
gument nv and the loop over nv on line 10 of Example L.

1 subroutine rankn (A, n, B, nv, ka, kb, ja, jb)
2 integer in, ir, jn, jr, n, nv, ka, kb, ja, jb, i, j, k
3 doubie precision A(*), B(n, nv)
4
5 in=n-ja-+1
6 ir=(@(n*@n-1))/2
7 do 10} = ja, min(n - ka + 1, jb)
8 n=n
9 r=Mm*n-1)/2
10 do20i = I, nv
11 do 30 k = ka, min{in, kb)
12 A(ir + k) = A(ir + k) - B(in, 1) * A(r + k)
13 20 continue
14 in = jn-1
15 ir = jr-in
16 20 continue
17 in =in-1
18 ir = ir-in
19 10 continue
20 rcturn
21 end
Example |.

Rather than updating the whole matrix in the example, we
allow the programmer to specify a range of rows (ja to jb)
and columns (ka to kb) to update. As we will describe later,
the additional fiexibility is necessary in a version of the
wavefronl solver that exploits parallel processing.

259

Cache Usage

In both the rank-one and the rank-n updates, the row or
rows being eliminated are used many times once they are
loaded into the cache. However, the rank-one updale vses
each row that is being updated in only one operation (linc
12 of Example 1) during the update. In contrast, the the
rank-n update uses each row being updated in nv oper-
ations, resulting in much more effective use of the hierar-
chical memory. Increasing the number of rows being
eliminated improves the usage of cache and thereby im-
proves performance, as long as all the rows being eliminated
can remain in the cache.

Since the cache is relatively small and we want to make the
number of rows being eliminated as large as possible without
overflowing cache, we modified the basic algorithm to re-
duce the cache requirements of each row. The modification
consists of updating strips of the matrix, as Figure 2 illus-
trates. Each strip consists of a range of columns of the ma-
trix being updated. The modified algorithm requires that
only a portion of each row being eliminated reside in cache,
so more such rows can be used without overflowing the
cache. In the next section, we will discuss vector processing
considerations and examine the balance between the width
of each strip and the number of rows being eliminated.

In the basic algorithm, the rows being eliminated were con-
tiguous in their storage order, so they efficiently filled the
cache. In contrast, the modified algorithm uses only seg-
ment of each such row, and the segments are not contiguous.
The noncontiguous segments may or may not fill the cache
efficiently, depending on the stride between adjacent seg-
ments. As we mentioned in the description of the IBM
3090's cache, certain strides, such as those divisible by a high
power of two, cause competition for the certain cache lines
in the four-way, set-associative scheme. A technique for
ensuring that the cache is filled efficiently, regardless of the
stride between adjacent segments, is to copy the segments
of the rows being eliminated into a contiguous block.* The
storage space and the amount of time required for the
copying operation are small under all circumstances because
the size of the cache limits the amount of data that must be
copied for each strip.

Vector Processing

The loop over k in Example 1 is the loop that is most suit-
able for vectorization because it produces sufficiently long
vectors with a unit stride. The IBM VS FORTRAN Version
2 compiler will vectorize the loop over k, using a compound
operation that performs both the multiplication and the
subtraction on line 12 of Example 1. lowever, the vector
A(Gr + k) is loaded from memory and stored back te
memory during each iteration of the loop over i. Such re-
dundant loads and stores can often be eliminated by moving

kb

FESS

ka

260

n-nv

N

An example of the use of ka and kb to di-
vide the matrix being updated into strips.
A good choice for the width of each strip
is the vector section size (VSS) of the ma-
chine.

Figure 2.

the vector loop outside other loops, e.g., by changing the
order of the loops over i and k in Example 1.5 Unfortu-
nately, such a technique will not work in Example | because
of the complicated addressing that the storage order of ma-
trix A requires. We eliminated the rcdundant loads and
stores in the rank-n update by programming it in assembler,
rather than in FORTRAN. We note that if a rank-one up-
date were used instead, the loop over i would not be present,
and a load and store would be necessary for each multiply-
subtract operation.

The assembler implementation of the rank-n update consists
of the following steps.

1. Load a segment of the row being updated into a vector
regisier.

2. l.oad the scale factor, B(in, i) in line |2 of Example 1,
into a scalar floating-point register.

3. Perform a vector multiply-subtract operation on the
segment of the row being updated, using a memory
operand to obtain the segment of A(jr + k), a row
being climinated.

4. Repeat steps 2 and 2 for alf nv rows being eliminated.

2

Store the updated segment of the row loaded in step 1
back into matrix A.

Increasing the number of operations performed on each
segment of a row between loading it and storing it improves
the performance of the update procedure. Eliminating many
rows at once both reduces the overhead of loads and stores
and improves the usage of the cache, as long as the cache
does not overflow. [f the cache overflows, cache misses de-
grade the performance of the rank-n update, negating the
benefits of further reducing the overhead of loads and stores.
As we mentioned in the section describing the architecture
of the IBM 3090 family, memory-register dperations are as
fast as register-register operations if the memory operand
resides in cache. So in step 3 of the assembler algorithm,
we are able to use a memory operand, which allows a loop
over the nv rows being eliminated without sacrificing per-
formance, In contrast, Hessel et al.’ used register-register
operations, limiting the number of operations between load-
ing and storing a row to one less that the number of registers.

In order to increase the number of rows being eliminated
without overflowing the cache, we updated the matrix in
strips. The width of each strip should be small so that seg-
ments of many rows can reside in the cache simultaneously.
However, making the strips too narrow reduces the vector
performance because short vectors have a relatively greater
overhead associated with them. We achieved a good bal-
ance between the two effects by choosing the width of each
strip to be the vector section size of the machine. Such a
choice ensures that most vector operations use maximum
length vectors, giving optimal performance, while allowing
segments of an adequate number of rows to reside in the
cache simultaneously.

Parallel Processing

The reason that we are able to reduce cache requirements
by operating on strips of the matrix being updated is that
each of the strips is independent of the others, i.e., they do
not share data. Since the strips are independent, they can
be updated in parallel if more than one processor is avail-
able. The IBM ES/3090 family can have up to six process-
ors, so parallel processing can reduce the turnaround time
of a high-priority job. Of course, enabling an application
program, such as the ANSYS program, to exploit parallel
processing does not guarantee that a reduction in elapsed
time will occur when the job is run. Whether a user has the
dispatching priority to acquire multiple processors while
running a parallel job is a political decision that is often
made by such people as system administrators.

We follow three guidelines when enabling an application
program for parallel processing.® The first guideline is that
the total CPU time of a parallel run should not be signif-
icantly larger than the CPU time of a serial run of the same
problem. Although the purpose of parallel processing is to

261

reduce the elapsed lime of a job, the total CPU time, the sum
of the CPU times on each of the processors, does not de-
crease. In fact, it always increases by some amount because
of the overhead in handling the parallel tasks. The first
guideline reminds the programmer to minimize the overhead
of parallel processing. The second guideline is that parallel
performance should not come at the expense of the vector
performance. Thus, making the strips of the matrix nar-
rower than the VSS in order to increase the number of par-
ailel pieces is nol an acceptable solution because doing so
would degrade vector performance. Since degrading vector
performance increases thc CPU time of a job, the second
guideline is realfly a specific instance of the first one. The
third guideline is that a parallel job should effectively use all
of the processors that are available to it. To avoid having
some processors waiting while others are computing, the
computational load of each parallel task should be as nearly
balanced as possible.

For the overhead of a parallel application to be relatively
small, the amount of CPU time required to compute a piece
of the problem must be large compared to the overhead of
handling the parallel task. Problems with larger independ-
ent picces have smaller parallel overheads when the same
utilities control the paratlel processors. Since the size of the
independent pieces of the update increases with the rank of
the update when the matrix size is constant, updates involv-
ing more rows being climinated incur smaller parallel over-
heads. The rank-n update with its potential for a large grain
size is a good match for the VS FORTRAN Multitasking
Facility, which provides facilities for controlling parallel
tasks.

Satisfying the second and third guidelines requires that the
update bhe divided into pieces that are nearly equal in size
and that have a vector length of the VSS. In order to in-
crease our flexibility in dividing the update into independent
pieces while maintaining an adequate vector length, we en-
abled the rank-n algorithm to update only the range of rows
specified by ja and jb in Example 1. In addition, we wrote
two additional subroutines, MULTI and DRIVER, that
enable the rank-n update to run in parallel. If the user
specifies that more than one processor should be used to
perform the rank-n update, MULTI partitions the update
into nearly cqual pieces, based on the number of floating-
point operations in each piece. For instance, Figure 3 shows
how a matrix would be divided among four processors. The
numbers in the matrix indicate the processor on which each
piece would run. After partitioning the matrix, MULTI calls
the MTF routine PSPTCII to invoke DRIVER in each of
the parallel tasks. Fach instance of DRIVER then calls the
rank-n update for each of the portions of the matrix assigned
to it. Tor instance, in Figure 3 we see that the piece of the
matrix assigned to processor 3 actually consists of portions
of two strips.

N I
\ 4 4 3 2 nv
\J 4 3 2 1
\ 1830

N

N

Figure 3. An example of distributing among four
processors a matrix to be updated. Care-
fully choosing the sizes of the pieces that
are assigned to each processor balances the
computational load of each processor.

Performance

Having described techniques that enable the rank-n update
to exploit the cache, vector processing, and parallel proc-
essing, we now discuss its performance. We begin by re-
porting the performance of the rank-n update itself. We then
examine its performance in the context of the ANSYS pro-
gram, an application which heavily uses the rank-n update.
The performance measurements for the ANSYS jobs illus-
trate Amdahl’s Law’ and show that the scalar performance
of the computer limits the speedup of the application.

Rank-n Update Performance

We measured the performance of the rank-n update with a
program that timed the update for different values of matrix
size and rank of the update. Varying both parameters al-
fowed us to determine how effectively the update used the
cache, vector processing, and parallel processing under
varying conditions. In particular, the measurements show
the ranges of matrix size and rank of the update that attain
the best performance. As we mentioned previously, in-
creasing the rank of the update improves cache reuse as long
as the cache does not overflow. The performance measure-
ments guide us in choosing the rank of the update to use in
the wavefront solver and indicate how sensitive the per-

262

formance of the update is to the particular chojce. In all of
the measurements, we divided the total number of floating-
point operations in the update by the time for the update to
obtain the values in terms of millions of floating-point oper-
ations per second (Mflops).

Figure 4 shows the performance of two versions of the
rank-n update on the IBM 3090 Models 180 and 180S.
We performed the measurements on dedicated machines
running the MVS/XA 2.2.0 operating system. The rank of
the updaltce is 32, and the matrix size, n, varies from about
106 to 2100. We show the performance of both our original
rank-n update and the new version, in which we improved
the usage of cache. In our original version, we neglected to
copy the segments of the rows being eliminated into a con-
tignous block. Clearly, many values of n cause inefficient
use of the cache, degrading performance. The new version
performs the copying operation, so it reduces the effects as-
sociated with having a stride that is divisible by a high power
of two. The remaining narrow valleys in the plot of the
performance resull from cache rmisses involving the stride
of the B matrix. Unfortunately, the wavefront solver gener-
ates the B matrix in the stride-one direction, and the rank-n
update uscs it only once, so we cannot improve the overall
performance by simply creating B in the transposed order.
The difference between the 3090 and 30908 models is mostly
due to cycle time improvements that result in a nearly con-
stant speedup of about 1.4. FHowever, the 3090S model also
reduces the effect of stride on performance because of its
larger cache.

Figure 5 shows the performance of the same two versions
of the rank-n update on the same models as Figure 4. In
Figure S the size of the matrix is fixed at 1502 and the rank
of the update, nv, varies from 1 to 50. We see that both

81 new
L 1808
gt org
= new
3 g 180
s F
3 org
eF
Rk
o R | 1 1 I} L [1 -
[500 1000 1500 2000
n
Tigure 4. The performance of the rank-32 update as

a function of matrix size. Performance
measures of two versions of the rank-n up-

date on the IBM 3090 Modeis 180 and
1808 arc plotted.

gl T n=2000
: — n=1000
N 180S
ory ol n=500
18
I T
ol new n=200
2 180 £y
) ©
s I org 80T
g i [7]
= “r
g -
-
o i] L L 1 1 1 L L. J i 1 1 A
[10 20 p] 40 30 QO 1 2 3 4 .'I: ;
nv Number of Processors
Figure 5. The performance of the rank-n update for i 6 Th dun in ol dti r it (el
- . . ¢
a matrix of size 1502 as a function of the igure 0. ¢ speedup in elapsed time of the paralle

rank of the update. Performance measures
of two versions of the rank-n update on the
IBM 3090 Models 180 and 1808 are plot-
ted.

versions of the update first increase in performance as nv
increases. As we menlioned previously, the improvements
in performance result from increasing the reuse of cache and
from reducing the overhead of load and store operations.
However, the rank at which cache overflows, causing cache
misses and degrading performance, occurs at a lower value
of nv in the original version of the update. Copying the
segments of the rows being climinated into a contiguous
block clearly improves the efficiency of filling the cache, in-
creasing the effective size of the cache. In addition to in-
creasing the maximum performance of the update, the range
of good performance is substantially larger, as both Figures
4 and 5 illustrate.

We now examine the effect of parallel processing on the
performance of the rank-n update. First, we check to see
how well we satisfied our first and second guidelines for
parallel processing, which state that the increase in total
CPU time should be small. We measured the total CPU
times of the parallel updates and computed the CPU over-
head, the increase in the total CPU time over that of the se-
rial update, for each measurement. A parallel rank-32
update of a matrix of size 200 running on six processors has
a CPU overhead of less than 4%, which decreases to much
less than 1% as the size of the matrix increases to 1000.

Figure 6 illustrates the speedup in elapsed time that parallel
processing achieves for a rank-32 update of several sizes of
malrices on a dedicated IBM 3090 Model 600S. Because
the overhead is small and the computational loads of the
processors are balanced, the speedup for the large matrices
is nearly equal to the number of processors. The paralle
speedups clearly indicate that we satisfied all three guidelines
for parallel processing. We measured a maximum value of

263

rank-32 update as a function of the number
of processors on a dedicated IBM 3090
Model 600S. The size of the matrix being
updated is indicated for each plot.

5935 Mflops during a rank-32 update of a matrix of size 2000
on a dedicated IBM 3090 Model 600S running the MVS/XA
2.2.0 operating system.

Application Performance

Obtaining large Mflop numbers is rewarding, but to under-
stand the true relevance of such numbers, we must examine
them in the context of an application that incorporates the
rank-n update. We provide such a context with the ANSYS
program, which introduced a new version of the wavefront
solver that invokes the rank-n vpdate. Swanson Analysis
Systems, Inc. provides several ANSYS benchmarks for
measuring the performance of the ANSYS program. The
benchmarks arc static analysis problems that study a
cantilevered plate with a force loading applied to the free end
of the plate. flight-node, three-dimensional solid
isoparametric eclements (ANSYS STIF4S) represent the
plate. The plate has one clement through its thickness, while
the number of elements along its length and width vary in
each of the benchmarks. We report results for the 83
benchmark, which uses 10 elements along the length and
300 clements along the width of the plate. The S§3
benchmark contains 6622 nodes and 18060 degrees of free-
dom, and its maximum and RMS wavefronts are 1818 and
1619, respectively. We have reported results for other
ANSYS benchmarks previously.?

Figure 7 shows the spcedup in elapsed time of the ANSYS
S3 benchmark as a function of the Mflops in the rank-n
update. The Mflop numbers for each of the data points are
typical values for each version of the rank-n update on se-
veral IBM 2090S models. Starting from the left of Figure
7, the data points represent the scalar rank-one update, the

15

-
-8 °r
3

o
&

P L L i 1 1 l

o 100 200 300 00 %00 80
Mflops
Figure 7. An illustration of Amdahi’s Law. As the

performance of the rank-n update in-
creases, the speedup of the ANSYS 83
benchmark increases more and more
slowly. If the remaining scalar component
of the job were reduced, the speedup would
follow a higher curve, as illustrated.

vector rank-one update, and the vector rank-n updates on
one, wo, four, and six processors. Clearly, the speedup of
$3 increases more and more slowly as the performance of
the rank-n update increases, illustrating Amdahl’s Law.
We can closely fit the data peints in Figure 7 with the func-
tion:

5= 1
(L —p)+(

P
Srankn
where S is speedup in elapsed time of the ANSYS program
over its scalar version, p is the portion of the scalar job spent
in the rank-n update, and S,nn is the speedup of the rank-n
update over its scalar version. In Figure 7, the curve that

follows the data points uses p = .948,

Running on the six processors of the IBM 3090 Model 600S,
the ANSYS program that uses the rank-n update achieves
a speedup of 14.7 over the scalar version. Even if the num-
ber of Mflops obtained by the rank-n subroutine could be
increased without bound, the speedup of the §3 benchmark
would be improved by only 31% over the speedup achieved
on the IBM 3090 Model 600S. On the other hand, if the
portion of the ANSYS job outside the rank-n update were
decreased from 5.2% to 4% in the scalar version, the
speedup of the S3 benchmark would follow the higher curve
in Figure 7, where p = .96. In that case, the speedup on the
IBM 3090 Model 600S would be 21% greater than it is for
the current version. Thus, we see that the scalar perform-
ance of the computer affects the speedup of the ANSYS job
much more strongly than an additional improvement of
rank-n update. The portion of the ANSYS job outside the

264

rank-n update is very important because the rank-n update
consumes a smaller fraction of the elapsed time of the job
as its performance improves. Further improvements in the
rank-n update would yield little improvement in the ANSYS
program on the IBM 3090 Model 600S, unless the other
portions of the program were improved substantially. Of
course, further improvements in the rank-n update would
have a significantly larger effect on ANSYS jobs running on
only one processor.

Conclusions

The new wavefront solver in the ANSYS program uscs a
rank-n update, which can be implemented more efficiently
than the rank-one update of the older solver, especially on
a machine with hierarchical memory. Carefully tuning the
rank-n update to exploit the cache and the vector processing
capability of the IBM ES/3090 VI achieved large reductions
in both CPU time and elapsed time for the ANSYS jobs that
we timed. In addition, the rank-n update is suitable for
parallel processing, which can further reduce the elapsed
time of an ANSYS job. Becausc the performance of the
matrix update increased so much from the scalar, rank-one
version to the vector-parallel, rank-n version, the perform-
ance of the remainder of the ANSYS job limits the overall
speedup. Besides achicving good performance, the parallel
rank-n update incurs a CPU overhead of only a few percent,
indicating that we satisfied our guidelines for parallel proc-
essing.

Acknowledgements

We thank S. A. Murgie, P. Narducci, J. A. Swanson, I..
Wagner, and C. R. Rogers of Swanson Analysis Systems,
Inc. for their assistance with the ANSYS program.

References

1. B. M. Irons, A Frontal Solution Program for Finite
Elemenr Analysis, International Journal for Numerical
Methods in FEnginecring 2 (1970} 5.

G. 1. DeSalvo and R. W. Gorman, ANSYS Engineer-
ing Analysis User's Manual, (Swanson Analysis Sys-
tems. Inc., ITouston, Pennsylvania, 1987).

3. R. lessel, M. Myszewski, G. Brussino, J. Swanson,
and .. Wagner, Timing the ANSYS Kernel LSOLVE
for a Parallel Computer, Supercomputing ‘88, No-
vember 14-18, 1988, Orlando, Florida.

F. Hinton and D. R. J. Owen, Finite Flement Pro-
gramming, (Academic Press, 1977) pp. 170-206.

B. Liu and N. Strother, Programming in VS Fortran
on the IBM 3090 for Maximum Vector Performance,
Computer 21 (June, 1988) 65.

R. C. Agarwal and F. Gustavson, A Parallel Imple-
mentation of Matrix Multiplication and LU
Factorization on IBM 3090, IBM Symposium on Par-
allel Processing, October 19-21, 1988, Poughkeepsie,
New York.

265

G. M. Amdahl, AFIPS Conference Proceedings 30
(Thompson, Washington D.C., 1967) 483.

S. M. Chang and M. A. Johnson, An Improved Version
of the ANSYS Program for the IBM 3090 VF, ANSYS
1989 Conference Proceedings, 4-75.

ANSYS is a regislered trademark of Swanson Analysis
Systems. Inc.

