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Abstract 

This pqxr introduces a family of interconnection net- 
works for loosely-coupled multiprocessors called Hierarchical 
Cubic Nmorks (HCNs). HCNs use the well-known hypercube 
network as their basic building block. Using a considerably 
lower number of links per no&. HCNs realize lower network 
a7~er.r than the hypercube. The pe@rmance of several 
well-known applications on a hypothetical system employing 
the HCN is identical to their performance on a hypercube. 
HCNs thus enjoy the same advantages as a hypercube, albeit 
with considerably siinpler interconnections. 

Keywords: Hypercllbe. Intercxmnection Networks, Loosely- 
Coupled Multiprocessor, Parallel Processing. 

1. Introduction 

In recent years. a modest number of multiprocessors 
using a Hypercube ‘interconnection topology have been 
announced. These :include the Intel ISPC. iSPC/2 [6], the 
NCUBE family, the Symult (Ametek) S series [l] and the 
Connection Machines, CM-I. CM-2 [12] and a variety of oth- 
ers. The hypercube interconnection has a number of features 
that make it ateactive as an interconnection scheme in highly 
concurrent, loosely-coupled multiprocessors: 

0 The hyperculbe interconnection scheme subsumes a wide 
variety of interconnection patterns required by common 
parallel applications. More specifically, a hypercube of 
dimension n can emulate a wraparound mesh of dimen- 
sion p x q, where 
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The Hypercube can thus emulate any interconnection 
topology that the mesh can emulate -- this includes 
trees, linear geometries, rings, X-trees and so on [6], 
[13]. In addition, it can emulate a variety of other 
interconnection patterns such as a logarithmic graph and 
the butterfly interconnection [13]. 

0 The diameter (or maximum internode distance) is loga- 
rithmically related to the number of nodes. 

0 The number of links per node is also logarithmically 
related to the number of nodes. 

0 The algorithm for routing messages in a hypercube is 
fairly straightforward and simple. 

l There are alternate paths between any pair of nodes, 
making possible fault-tolerance and alternate routings to 
avoid congestion. 

A variety of interconnection networks based on the hypercube 
have also been proposed. These include the spanning bus 
hypercube [14], cube-connected-cycles [9]. dual-bus hypercube 
[14]. hypemets based on cubelets [5]. generalized cubic net- 
works [2], enhancements to the hypercube such as [4]. and 
generalizations such as [8]. 

The major disadvantages of a hypercube network are: 

a Incremental growth is not easy. If incremental growths 
are allowed, one needs complicated routing algorithms 
for the ‘incomplete cube’ [ 71. 

0 The layout of the hypercube is not planar, thus compli- 
cating its VLSI implementation [13]. 

In this paper, we will propose a new variety of interconnection 
network based on the hypercube that has the following advan- 
tages: 

1. It would allow 2’” + n, nodes to be connected, where n 1 
m, such that the diameter is 5 (m + n) (i.e., cubic), 
requiring only (n + 1) links per node. In contrast, a 
hypercube network, connecting the same number of 
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2. 

nodes will require (m + n) links per node. 

The network can be incrementally expanded, requiring 
no change in the interconnection strategy as long as a 
very simple but unconstrainmg rule is followed, 

The proposed network will thus enjoy all of the advantages 
associated with the hypercube albeit with a relatively smaller 
degree of link connections per node and a lower number of 
links. Fallouts from the reduced number of iii and links per 
node include a lower network cost, easier wireability. the pos- 
sibility of integrating the communication controllers on the 
same chip as the processing node, relatively more planar lay- 
out and so on. 

Section 2 of the paper describes the proposed network, 
called the Hierarchical Cubic Network (HCN). Section 3 of 
the paper describes routing algorithms for the proposed net- 
work and evaluates the diameter of the network under these 
algorithms. We also describe an algorithm that results in an 
optimal routing distance in Section 3. In Section 4. we 
describe the design of incomplete HCNs, relevant routing algo- 
rithms and the resulting diameters. Section 5 represents an 
assessment of the HCN, involving its comparison with similar 
networks on the basis of such things like physical characteris- 
tics, diameter and complexities of mapped algorithms. The 
last section represents the conclusions. An appendix to review 
the characteristics of a hypercube, especially its routing algo- 
rithm, is also provided. 

2. The Hierarchical Cubic Network 

We propose the design of a new cube based network, 
called the Hierarchical Cubic Network, HCN. The HCN is a 
hierarchical network that uses hypercube networks as its 
nodes. To prevent confusion, we will call each node of this 
hierarchical network a cluster. A cluster is a thus a hypercube 
network itself. of dimension II. say. The hierarchical network 

proposed has 2” clusters, where m I n. Such a network is 
characterized by the values of m and n -- we will thus use 
HCN (m. n) to describe the proposed network. When m = n. 
we have a complete HCN. When m < n, the HCN is incorn- 
plete. 

Each node or processing element (PE) in a cluster has n 
local links (corresponding to the n-cube connection) and one 
additional link (called an exfernal link) to a PE in some other 
cluster. In an incomplete HCN, for some PEs in a cluster, the 
external link may be unused. For the time being, we will 
assume that m = n, i.e, the HCN is complete. We will incor- 

porate appropriate changes that have to be made when the 
HCN is incomplete. 

We will number the PEs in the HCN as (i, j). where i is 
the binary address of the cluster in which this PE is located 
and j is the “local” address for the PE within the cluster. 
External links connecting PEs in two different clusters are set 
up as described in the following algorithm: 

for i = 0 to (T - 1) do ( 

for j = 0 to (2’ - 1) do ( 
if ( i + j ) then 

ConwNi j). (i, i>); 
else 

Connect((i, i), (i, T)); 

1 
1 

Note: 

1. A new lii is not established between nodes (i, j), (k, 1) 
if one already exists. 

2. i is the complement (Is complement) of i; the external 

link between nodes (i, i) and (i, i) , where 0 I i I (2” - 
1). is called a diameter link. 

In what follows, we will use the term ‘external link’ to 
allude to external links that connect (i, j) to (j, i), such that i # 
j. We will also use the term ‘external link’ to describe exter- 
nal links that are diameter links. We now describe a set of 
routing algorithms which we will be using for routing between 
any two non-local nodes in a HCN(n, n) network. 

Figures 1 and 2 depict examples of some complete 
HCNs. Table 1 depicts the characteristics of the HCN(n, n) 
network for some values of n. Note that the HCN exhibits 
diameters identical to hypercubes with the same number of 
nodes, but requires a considerably lower number of 

Table 1. Characteristics of some complete HCNs 
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interconnections per node than the hypercube. This difference 
becomes more dramatic as n increases, tending towards half 
the number of links per node compared to a hypercube. The 
number of links nleeded in a complete HCN is also consider- 
ably smaller than that needed by a hypercube (with the same 
number of nodes) and also approaches half the number of links 
in the hy-percube, when n increases. 

3. Routing Algorithms in a Complete HCN 

In this section we will describe some possible routing 
algorithms for the complete HCN and estimate the diameter of 
the HCN under these routing algorithms. 

3.1 Routing Algorithm A 

Algorithm A routes a message from a node j in cluster i 
i.e., (i, j) to a node 1 in cluster k i.e. (k, 1) as follows: 

(i) Use the hypercube routing algorithm (Appendix) to 
route from node (i. j) to the node (i, k). (This amounts 
to rourbg &zlry withii the hypercube i.) Node (i, k) is 
the node which has the external link to the cluster k. 

(ii) Route from (i, k) to (k. i) to reach the cluster k. (This 
does an inter-cluster or eXrerna1 roufing.) 

(iii) Locally route Erom (k, i) to (k, 1) in the hypercube k 
using the algorithm described in the Appendix. 

Algorithm A thus routes from (i, j) to (k, 1) using the external 
link that exists between cluster i and cluster k. This is the 
only external routing involved in Algorithm A -- all other rout- 
ings are local. 

3.2 Routing Algorithm B 

Algorithm B routes a message from node (i. j) to node 
(k, 1) as follows: 

(i) Use local routing to route from (i, j) to (i, i) (Appen- 
dix). The node (i, j) has an external link to node (i, i) 
in cluster ‘7. 

(ii) Use the diameter link horn node (i, i) to go to node (i, 

i). 

(iii) From node (‘i, i). use local routing to route to (i, k). 
The node (i, k) has the external link to cluster k. 

(iv) From node (i, k) take the external link to go to cluster 
k at node (k, i). 

(V) Now use local routing to go from node (k, i) to node 

oh 1). 

Algorithm B thus uses one diameter and one non-diameter link 
to do the routing between clusters. ‘These are the only external 
routing involved in Algorithm B. 

3.3 Routing Algorithm C 

Algorithm C routes a message from node (i. j) to node 
(k, 1) as follows: 

(i) Use local routing to route fro.m node (i, j) to node (i. 1). 
Node (i, 1) is the node with the external link to cluster 1. 

(ii) From node (i. 1) take the external link to go to node (1. 
i). 

(iii) From node (L i) use local routing to route to node (1, k). 

(iv) At node (L k) take the external link to go to no& (k, 1). 
the destination. 

Algorithm C thus uses two external links to do the routing 
between two clusters. In particular. it does not use any diame- 
ter links. 

3.4 Routing Delays & Network Diameter 

We now state some axioms and definitions which we 
will be using in the next few sections of our paper. 

Axiom 1: The diameter of an n-cube is n. (This is clear from 
the discussions in the Appendix.) 

Axiom 2: For every node i in an n-cube, there exists only one 
node i at a distance of n from it. All other nodes are at a dis- 
tance less than n from i. 

Definition: We define a term N(i, j:) such that N(i, j) is the 
ordinality of the bit-string X obtained by the bit-wise 
Exclusive-OR of bit-strings i and j, i.e., N(i, j) is the number 
of l’s in the bit-string X. 
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Axiom 3: The beat routing algorithm tc route a message from 
node i to a node j in an n-cube takes N(i, j) steps. This is 
apparent from the routing algorithm given in the Appendix -- a 
message is routed from a source node to the destination via a 
number of nodes en route, and at each step in the routing. the 
ordinality of X is lowered by 1. 

We now state the results pertaining to the routing delay 
and diameter as theorems. 

Theorem 1: Algorithm A will route from (i. j) to (k, 1) in less 
than or equal to (n + n) steps in an HCN(n, n) network iff j z 
E or i + T. 

Prook Consider routing from node (i, j) to no& (k, 1) in an 
HCN(n. n). Algorithm A routes as follows: 

NCi. k) 1 N(i. 1) 
(i, j) -__--___ > (t k) _____ > (k, i) ___________ > & 1) 

where the number on each arrow denotes the number of steps 
involved in the routing. 

Hence the number of steps, R = N(j. k) + N(i, 1) + 1. Now, 
for an n-cube, N(j, k) I n and N(i, 1) 1 n. Thus the number of 
routing steps I (n + n + 1). In the worst case when j = k and 
i = T, we have: 

R=n+n+l. 

Using Axiom 2, we have: 
R<n+n whenj#EORizT. 

Hence the theorem. Cl 

Theorem 2: Algorithm B will route from (i, j) to 
most 2n steps in an HCN(n. n) network if 

j=%andi=Tsndi+k 

Proof: In general, algorithm B routes as follows: 
N(j, i) 1 N-i, k) 

(i, j) -----> (i, i) ---> (i, i) -------a (T, k) 

kl)iIlat 

1 W. 1) 
---> & T) ------> (L 1) 

Thus the number of routing steps resulting from algorithm B 
is: 

R = N(i, j) + 1 + N(T, k) + 1 + N(T, 1) 

Now consider routing from (i,IT) to (k.T) in an HCN. For this 
particular source-destination node-pair, j = k and i = T. There- 
fore, the number of routing steps following algorithm B is 

2 N(i, E) + 2, since N(i, E) = N(k, i). 

Since i # k, from Axiom 2 we have 
N(i. 1) I n - 1 

Hence the number of steps is I 2 (n - 1) + 2, i.e., the number 
of routing steps is $2n. 0 

Theorem 3: The diameter of an HCN(n, n) network using an 
appropriate combination of Algorithm A and Algorithm B is 
2n 

Proof: Follows directly from Theorems 1 and 2. Cl 

3.5 An Optimal Routing Algorithm 

We have discussed three routing algorithms among the 
many that are possible for the complete HCN. Any one or a 
combination of such algorithms can be chosen to satisfy one or 
more optimality criterion such as minimal intercluster traffic, 
minimum routing distance and so on. In this section, we will 
present a routing algorithm that provides the minimum routing 
distance between nodes (i. j) and (k. 1). 

For Algorithm A, we have: 
R = N(j, k) + N(i, 1) + 1 

where R is the routing distance between nodes (i. j) and (k, 1). 

For Algorithm B, 
R = N(i, j) + N(T, k) + N(i, 1) + 2 

For Algorithm C, the routing is done as follows 

NO, 1) 1 N(i, k) 1 

0. j) ------> (i, 1) --> (1, i) ------> (1. k) ---> (k. 1) 

Thus, for Algorithm C. R = N(i, k) + N(j, 1) + 2 

Therefore the optimal-distance algorithm will choose one of 
these three algorithms that results in the minimum overall rout- 
ing diitance for a given set of values for i, j, k and 1. The 
algorithm that results is as follows: 

1. Compute: 
R, = IjOkl+liG3ll+l 

R, = li@jl+li~kl+li~11+1 

R, = IiGDkk+lj@lT+l 

2. 

where I b I is the ordinal operator that fmds the number 
of 1s in the bit-string b. 

Let Ro = minimum (R,,R,,R,), where Q is either A, B 

or C. Execute Algorithm Q. 
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Theorem 4: Under the optimal-distance algorithm. the disme- HCNm(m, n) that belong to two different HCN(m, m) s 
tcr of the HCN(n, n) is bounded by 2n. is at most (n - m). 

Tll e proof is obvious. Cl 

We have therefore managed to get cubic distances in the HCN 
with almost half the number of links per node and half the 
number of links as a hypercube. Further, the routing algorithm 
used to achieve this is almost as simple as the routing algo- 
rithm in a hypercube. 

4.2 Routing and Diameter Evaluations 

4. Incomplete HCNs 

ln this stxtion, due to the lack of space, we give an 
intuitive idea behind the routing algorithms and the assessment 
of the diameters for incomplete HCNs. A complete descrip- 
tion of the routing algorithms and a formal approach to the 
derivation can be found in [3]. 

In this section, we will look at incomplete HCNs and 
derive their diameters under routing algorithms similar to the 
one we had described earlier. 

4.1 Construction of Incomplete HCNs 

An incomplete HCN can be described as HCN (m, n). 
where m < n, i.e., the number of nodes in a cluster exceed the 
number of clusters. Such a HCN can be designed as follows: 

1. The 2m n-cube clusters are now interconnected using 
inter-cluster links that ue a subset of the inter-cluster 
connections in HCN(n, n). in the following manner: 
External connections are made from nodes in a cluster 

only if the tocal node number is less than 2”, using the 
same interconnection algorithm we had used for an 
HCN(n, n) network. Consequently, some of the nodes 
do not have inter-cluster links. We will describe this 
network as HCN.(m, n), where the subscript indicates 

the subset-nature of the inter-cluster connections. 

For a HCN,(m, n), the diameter links may be absent for 

some nodes. The routing algorithms take this fact into 
account In the worst case. routing between a source- 
destination node-pair would involve a traversal of only local 
and non-diameter external links. Further, in this worst-case. in 
order to make use of these external links, 2(n - m) additional 
local links have to be traversed beyond the (2m + 1) links 
required by Algorithm A (which does not make use of diame- 
ter links). This implies that the resulting diameter cannot be 
worse than (2n + 1). With the addition of clusters, when the 
network grows towards HCN (II, n). the average inter-node 
distances would shrink and the diameter under the optimal- 
distance algorithm approaches 2n. 

2. The HCN(m. n) network can also be built as multiple 

(precisely, 2(‘- ‘@) HCN(m, m) networks which are 

interconnected with other similar (precisely, 2”- 3 - 1 
others) using local links within the n-cube clusters. 
Now the connections will not be a subset of the HCN(n, 
n). We w:ill allude to the resulting network as 
HcNm(m, n), where the subscript m designates ‘multi- 

ple’. In a HCN=(m, n), every node has an external 

link, unlike the HCNJm. n) -- this is a consequence of 

choosing Z!m nodes out of the 2” nodes in each cluster to 
form a m-cube (which is used as a cluster for the 
HCN(m, m) networks). This also implies that the max- 
imum distance between any two local nodes in the 

In the HCN=(m, n). all the constituent HCN(m, m) net- 

works “meet” in every cluster. Routing a message from a 
source node to a destination node can be accomplished by 
routing locally to the HCN(m. m) that contains the destination 
node, and then routing within the HCN(m, m) so reached. 
Further, the maximum distance between the source no& and 
the HCN(m, m) containing the destination node is (n - m) 
(local links). Thii is because nodes with the same local 
number in different clusters belong to a HCN(m, m), and the 
source and destinations can be in two different HCNs, spaced 
apart by at most (n - m) local links within any cluster. Thus, 
the diameter of the HCN,(m. n) is (n - m + 2m) = (n + m), 

under the optimal-distance routing algorithm. 

5. An Assessment of the HCN 

Jn this section, we evaluate some characteristics of the 
proposed network against similar networks, especially the 
hypercube network and its derivatives. We close this section 
by indicating some potentials of the HCN and describing 
furthc~ work in progress. 
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Network I #Nodes 

(m + n)Cube Ul+Sl 2 

((m+n+ l)rZ. 2)- 2m+” 
Hypemet 

#Links 

2m+n-1.(n + 1) 

2” +PV1.(m f n) 

3 y+n-l . 

, 2.( 1 + n/m).2- + a -r 

I 

1 (m+n+3).2”+“” 

#Links/Node 

n+l 

m+n 

3 

2.(1 + n/m) 

(m+n+3)/2 

Diameta 

m + nt 

m+n 

5.2= - ’ 

(1 + n/m).2m - l 

(m+n+2) 

Table 2. A comparison of the topological characteristics of the HCN and 
some similar networks. Assumes the total number of connected 

nodes to be the same for all the networks. 

Notes: 

‘f Evaluated from the result cited in Theorem 3. The actual diameter under the optimal-distance routing algorithm is smaller 
than this value (Table 3). 

77 One of the two possible tori network for connecting 2m l II nodes. 

5.1 The HCN & Other Cube-Like Networks 

The results of comparing the HCN against other cube- 
based and cube-like interconnection networks on the basis of 
typical attributes for a static interconnection network (number 
of links. number of links/processing element, diameter etc.) are 
depicted in Table 2. To allow a fair basis for comparison, we 
have assumed that aZI of these networks connect the same 
number of nodes. The HCN has characteristics similar to the 
hypercube -- however, it realizes all physical characteristics of 
the hypercube with only (n + 1) links/PE (as opposed to (m + 
n) links/PE for the hypercube). We have also reason to 
believe that the diameter of the HCN(m, n) is actually less 

than (m + n) under the optimal distance routing algorithm of 
Section 3.5. For a HCN(n, n), the network diameter under the 
optimal routing algorithm can be proved to be (n + LnQ! + 1) 
[3]. Although we do not present the formal proof in this paper 
for the sake of brevity, we report the results of simulation that 
evaluated the diameter of a HCN(m, n) following the optimal- 
distance routing algorithm in Table 3. Table 4 depicts the 

complexities of some well-known parallel algorithms on the 
HCN, the hypercube, the hypemet [5] and a few other static 
interumnection networks. All of the data for the networks 
other than the HCN was gleaned from [S]. 
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HOW, 2) 4 I 4 I 

1 HCNG. 5) I 10 I 8 I 

Table 3. The diameter of a HCN(n, n) computed using 
theorem 3 versus the diameter actually obtained from the 

simulation of the optimal-distance algorithm 

Network Vector Matrix Convolution: Bitonic 
Sum Mult. NxN space Sort 

1 HCN ) 1ogN 1 1ogN 1 M2+logN 1 logZN 1 

Table 4. Algorithmic complexities using the HCN and other 
interconnections 

5. 2 Potentials of the HCN 

The network proposed in this paper seems very attrac- 
tive from a number of standpoints: 

0 It is a hypercube-like network, in particular it has a 
lower diameter than a comparable hypercube. but 
requires almost half the number of interconnections per 

PE than the hypercube (for the same number of con- 
nected PEs and if the number of connected PEs is 
large). Also, the average inter..PE distance in a HCN is 
bounded by (m + n + 2)/2 -- this is one more than the 
correspondiig number for a hypercube (viz., (m + n)/2). 
For large m and n, this difference becomes negligible. 

The HCN is expandable, if we realize it as a HCN,(m, 

n), when m < n (Section 4.1). The diameter of the net- 
work is still 2n + 1. When m approaches n, the diame- 
ter drops to 2n. If lower diameters are needed for an 
incomplete HCN, it can be designed as a HCN,(m n). 

which gives a diameter of (m t n). 

The HCN is ideally suited for applications that require 
the use of groups of several identical processes that 
require infrequent communication among groups. 
Processes withii a group can be allocated to nodes 
within a cluster, expIoiting hypercube Iocalities, while 
processes across groups can communicate efficiently 
using the external links. (The concept of a fuskfcme, 

as used in the Cm’ is identical to the process structure 
we just described.) 

The concept of the HCN can be extended to more levels 
of hierarchy. It is possible, for instance, to design a 
HCN that will use another HCN as its cluster and so 
on, leading to a family of hierarchical networks. 

We are currently investigating the idea of building more 
hierarchy into the network proposed, the design of fail-safe 
routing algorithms, the mapping of algorithms to the HCN and 
some related issues. We have also formulated the &sign of a 
HCN that uses an additional connection between two clusters, 

resulting in a diameter of (m + 2) for a HCN connecting 22pL- ’ 
nodes with (m + 1) links per node. This will be covered in a 
forthcoming paper. 

6. Conclusions 

We have introduced a new static interconnection net- 
work, the Hierarchical Cubic Network (HCN) and its routing 
algorithms. The HCN provides the advantages and the same 
diameter as a the well-known Hypercube interconnection, but 
requires almost half the number of connections per node, com- 
pared to a Hypercube that co~ects the same number of nodes. 
Further, the number of lii needed by the HCN is also much 
smaller compared to a similar Hypercube interconnection. 
This implies, among other things, a lower cost for the network, 
reduced wiring efforts, increased integration possibilities and 
so on for the same performance as a comparable hypercube. 
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The HCN is incrementally expandable and algorithmic 
complexities on the HCN appear to be identical to that for a 
Hypercube. Simulations indicate that the HCN actually pro- 
vides a lower diameter than the Hypercube under the optimal- 
distance routing algorithm presented in this paper. A com- 
parison of the physical characteristics of the HCN with cube- 
based and similar networks reveals it to be extremely attractive 
as an interconnection network for large-scale (loosely-coupled) 
parallel computers. The HCN is ideally suited for the irnple- 
men&on of task forces of processes. The HCN also has the 
potential of accommodating multiple levels of hierarchy. 
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APPENDIX. The Hypercube Interconnection: a 
Review 

A hypercube network of dimension n, often called a n- 

cube, has 2” nodes, each with a n-bit address ranging in value 

from 0 to (2” - 1). There is a link between nodes i and j iff 
their n-bit addresses differ in exactly one bit position. The 

total number of links in a n-cube is n.2’“- ‘? 

The following routing algorithm describes how a mes- 
sage is routed from node i to node j in a hypercube where i 
and j are the values of the n-bit addresses. Each node i in the 
hypercube executes this algorithm when it has to send or relay 
a message to node j. 

Compute rel = i Q j; /* Q = bit-wise ex-or */ 
if (rel = 0) then 

done p message has reached its destination *I 
ClSC? 

begin 
Let K be the position of the most-significant 1 
in the n-bit entity, rel; 
P bits are given positions (n - 1) through 0, 
msb onwards */ 
Route message out through link # K 
P Lii number K connects two neighbouring 
nodes in the hypercube that differ in their 
addresses in the K-th bit position */ 

end 

This routing algorithm guarantees that the diameter of 
the hypercube (under this routing algorithm) is equal to the 
dimension of the hypercube, viz., n. In this paper, we used 
the term n-cube for a cube of dimension n. 
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Figure 1. An HCN(2, 2) network. 
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Figure 2. Rn HCN(3, 3) network. 
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Figure 3.1. An HCNs(2, 3) network. (Diameter = 2n + 1 = 7) 
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Figure 3.2. An HCNm(2, 3) network. (Diameter = m + n = 5) 
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