
QCDPAX - An MIMD array of vector processors
for the numerical simulation of quantum chromodynamics

Tomonori SHIRAKAWAa, Tsutomu HOSHINOa, Yoshio OYANAGIb, Yoichi IWASAKI=,
Tomoteru YOSHIEC, Kazuyuki KANAYAC, Shingo ICHIId and Toshio KAWAIe

aInstitute of Engineering Mechanics, blnstitute of Information Sciences and
CInstitute of PiIysics, University of Tsukuba, Tsukuba, Ibaraki 305, JAPAN
dNational Labora tory for High hheryy Physics, Tsukuba, Ibaraki 305, JAPAN
eDepariment of Physics, Keio University, Hiyoshi, Kouboku-ku, Yokohama 223, JAPAN

1. INTRODUCTION

The lattice gauge theory is a discrete model
of quantum chromodynamics(QCD), and it is con-
sidered to be able to calculate the strong
interaction physical observables from the first
principle by the numerical simulation of this
model. This model is defined on the four-
dimensional hypercubic lattice with the peri-
odic boundary condition. Quark field repre-
sented by a 12 component complex vector is
allocated on each node of the lattice, and
gluon field represented by a 3x3 complex matrix
is allocated on each link of the lattice. By
this huge degrees of freedom, the simulation of
QCD requires huge amount of floating-point
operations. The quenched (ignoring the effect
of quark field) simulations on the 163x48 lat-
tice typically take 1000 hours of computing
time on supercomputers of several hundred
MFLOPS. We would like to obtain a factor 100
more of computer resources in order to get
results at the level of a few percent statis-
tical and systematic errors.

However it is easy to see that the simula-
tion of lattice gauge theories is suitable to
the parallel processing. Because it has high
degree of freedom, homogeneity, and locality.
Exploiting these features allows us to con-
struct the specialized processor array of high
performance and low cost. There are similar
projects to construct parallel computers spe-
cially designed for the QCD in Columbia Uni-
versity, IBM, and Italy[ll-[3].

QCDPAX is a processor array designed for the
simulation of the lattice QCD. PAX is the
name of the series of the parallel computer

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the titIe of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 08979L341-8/89/001 l/O495 $1.50

since 1977 for the study of parallel high-speed
computation in scientific or engineering appli-
cations, and four models (PAX-g, PAX-32, PAX-
128, and PAX-64J) have been built so far[41-
c91. PAX utilizes the MIMD processor array
architecture with the two-dimensional nearest-
neighbor connection and the broadcasting bus.
Through the experiments on the PAX computers,
it has been proved that the architecture of PAX
is effective not only for the continuum simula-
tion but also for the applications which have
not the nearest-neighbor structure. For ex-
ample, AD1 schemes, FACR(Fourier Analysis and
Cyclic Reduction) schemes, Gauss-Jordan method,
and conjugate gradient method are demonstrated
on the PAX computers. In the field of quantum
physics, Monte-car10 simulation of U(l) model
on four-dimensional lattice was completed on
the PAX-128, and lattice QCD of 43x8 lattice
was simulated on the PAX-64J.

QCDPAX is the fifth model in the PAX series
ClOl. A prototype with four processing units
was constructed in the April 1988, and a prac-
tical system with 288 processing units was
built in the April 1989.

2. CALCULATION OF LATTICE QCD

The procedure of the calculation of lattice
QCD is as follows. The gluon fields are to be
updated according to the probability propor-
tional to

exp(-B Sp(U))det(D(U)) (1)
where 6 is a constant and Sp is given by
l-Re tr[UlzU23U34U411/3. U12 is a 3x3 special
unitary matrix and represents the gluon field
of the link which connects the nodes 1 and 2
etc. Configurations are generated by Langevin
or hybrid method and physical quantities like
Wilson loops, Polyakov loops, hadron propaga-
ters are averaged over the configurations.

Dominant calculation in lattice QCD is to
solve the linear equation

495

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76263.76318&domain=pdf&date_stamp=1989-08-01

Dx = b (2)
where D is a sparse complex matrix. The size
of the matrix D is 12 x number of nodes. This
linear equation is solved by the minimum re-
sidual method with incomplete LU factorization
preconditioningC111.

The essential calculation of the minimum
residual method is the multiplications of a
vector by a matrix. As the non-zero elements
in the matrix appear only at the positions
corresponding to the nearest neighbor inter-
actions, the products of a vector and a matrix
can be calculated in terms of the values of the
nearest neighbor links.

The preconditioning (LU)-ly=U-IL-ly consists
of a forward substitution and a backward sub-
stitution. These substitutions are essentially
sequential processes. However once the sub-
stitution to a element is completed, parallel
processing to the four neighboring elements can
be started.

A number of physical quantities are calcu-
lated on the configurations. One of them is
the Wilson loops, which is the trace of the
products of the 3x3 matrices lying along the
closed loop which is made by the concatenation
of links. This calculation needs the value of
non-nearest-neighbor variables. Another one
is the propagation of quarks, which is obtained
by the solution of equation (2).

The features of lattice QCD calculation are
summarized to the following three points.
(1) It is the simulation of the interactions on

the four-dimensional lattice with periodic
boundary conditions. The interactions
mainly occur between the nearest-neighbor
nodes and links, and the reference of the
data in distance is not often.

(2) It is a Monte-Cairo simulation using the
large amount of random number.

(3) It needs huge amount of 3x3 complex matri-
ces calculations.

3. ARCHITECTURE OF THE QCDE'AX

(1). TWO-DIMENSIONAL NEAREST-NEIGHBOR
MESH CONNECTION

As the lattice gauge model is defined on the
four-dimensional hypercube lattice, it would be
natural to construct a parallel computer of
four-dimensional nearest-neighbor mesh archi-
tecture. However, the four-dimensional con-
nection requires eight communication paths for
each processing unit and makes it difficult to
keep the wide bandwidth of each communication
path. Four-dimensional shape is difficult to
build in the real space which has only three
dimensions. Therefore QCDPAX adopts the two-

dimensional nearest-neighbor mesh connection
like the former PAX computers.

Two of the four dimensions of the lattice
gauge model are mapped onto the two-dimensional
PU array, and the rests are treated as an array
in a PU. By this mapping, the neighboring
nodes are mapped either in the same PU or the
neighboring PU.

The incomplete LU preconditioning on the
QCDPAX starts from one element and spreads out
to the neighboring elements through the
nearest-neighbor connections in a wave front
fashion. This method, called hyperplane method,
is a fully parallel process except for a few
tens steps of its beginning and ending.

(2) MIMD ARCHITECTURE

QCDPAX utilizes MIMD architecture for the
following reasons. Machine clocks in MIMD
processor array need not be synchronized among
the processing units. This is the great
advantage of the MIMD architecture when the
number of processing units is large.

The lattice gauge theory is a uniform model,
and the programs of the PU's are the same with
one another. But the execution flow of the
program depends on the random numbers generated
in each PU, and differs with each other.

The hyperplane method for the parallel
processing of incomplete LlJ preconditioning is
easier to install in the MIMD than SIMD.

(3) HIGH SPEED FLOATING POINT
OPERATION SYSTEM FOR EACH PU

The simulation of lattice QCD requires huge
amount of floating point operations such as the
multiplication of complex matrices and random
number generation. The each PU of the QCDPAX
has the specialized high speed floating point
operation system.

4. HARDWARE OF QCDPAX

4.1 SYSTEM CONFIGURATION

The system configuration of QCDPAX is shown
in Fig.1. QCDPAX system consists of an array
of processing units(PU array), a host-computer,
a graphic display, and the interface between
them (HPI).

The PU array is the hardware which executes
the parallel tasks. The NJ array works as the
back-end processor of the host-computer. A PU
shares a two-port RAM with the each of its four
nearest-neighbors as shown in Fig.1.

PU's on the edge are connected to those on
the opposite edge to form a torus. A common
bus connects all PU's and the HPI. The memory

496

;-....-....-.*__-_,.,,__-_.-..--_-..-...-------------.-.--.-.------.-.--.---.------.-.-- keaiest-neighbor inter-PU connection

PU : processing unit.
Fig. 1. System configuration of the QCDPAX.

of each PU is mapped on the address space of
host-computer through the HPI, and works as an
intelligent memory. HP1 serves to select
which PU(s) is mapped on the host-computer's
address space. As HP1 can map all PU's by
overlapping them, the HP1 can broadcast the
program and the data to all PU's.

The host-computer is used to compile and
assemble the source program, load the object
program into the PU array, initiate parallel
tasks, transfer and receive the data to and
from the PU array. Sun-3/260 is used as the
host-computer.

QCDPAX outputs the computational results
from each PU through the two port HAM and the
common bus. HP1 is connected to the graphic
display with a video processor. HP1 collects
the computational results (which may be changed
into video image by the PU's) from the PU's and
output to the display. This facility realizes
to display the progressing computational proc-
ess in the PU's such as the time evolution
schemes.

The debug probe card is a card for debugging
the parallel software, which can be connected
to the bus of any PU. It picks up the signal
on the inner-PU bus and reports the inforaa-
tions for debugging to 'the HPI.

4.2 PROCESSING UNIT (PU)
Each processing unit(PU) is an independent

one-board microcomputer. The configuration of
a PU is shown in Fig.2. Each PU essentially
consists of a microprocessor(CPU), local memo-
ry, three communication memories (CM), two

communication port, one synchronization regis-
ter, a bus-interface between the PU bus and the
common bus, a port for debug probe, a timer, a
high-speed floating-point operation system, and
the PO control circuit.

Motorola's microprocessor MC68020(25MHz) is
used as the CPU. The local memory is 4MBytes
with 100ns 1Mbit DRAM. Three wait states are
inserted at the access from the CPU.

A communication memory is a 32bit x 2Kwords
two-port HAM. Two CMs are used for the com-
munication to the four nearest-neighbor PU's.
The other CM is used for the communication with
HPl/host-computer. Four 8bit x 2KJ3ytes 90ns
ready-made two-port HAM including arbitration
hardware (Fujitsu's MB8421/8431) are used for
one CM. At least two wait states are inserted
when the CPU accesses the CM. The arbitration
may stretch the wait state of the CM longer.

The synchronization register (SYNC) is a
register to take the synchronization of all
PU'S. The output of the SYNC is connected to
the HP1 and the SYNC of the other PU's through
the open collector common bus. The procedure
of the synchronization is; (1)Each PU writes a
code to the SYNC and stops; (2)If HP1 detects
the coincidence of the contents of all SYNCs,
let all the PU to continue. Width of the SYNC
is decided to be 6bit to take 64 kinds of syn-
chronization.

The two-port HAM between HP1 and PU is used
for the communication of the HPI/host-computer
and the PU during the execution of the PU task.

The host-computer/HP1 can reset the PU and
halt the CPU. The host-computer can access to

497

to the
west PU

High-speed floating point operation system
to the south PU

CM : Comnunication menory. (8KB 2portRAM).
SYNC : Syncronization register.
BUSIJF: Bus interface.
LM : Local memory. (4MB DRAM).
CPU : Central processing unit. (MC68020 25MHz).
DM : Data memory. (2MB High speed SRAM).
LUT : Look up table. (LKB ROM).
FPU : Floating Point operation Unit. CL64133 : Max.32MFLOPS 1.
WCS : Writable control strage. (8KB High speed SRAH).
FPUC : FPU controler.

Fig.2. Configuration of a single processing unit.

the inner-PU facilities, when the CPU of the PU
is halting.

Each PU includes a timer in order to evalu-
ate the efficiency of the QCDPAX in the appli-
cations. The resolution of the timer is 80ns
and the size of the counter is 40bit.

4.3 HIGH-SPEED FLOATING-POINT
OPERATION SYSTEM

The QCD calculation needs huge amount of
complex computation, each PO is designed to
have the capacity of high speed floating-point
operation. The co-processor sold with the
microprocessor is easy to interface with the
microprocessor, but its computation speed is
not fast enough. The QCDPAX utilizes the
floating-point processing unit(FPU) L64133 on
the market. L64133 has peak performance of
the 33MFLOPS. It comprises an arithmetic
logic unit and a multiplier concurrently work-
able. This feature is suitable to the complex
calculation, for the operation of the complex
numbers allows parallel execution of addition
or subtraction and multiplication. The FPUC
(floating-point processing unit controller),
newly developed by the gate array, is also
utilized to derive the performance well from
the FPU by controlling the direct memory access
between the data memory and floating-point
processing unit.

The FPUC works as the interface between the
CPU and the FPU, the sequencer for the funda-
mental arithmetic calculation, and the address
generator for vector operations. The FPUC is

prepared with the LSI Logic's compacted gate
array. The details of the FPUC will be
described in the later section.

The floating-point operation system can work
in three modes of operations; The first mode
is the scalar operation, the second mode the
microprogram operation, and the third mode is
the vector operation.

(1) Scalar operation

The scalar operation is used for the scalar
number calculation. In this mode, the CPU
executes the move instructions between the
register of the CPU and the high-speed data
memory with the address bus signal including
the instruction to the FPU (13bit) and the
address of the data (19bit). The data to/from
the register of the CPU is gated by the FPUC
and the data transfer is actually done between
the data memory and the registers of the FPU.
By this mode, the CPU controls every step of
floating-point operations of the FPU, and one
data transfer and a pair of the subset of the
pair of the multiplier and the ALU instructions
can be executed by one move instruction.

(2) Microprogram operation
The microprogram operation mode is used for

the elementary functions, :random number genera-
tions, and the operation ,of 3x3 complex matri-
ces . In this mode, the FPUC executes the
operations according to the preset micropro-
grams in the WCS.

(3) Vector operation
The vector operation mode is used for the

498

arithmetic operation of vectors and matrices.
The CPU sets the initial addresses of the
operands and the increments of the addresses
into the registers in the FPUC, and sets the
microcode into the WCS. The microcode is the
vector operation parts in the object code of
the user program. Then the CPU directs the
FPUC to execute the microcode.

The high-speed floating-point operation
system consists of ;
(1) a floating-point processing unit (FPU),
(2) a floating-point processing unit controller

(FPUCI,
(3) a look-up table (LUT) ROM,
(4) a writable control storage (WCS),
(5) and a high-speed floating-point data memory

(DM).
The DM is the 32bit x 512Kwords memory of

high-speed (35n.s) 256Kbit CMOS static RAMS.
The CPU accesses the floating point data memory
with one wait state.

The look-up table (LUT) is the two 8bit x
512 words PROMS containing the initial data for
the Newton-Raphson calculations of the inverse
and the inverse of square root.

The WCS is the 32bit x 2Kwords high speed
(25ns) BiCMOS static memory to store the
procedure for the calculation of fundamental
arithmetic, vector operations, and the other
calculations necessary for the QCD calculations
such as the 3x3 complex matrices multiplica-
tion. The CPU can access the WCS with no wait
state.

4.4 FPUC (FLOATING-POINT PROCESSING
UNIT CONTROLLERL

The FPUC was fabricated with CMOS gate array
technology. The FPUC essentially consists of
three parts; data transfer control part, data
manipulation part and sequence control part.

The data transfer control part generates the
address of the data written/read to/from the
high-speed data memory and the enable signals
of the output/input data registers of the FPUC
and FPU. This part consists of sixty-four TRs
(data transfer control registers) and IRs(data
address increment registers) and an adder. TR
is the 32bit register containing the 20bit data
address and the enable signals of the input and
output data registers of the FPUC and FPU. IR
is the 16bit register holding the number which
is added to the data address every time when
the data address is read out. The 16bit in-
crement is expressed by 2's complement format,
and the sign extension makes the 20bit data for
the input of the adder.

The data manipulation part consists of the
two 32bit data registers and a data manipula-

ting circuit. The functions are,
(1) Take bitwise exclusive or of DO and Dl,
(2) Set the exponent of DO to Ox7F,
(3) Replace the exponent of DO by bit7-0 of Dl.
These functions are used for the random number
generation, calculation of exponential and
logarithmic functions.

The sequence control part executes the con-
ditional or unconditional branch instructions,
branch to and return from subroutine instruc-
tion, and detects the end of vector operation.
During the vector operation, the data address
is compared, and if it goes across the end
address set in the FPUC the vector operation is
terminated. As the FPUC has a register for
the program counter stack, one level subroutine
call is available. During the execution of
main routine, the return from subroutine in-
struction is interpreted to the end of the FPUC
routine and the control is returned to the CPU.

The high-speed floating-point operation
system works under the three-stage pipeline
operation sequence. Each stage of the pipeline
is as follows;
(1st) Update program counter and fetch instruc-

tion from WCS.
(2nd) Read-out the information about data

transfer from TR and IR. Update TR.
(3rd) Execute data transfer and FPU operation.

As the floating-point calculation is com-
pleted in the third stage only, the result just
got in a clock period can be used for the cal-
culation in the next clock period. So, this
system executes the recurrence without an idle
time.

4.5 INSTALLATION
One PU is installed on a six layer print

board of 367mm x 400mm. The photo of a PU is
shown in the Fig.Sa. Sixteen PU's
constituting 4x4 PU array are installed in a
box. This box is called a module. A module
includes a power unit and a repeater of the
common bus. The photo of a module is shown in
the Fig.3b. The QCDPAX system with 288 PU's
consists of circularly connected six cabinets
each of which contains three modules. As each
cabinet can contain up to six modules, the
maximum configuration of QCDPAX is 6x6 modules,
i.e. 24x24 PU's. The photos of the cabinets
(Fig.3c) and the three modules in a cabinet
(Fig.3d) for the QCDPAX with 288 PU's are
shown.

5. SOFTWARE

5.1 DEVELOPMENT OF THE PROGRAMS
The operating system of the host-computer is

499

-. .

Fig.3a. A processing unit board.
Fig.3b. A processing module with 4x4 PUS,

a repeater of the conmon bus and a power unit.

Fig.Sc. QCDPAX with 288 processing units.
Six cabinets form a cylinder.

Fig.Sd. Three processing modules in a cabinet.

UNIX, and supports multi-user and multi-task
operation. But the PU array works in a batch
style. Only one job is executed in the PU
array, and the other job which intends to be
loaded in the PU array is refused. The
editing, compilation and linking of the user
program are made on the host-computer in multi-
user, multi-task style.

The user of QCDPAX prepares two programs.
One is for the host-computer, and the other
program is for the PU's. The program for the
host-computer is described by the language C.
A language psc is developed for the description
of the PU program.

A compiler is prepared for coding the PU
program. It will support the floating-point
operations on the high-speed floating-point
operation system. Tuning of the code in
assembly language is effective in the case of
vector operations. The assembly language qfa
is specially designed, and assembler is also

prepared.
The flow of the development of application

software is illustrated in Fig.4.

5.2 THE DOMAIN AND THE TYPE OF VARIABLES

In order to set the variables to the appro-
priate memory, variables are declared with
their domain name and type. The domain names
are corresponding to the memories as shown in
the Table 1.

Table 1. Domain name vs. memory.

domain name

fast
slow
east
west
north
south

corresponding memory

data memory
local memory
CM to the east PU
CM to the west PU
CM to the north PU
CM to the south PU

500

I1

,“‘-‘--..-‘...-.-......--,

: Preprocessor of c :-b
:.-.-.--............*.....:

71'"'

psc camp i ler -+

I User program for the PU is

written by the language

source program by qfa

language

tuning

sfa assembler

I
assembly language source

I
program I

~"""""""""."""1
: assenbler :+
?*....-......*.,,.,....,..?

II : Action of the user.

I : Language processors and

User program for the host-

computer is written by c.

L

I/

r source program by c I
L

;..........................

+ : preprocessor of c : ,
l.........................J

i”““““““.~..‘.~....i
+ : c compiler :

l.,......,,............,..J

,..“........“............,
+ : libruary :

l.........................J

,.ll.-.-....lll...-..-...~,

+ : assembler :
!.........................A

executable object code

for the host computer

tools developed by this project.

i”““i . Ready-made language processors and tools
,.....,: I

* of the OS of the host computer.

Fig.4. The Process of developping an application program for the QCUPAX.

According to the variable declaration, the
compiler for the PU program generates the
appropriate object code and the preprocessor
for the host program translates the variables
to the member of structure mapped to corre-
sponding memory.

As the type of variables, integer, float,
and complex are available. The complex type
is necessary for the lattice QCD calculations.
Complex type variable is translated to a pair
of float type variables by the preprocessors.

gram in a PU and can describe explicitly the
vector processing in a PU, parallel operation
by CPU and FPU. The vector processing is
described by vfor-do statement. An example of
vfor-do statement is following.

vfor(v=vstart;vtvmax;v+=vstep)
sp[v*2+sl = m[v] * la[v][pl

+ spCv*2+sl ;
do 1

for(j=O;j<lO;j+=l]
l_ferryCj] = l[j] ;

.l 1
5.3 LANGUAGE p SC AND ITS COMPILER In the psc program listed above, the block

The psc is a c-like language for nodal pro- after vfor is executed by FPU and the block

501

after do is executed by CPU. The real or
complex arrays sp, m and la are located in the
domain fast i.e. the high-speed floating-point
data memory. The do block describes the data
transfer from slow to ferry. These two blocks
are executed parallelly. In the vfor-do state-
ment, either FPU or CPU waits until the other
finishes the operation.

5.4 FLOATING-POINT OPERATION SYSTEM
ASSEMBLY LANGUAGE sfa

Psc compiler generates the object code for
the floating point operation system by the qfa
which is the assembly language specially
designed for this floating point operation
system. The qfa has better readability than
the assembly language of MC68020, and allows
easier tuning of PU program to the user.
For example, the psc program

vfor(i=O; i<6; i+=l) a[il=b[i]+cCil;
do;

is compiled to
trO0: -c > c ;
trOl: -b>b;
tr02: a>-a;
tr03: 5>e;
ir61: 1 ;
ir59: -1 ;
@labO:

trOl,ir61 ; ;
trOO,ir61 ; ;
tr03,ir59 & a=b+c ; ;
tr02,ir61 ; ja @lab0 ;

er: #O & fpc: @lab0 & start ;
v-wait ;

Here b and c are the input registers, and a is
the register for the result of addition in the
FPU. Variables are expressed by the name of
array in the source program with preceding _ .

The assembler of qfa translates the qfa
source program to the instruction stream of the
assembly language of the CPU for the CPU to
write the instructions of the FPUC into the
WCS.

6. EVALUATION OF THE PROTOTYPE OF QCDPAX

Fundamental performance has been measured on
the prototype with four PU's. The clock rate
of the floating-point system of the prototype
is 80 ns, so the practical system which has the
clock rate of 62.5ns will work about 20% faster.

6.1 PERFORMANCE OF A SINGLE PU
The execution time is measured for the ele-

mentary functions, vector operations, whetstone
benchmark test, and linear equation solution by
Gauss-Jordan scheme. The results are shown in
the tables 2, 3, and 4. Table 2 lists the
execution time of fundamental functions. The
execution time by SUN-3/260 compiled with the
options of optimization and 68881 co-processor.

Table 3. lists the execution speed and half
performance vector length nl/z[ll] of vector
operations. Tuning is added to the vector
operation at the qfa level.

The execution times of Whetstone benchmark
test and linear equation solution by Gauss-
Jordan scheme are listed in the Table 4. The
execution times by SUN-3/260 with the options
of optimization and 68881 co-processor, and
SUN-4/280 with the option of -04 optimization
are also listed.

Parallel computers often demonstrate the
Mandelbrot set calculation. It took 22.2

Table 2. Execution time of fundamental
functions. (unit: microsecond)

function QCDPAX I'U SUN-3/260
inverse 0.839 14.0
l/sqrt 1.395 40.0
sin 2.565 52.0
cos 2.561 52.0
atan 3.080 56.0
exp 2.278 56.0
In 1.959 40.0
rnd 0.373

Table 3. Performance of vector processing. (MFLOPS)

Evaluated operations(vector length=500) scalar Vector (m/2)

A(i)=B(i)tlO.O
A(i)=B(i)tC(i)
A(i)=3.0*B(i)+6.0
A(i)=B(i)*C(i)tD(i)
A(i)=(A(i+l)tA(i-1))*0.5
S = S+X(i)*X(i)
A(i,j)=B(i,j)*C(i,j)+D(i,j) array size=256x256
if(A(i)>O) C(i)=A(i)tB(i) else C(i)=A(i)-B(i)
Inner product of 3x3 complex matrices

0.260
0.178
0.402
0.270
0.320
0.388
0.206
0.110

6.243
4.164

12.434
6.24.6

12.485
22.160
4.443
3.12!3

12.795

(66)
(35)
(79)
(38)
(78)
(206)

t ;9;
(1)

502

Table 4. Measured performance of a PU by benchmark test programs.

Benchmark QCDPAX PU SUN-3/260 SUN-4/280
test vector operation Optimized Optimized Unit

program with tuning

Whetstone 9.133 0.847 3.000 MWIPS
Linear eq. 0.561 11.900 0.770 second

seconds to calculate this set on 1000~1000
points in the square cornered at (-2,-2i) and
(2,2i) by one Puwiththe iteration limit of 100
times. ln this case, which includes the vector
operation with conditional branch, the per-
formance of one PU was 1OMFLOPS.

6.2 PERFORMANCE OF PARALLEL PROCESSING
The Mandelbrot set calculation and display

by four PU's took 7.20 seconds, and the net
calculation time was 5.56 seconds. The differ-
ence of these time is due to the display which
takes 3.41 seconds to update 1000x1000 points.
This time to display seems to be sufficiently
small for the lattice QCD application.

The Mandelblot set calculation is not a good
example for the parallel processing because it
does not need the inter-PU communication.
Parallel processing inherently includes over-
head i.e. the time spent for the process which
is not appear in the serial processing such as
the synchronization and the inter-PU communica-
tion. The time for these processes must be
sufficiently small. The times for the syn-
chronization of all PU's and the broadcast
1024byte data from one PU to all PU's were
measured and listed in Table 5. The times of
the PAX-64J, the former model of PAX computer,
are also listed for comparison. The speed of
data transfer between the high-speed data memo-
ries of neighboring PU's was measured to be
2.7MEi/s.

The efficiency of parallel processing E is

defined by,
E = Ts/(Tp*P) (3)

where TS is the execution time by serial
processing, TP is the execution time by
parallel processing, and P is the number of
PU'S. This equation is equivalent to:

E = (Tp-To)/Tp (4)

if the algorithms for one PU in the parallel
processing is same to that of serial process-
ing. Where To is the overhead time.

The efficiency of the parallel processing
described by the equation (4) in the prototype
of QCDPAX was measured on the solutions of
Laplace equation by relaxation method and
linear equation by Gauss-Jordan method. The
results are listed in Table 6. The algorithms
used these sample parallel processing are con-
sistentC121, so, the efficiency of parallel
processing in Table 6 do not change with the
increase of the number of PU's proportional to
the problem size.

7. CONCLUSION

QCDPAX with 288 processing units has been
constructed by the high-performance VLSI chips
and the architecture based on the more than ten
years history of the research of PAX computers.
As the maximum speed of one PU is 32MFLOPS, the
peak performance of the system with 288 PU's is
9.2GFLOPS. But the arithmetic logic unit and
multiplier seldom works simultaneously, so the
effective maximum speed of one W is considered

Table 5. The execution time of synchronization and broadcast.

Operation QCDPAX PAX-64J unit
Synchronization 2.5 18.0 microsecond
Broadcast(l024byte) 0.56 9.0 millisecond

Table 6. Total execution time, overhead time, and efficiency on sample programs.

Sample program scalar processing vector processing
total overhead efficiency total overhead efficiency

Laplace. equation 2.42s 0.0434s 0.98 0.220s 0.0434s 0.80
Linear equation 1.44s 0.0348s 0.98 0.214s 0.0348~ 0.84

503

to be 16MFLOPS. At the practical lattice QCD
simulation, the time for data transfer, the
time for startup of the vector processing and
the hyperplane method, arid the time for net
calculation are estimated to be almost same.
Therefore the practical speed of 288 PU system
is estimated to be 288*16/3=1.5GFLOPS. In the
case of 480 PU system, the peak performance is
15GFLOPS and the practical speed is estimated
to be 2.6GFLOPS.

This performance will satisfy the needs of
lattice QCD simulation.

ACKNOWLEDGMENT

The QCDPAX project is conducted under the
Grant-in-Aid for Specially Promoted Research of
the Ministry of Education, Science and Culture
of Japanese government (#62060001). It is a
pleasure to acknowledge the strong support and
encouragement by Prof. Kazuhiko Nishijima,
Kyoto University, Prof. Akito Arima, University
of Tokyo and Prof. Hideo Aiso, Keio University.
The authors are grateful for the helps to
Hiromu Komai, Jun Naito, Takeshi Yoshida,
Yoshiyuki Yoshida, Shigeki Fujii, Youichi
Hachikubo and other members of QCDPAX collabo-
ration, as well as the staffs in Anritsu Corpo-
ration for their helps in the computer system
development.

REFERENCES
[l] N.H.Christ, The Columbia Supercomputer

Project: Physics Results Present Status and
Future Plans, Lattice Gauge Theory (1986)
Plenum, 159, ~~-55-62.

[21 J.beetem, M.Denneau, and D.Weingarten,
IEEE Proc. of the 12th Annual international
Symposium on Computer Architecture (Washing-
ton, D.C., 1985); Experimental Parallel Com-
puting Architecture, 3.5. Dongarra, editor
(Elsevier Science Publisher 1987) 255-298.

133 The APE Collaboration: M.Albanese et al.,
Computer Physics Communications, 45 (1987)
345.

C41 T.Hoshino, T.Kawai,T.Shirakawa,J.Higashino,
A.Yamaoka, H.Ito, T.Sato, and K.Sawada, PACS,
A parallel microprocessor array for
scientific calculations, ACM Trans. on Com-
puter Systems, 1, 3 (1983) 195-221.

[5] T.Hoshino and T.Shirakawa, Load follow
simulation of three-dimensional boiling water
reactor core by PACS-32 parallel micro-
processor system, Nuclea:c Technology, 56, 3
(1982) 465-477.

[63 T.Hoshino, T.Shira,kawa, Y.Oyanagi,
K.Takenouchi, and T.Kawai, Super Freedom
Simulator PAX, in "VLSI engineering" (1984)
edited by T.L. Kunii (Springer Verlag, Tokyo)
39-51

[7] T.Hoshino, T.Shirakawa, T.Kamimura,
T,Kageyama, K.Takenouchi, H-Abe, S.Sekiguchi,
Y.Oyanagi, and T.Kawai, Highly Parallel
Processor Array "PAX" for Wide Scientific
Applications, Proc. of the 1983 International
Conferrence on Parallel Processing, (1983)
95-103.

[8] T.Hoshino, T.Kamimura, T.Iida, and
T.Shirakawa, Proc. of the 1985 International
Conferrence on Parallel Processing, (1985)
426-433.

[9] T.Hoshino, T.Shirakawa, and K.Tsuboi, Mesh-
connected parallel computer PAX for scien-
tific applications, Parallel Computing, 5, 3
(1987) 363-371.

Cl01 Y.Iwasaki, T.Hoshino, T.Shirakawa,
Y.Oyanagi, and T. Kawai, QCDPAX: A Parallel
Computer for Lattice QCD Simulation, Computer
Physics Communications, 49 (1988) 449-455.

[ill Y.Oyanagi, Computer Physics Communica-
tions, 42 (1986) 333.

[121 R.W.Hockney and C.R.Jesshope, Parallel
computers (1981) Adam Hilger, Bristol.

Cl31 J. J. Lambiotte,Jr. and R.Voigt, The
Solution of Tridiagonal Linear Systems on the
CDC STAR-100 Computer, ACM Trans. Mathemati-
cal Software, 1 (1975) 308-329.

504

