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1. INTRODUCTION 

The lattice gauge theory is a discrete model 
of quantum chromodynamics(QCD), and it is con- 
sidered to be able to calculate the strong 
interaction physical observables from the first 
principle by the numerical simulation of this 
model. This model is defined on the four- 
dimensional hypercubic lattice with the peri- 
odic boundary condition. Quark field repre- 
sented by a 12 component complex vector is 
allocated on each node of the lattice, and 
gluon field represented by a 3x3 complex matrix 
is allocated on each link of the lattice. By 
this huge degrees of freedom, the simulation of 
QCD requires huge amount of floating-point 
operations. The quenched (ignoring the effect 
of quark field) simulations on the 163x48 lat- 
tice typically take 1000 hours of computing 
time on supercomputers of several hundred 
MFLOPS. We would like to obtain a factor 100 
more of computer resources in order to get 
results at the level of a few percent statis- 
tical and systematic errors. 

However it is easy to see that the simula- 
tion of lattice gauge theories is suitable to 
the parallel processing. Because it has high 
degree of freedom, homogeneity, and locality. 
Exploiting these features allows us to con- 
struct the specialized processor array of high 
performance and low cost. There are similar 
projects to construct parallel computers spe- 
cially designed for the QCD in Columbia Uni- 
versity, IBM, and Italy[ll-[3]. 

QCDPAX is a processor array designed for the 
simulation of the lattice QCD. PAX is the 
name of the series of the parallel computer 
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since 1977 for the study of parallel high-speed 
computation in scientific or engineering appli- 
cations, and four models (PAX-g, PAX-32, PAX- 
128, and PAX-64J) have been built so far[41- 
c91. PAX utilizes the MIMD processor array 
architecture with the two-dimensional nearest- 
neighbor connection and the broadcasting bus. 
Through the experiments on the PAX computers, 
it has been proved that the architecture of PAX 
is effective not only for the continuum simula- 
tion but also for the applications which have 
not the nearest-neighbor structure. For ex- 
ample, AD1 schemes, FACR(Fourier Analysis and 
Cyclic Reduction) schemes, Gauss-Jordan method, 
and conjugate gradient method are demonstrated 
on the PAX computers. In the field of quantum 
physics, Monte-car10 simulation of U(l) model 
on four-dimensional lattice was completed on 
the PAX-128, and lattice QCD of 43x8 lattice 
was simulated on the PAX-64J. 

QCDPAX is the fifth model in the PAX series 
ClOl. A prototype with four processing units 
was constructed in the April 1988, and a prac- 
tical system with 288 processing units was 
built in the April 1989. 

2. CALCULATION OF LATTICE QCD 

The procedure of the calculation of lattice 
QCD is as follows. The gluon fields are to be 
updated according to the probability propor- 
tional to 

exp(-B Sp(U))det(D(U)) (1) 
where 6 is a constant and Sp is given by 
l-Re tr[UlzU23U34U411/3. U12 is a 3x3 special 
unitary matrix and represents the gluon field 
of the link which connects the nodes 1 and 2 
etc. Configurations are generated by Langevin 
or hybrid method and physical quantities like 
Wilson loops, Polyakov loops, hadron propaga- 
ters are averaged over the configurations. 

Dominant calculation in lattice QCD is to 
solve the linear equation 
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Dx = b (2) 
where D is a sparse complex matrix. The size 
of the matrix D is 12 x number of nodes. This 
linear equation is solved by the minimum re- 
sidual method with incomplete LU factorization 
preconditioningC111. 

The essential calculation of the minimum 
residual method is the multiplications of a 
vector by a matrix. As the non-zero elements 
in the matrix appear only at the positions 
corresponding to the nearest neighbor inter- 
actions, the products of a vector and a matrix 
can be calculated in terms of the values of the 
nearest neighbor links. 

The preconditioning (LU)-ly=U-IL-ly consists 
of a forward substitution and a backward sub- 
stitution. These substitutions are essentially 
sequential processes. However once the sub- 
stitution to a element is completed, parallel 
processing to the four neighboring elements can 
be started. 

A number of physical quantities are calcu- 
lated on the configurations. One of them is 
the Wilson loops, which is the trace of the 
products of the 3x3 matrices lying along the 
closed loop which is made by the concatenation 
of links. This calculation needs the value of 
non-nearest-neighbor variables. Another one 
is the propagation of quarks, which is obtained 
by the solution of equation (2). 

The features of lattice QCD calculation are 
summarized to the following three points. 
(1) It is the simulation of the interactions on 

the four-dimensional lattice with periodic 
boundary conditions. The interactions 
mainly occur between the nearest-neighbor 
nodes and links, and the reference of the 
data in distance is not often. 

(2) It is a Monte-Cairo simulation using the 
large amount of random number. 

(3) It needs huge amount of 3x3 complex matri- 
ces calculations. 

3. ARCHITECTURE OF THE QCDE'AX 

(1). TWO-DIMENSIONAL NEAREST-NEIGHBOR 
MESH CONNECTION 

As the lattice gauge model is defined on the 
four-dimensional hypercube lattice, it would be 
natural to construct a parallel computer of 
four-dimensional nearest-neighbor mesh archi- 
tecture. However, the four-dimensional con- 
nection requires eight communication paths for 
each processing unit and makes it difficult to 
keep the wide bandwidth of each communication 
path. Four-dimensional shape is difficult to 
build in the real space which has only three 
dimensions. Therefore QCDPAX adopts the two- 

dimensional nearest-neighbor mesh connection 
like the former PAX computers. 

Two of the four dimensions of the lattice 
gauge model are mapped onto the two-dimensional 
PU array, and the rests are treated as an array 
in a PU. By this mapping, the neighboring 
nodes are mapped either in the same PU or the 
neighboring PU. 

The incomplete LU preconditioning on the 
QCDPAX starts from one element and spreads out 
to the neighboring elements through the 
nearest-neighbor connections in a wave front 
fashion. This method, called hyperplane method, 
is a fully parallel process except for a few 
tens steps of its beginning and ending. 

(2) MIMD ARCHITECTURE 

QCDPAX utilizes MIMD architecture for the 
following reasons. Machine clocks in MIMD 
processor array need not be synchronized among 
the processing units. This is the great 
advantage of the MIMD architecture when the 
number of processing units is large. 

The lattice gauge theory is a uniform model, 
and the programs of the PU's are the same with 
one another. But the execution flow of the 
program depends on the random numbers generated 
in each PU, and differs with each other. 

The hyperplane method for the parallel 
processing of incomplete LlJ preconditioning is 
easier to install in the MIMD than SIMD. 

(3) HIGH SPEED FLOATING POINT 
OPERATION SYSTEM FOR EACH PU 

The simulation of lattice QCD requires huge 
amount of floating point operations such as the 
multiplication of complex matrices and random 
number generation. The each PU of the QCDPAX 
has the specialized high speed floating point 
operation system. 

4. HARDWARE OF QCDPAX 

4.1 SYSTEM CONFIGURATION 

The system configuration of QCDPAX is shown 
in Fig.1. QCDPAX system consists of an array 
of processing units(PU array), a host-computer, 
a graphic display, and the interface between 
them (HPI). 

The PU array is the hardware which executes 
the parallel tasks. The NJ array works as the 
back-end processor of the host-computer. A PU 
shares a two-port RAM with the each of its four 
nearest-neighbors as shown in Fig.1. 

PU's on the edge are connected to those on 
the opposite edge to form a torus. A common 
bus connects all PU's and the HPI. The memory 
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;-....-....-.*__-_,.,,__-_.-..--_-..-...-------------.-.--.-.------.-.--.---.------.-.-- keaiest-neighbor inter-PU connection 

PU : processing unit. 
Fig. 1. System configuration of the QCDPAX. 

of each PU is mapped on the address space of 
host-computer through the HPI, and works as an 
intelligent memory. HP1 serves to select 
which PU(s) is mapped on the host-computer's 
address space. As HP1 can map all PU's by 
overlapping them, the HP1 can broadcast the 
program and the data to all PU's. 

The host-computer is used to compile and 
assemble the source program, load the object 
program into the PU array, initiate parallel 
tasks, transfer and receive the data to and 
from the PU array. Sun-3/260 is used as the 
host-computer. 

QCDPAX outputs the computational results 
from each PU through the two port HAM and the 
common bus. HP1 is connected to the graphic 
display with a video processor. HP1 collects 
the computational results (which may be changed 
into video image by the PU's) from the PU's and 
output to the display. This facility realizes 
to display the progressing computational proc- 
ess in the PU's such as the time evolution 
schemes. 

The debug probe card is a card for debugging 
the parallel software, which can be connected 
to the bus of any PU. It picks up the signal 
on the inner-PU bus and reports the inforaa- 
tions for debugging to 'the HPI. 

4.2 PROCESSING UNIT (PU) 
Each processing unit(PU) is an independent 

one-board microcomputer. The configuration of 
a PU is shown in Fig.2. Each PU essentially 
consists of a microprocessor(CPU), local memo- 
ry, three communication memories (CM), two 

communication port, one synchronization regis- 
ter, a bus-interface between the PU bus and the 
common bus, a port for debug probe, a timer, a 
high-speed floating-point operation system, and 
the PO control circuit. 

Motorola's microprocessor MC68020(25MHz) is 
used as the CPU. The local memory is 4MBytes 
with 100ns 1Mbit DRAM. Three wait states are 
inserted at the access from the CPU. 

A communication memory is a 32bit x 2Kwords 
two-port HAM. Two CMs are used for the com- 
munication to the four nearest-neighbor PU's. 
The other CM is used for the communication with 
HPl/host-computer. Four 8bit x 2KJ3ytes 90ns 
ready-made two-port HAM including arbitration 
hardware (Fujitsu's MB8421/8431) are used for 
one CM. At least two wait states are inserted 
when the CPU accesses the CM. The arbitration 
may stretch the wait state of the CM longer. 

The synchronization register (SYNC) is a 
register to take the synchronization of all 
PU'S. The output of the SYNC is connected to 
the HP1 and the SYNC of the other PU's through 
the open collector common bus. The procedure 
of the synchronization is; (1)Each PU writes a 
code to the SYNC and stops; (2)If HP1 detects 
the coincidence of the contents of all SYNCs, 
let all the PU to continue. Width of the SYNC 
is decided to be 6bit to take 64 kinds of syn- 
chronization. 

The two-port HAM between HP1 and PU is used 
for the communication of the HPI/host-computer 
and the PU during the execution of the PU task. 

The host-computer/HP1 can reset the PU and 
halt the CPU. The host-computer can access to 
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to the 
west PU 

High-speed floating point operation system 
to the south PU 

CM : Comnunication menory. (8KB 2portRAM). 
SYNC : Syncronization register. 
BUSIJF: Bus interface. 
LM : Local memory. (4MB DRAM). 
CPU : Central processing unit. (MC68020 25MHz). 
DM : Data memory. (2MB High speed SRAM). 
LUT : Look up table. (LKB ROM). 
FPU : Floating Point operation Unit. CL64133 : Max.32MFLOPS 1. 
WCS : Writable control strage. (8KB High speed SRAH). 
FPUC : FPU controler. 

Fig.2. Configuration of a single processing unit. 

the inner-PU facilities, when the CPU of the PU 
is halting. 

Each PU includes a timer in order to evalu- 
ate the efficiency of the QCDPAX in the appli- 
cations. The resolution of the timer is 80ns 
and the size of the counter is 40bit. 

4.3 HIGH-SPEED FLOATING-POINT 
OPERATION SYSTEM 

The QCD calculation needs huge amount of 
complex computation, each PO is designed to 
have the capacity of high speed floating-point 
operation. The co-processor sold with the 
microprocessor is easy to interface with the 
microprocessor, but its computation speed is 
not fast enough. The QCDPAX utilizes the 
floating-point processing unit(FPU) L64133 on 
the market. L64133 has peak performance of 
the 33MFLOPS. It comprises an arithmetic 
logic unit and a multiplier concurrently work- 
able. This feature is suitable to the complex 
calculation, for the operation of the complex 
numbers allows parallel execution of addition 
or subtraction and multiplication. The FPUC 
(floating-point processing unit controller), 
newly developed by the gate array, is also 
utilized to derive the performance well from 
the FPU by controlling the direct memory access 
between the data memory and floating-point 
processing unit. 

The FPUC works as the interface between the 
CPU and the FPU, the sequencer for the funda- 
mental arithmetic calculation, and the address 
generator for vector operations. The FPUC is 

prepared with the LSI Logic's compacted gate 
array. The details of the FPUC will be 
described in the later section. 

The floating-point operation system can work 
in three modes of operations; The first mode 
is the scalar operation, the second mode the 
microprogram operation, and the third mode is 
the vector operation. 

(1) Scalar operation 

The scalar operation is used for the scalar 
number calculation. In this mode, the CPU 
executes the move instructions between the 
register of the CPU and the high-speed data 
memory with the address bus signal including 
the instruction to the FPU (13bit) and the 
address of the data (19bit). The data to/from 
the register of the CPU is gated by the FPUC 
and the data transfer is actually done between 
the data memory and the registers of the FPU. 
By this mode, the CPU controls every step of 
floating-point operations of the FPU, and one 
data transfer and a pair of the subset of the 
pair of the multiplier and the ALU instructions 
can be executed by one move instruction. 

(2) Microprogram operation 
The microprogram operation mode is used for 

the elementary functions, :random number genera- 
tions, and the operation ,of 3x3 complex matri- 
ces . In this mode, the FPUC executes the 
operations according to the preset micropro- 
grams in the WCS. 

(3) Vector operation 
The vector operation mode is used for the 
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arithmetic operation of vectors and matrices. 
The CPU sets the initial addresses of the 
operands and the increments of the addresses 
into the registers in the FPUC, and sets the 
microcode into the WCS. The microcode is the 
vector operation parts in the object code of 
the user program. Then the CPU directs the 
FPUC to execute the microcode. 

The high-speed floating-point operation 
system consists of ; 
(1) a floating-point processing unit (FPU), 
(2) a floating-point processing unit controller 

(FPUCI, 
(3) a look-up table (LUT) ROM, 
(4) a writable control storage (WCS), 
(5) and a high-speed floating-point data memory 

(DM). 
The DM is the 32bit x 512Kwords memory of 

high-speed (35n.s) 256Kbit CMOS static RAMS. 
The CPU accesses the floating point data memory 
with one wait state. 

The look-up table (LUT) is the two 8bit x 
512 words PROMS containing the initial data for 
the Newton-Raphson calculations of the inverse 
and the inverse of square root. 

The WCS is the 32bit x 2Kwords high speed 
(25ns) BiCMOS static memory to store the 
procedure for the calculation of fundamental 
arithmetic, vector operations, and the other 
calculations necessary for the QCD calculations 
such as the 3x3 complex matrices multiplica- 
tion. The CPU can access the WCS with no wait 
state. 

4.4 FPUC (FLOATING-POINT PROCESSING 
UNIT CONTROLLERL 

The FPUC was fabricated with CMOS gate array 
technology. The FPUC essentially consists of 
three parts; data transfer control part, data 
manipulation part and sequence control part. 

The data transfer control part generates the 
address of the data written/read to/from the 
high-speed data memory and the enable signals 
of the output/input data registers of the FPUC 
and FPU. This part consists of sixty-four TRs 
(data transfer control registers) and IRs(data 
address increment registers) and an adder. TR 
is the 32bit register containing the 20bit data 
address and the enable signals of the input and 
output data registers of the FPUC and FPU. IR 
is the 16bit register holding the number which 
is added to the data address every time when 
the data address is read out. The 16bit in- 
crement is expressed by 2's complement format, 
and the sign extension makes the 20bit data for 
the input of the adder. 

The data manipulation part consists of the 
two 32bit data registers and a data manipula- 

ting circuit. The functions are, 
(1) Take bitwise exclusive or of DO and Dl, 
(2) Set the exponent of DO to Ox7F, 
(3) Replace the exponent of DO by bit7-0 of Dl. 
These functions are used for the random number 
generation, calculation of exponential and 
logarithmic functions. 

The sequence control part executes the con- 
ditional or unconditional branch instructions, 
branch to and return from subroutine instruc- 
tion, and detects the end of vector operation. 
During the vector operation, the data address 
is compared, and if it goes across the end 
address set in the FPUC the vector operation is 
terminated. As the FPUC has a register for 
the program counter stack, one level subroutine 
call is available. During the execution of 
main routine, the return from subroutine in- 
struction is interpreted to the end of the FPUC 
routine and the control is returned to the CPU. 

The high-speed floating-point operation 
system works under the three-stage pipeline 
operation sequence. Each stage of the pipeline 
is as follows; 
(1st) Update program counter and fetch instruc- 

tion from WCS. 
(2nd) Read-out the information about data 

transfer from TR and IR. Update TR. 
(3rd) Execute data transfer and FPU operation. 

As the floating-point calculation is com- 
pleted in the third stage only, the result just 
got in a clock period can be used for the cal- 
culation in the next clock period. So, this 
system executes the recurrence without an idle 
time. 

4.5 INSTALLATION 
One PU is installed on a six layer print 

board of 367mm x 400mm. The photo of a PU is 
shown in the Fig.Sa. Sixteen PU's 
constituting 4x4 PU array are installed in a 
box. This box is called a module. A module 
includes a power unit and a repeater of the 
common bus. The photo of a module is shown in 
the Fig.3b. The QCDPAX system with 288 PU's 
consists of circularly connected six cabinets 
each of which contains three modules. As each 
cabinet can contain up to six modules, the 
maximum configuration of QCDPAX is 6x6 modules, 
i.e. 24x24 PU's. The photos of the cabinets 
(Fig.3c) and the three modules in a cabinet 
(Fig.3d) for the QCDPAX with 288 PU's are 
shown. 

5. SOFTWARE 

5.1 DEVELOPMENT OF THE PROGRAMS 
The operating system of the host-computer is 
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Fig.3a. A processing unit board. 
Fig.3b. A processing module with 4x4 PUS, 

a repeater of the conmon bus and a power unit. 

Fig.Sc. QCDPAX with 288 processing units. 
Six cabinets form a cylinder. 

Fig.Sd. Three processing modules in a cabinet. 

UNIX, and supports multi-user and multi-task 
operation. But the PU array works in a batch 
style. Only one job is executed in the PU 
array, and the other job which intends to be 
loaded in the PU array is refused. The 
editing, compilation and linking of the user 
program are made on the host-computer in multi- 
user, multi-task style. 

The user of QCDPAX prepares two programs. 
One is for the host-computer, and the other 
program is for the PU's. The program for the 
host-computer is described by the language C. 
A language psc is developed for the description 
of the PU program. 

A compiler is prepared for coding the PU 
program. It will support the floating-point 
operations on the high-speed floating-point 
operation system. Tuning of the code in 
assembly language is effective in the case of 
vector operations. The assembly language qfa 
is specially designed, and assembler is also 

prepared. 
The flow of the development of application 

software is illustrated in Fig.4. 

5.2 THE DOMAIN AND THE TYPE OF VARIABLES 

In order to set the variables to the appro- 
priate memory, variables are declared with 
their domain name and type. The domain names 
are corresponding to the memories as shown in 
the Table 1. 

Table 1. Domain name vs. memory. 

domain name 

fast 
slow 
east 
west 
north 
south 

corresponding memory 

data memory 
local memory 
CM to the east PU 
CM to the west PU 
CM to the north PU 
CM to the south PU 
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Fig.4. The Process of developping an application program for the QCUPAX. 

According to the variable declaration, the 
compiler for the PU program generates the 
appropriate object code and the preprocessor 
for the host program translates the variables 
to the member of structure mapped to corre- 
sponding memory. 

As the type of variables, integer, float, 
and complex are available. The complex type 
is necessary for the lattice QCD calculations. 
Complex type variable is translated to a pair 
of float type variables by the preprocessors. 

gram in a PU and can describe explicitly the 
vector processing in a PU, parallel operation 
by CPU and FPU. The vector processing is 
described by vfor-do statement. An example of 
vfor-do statement is following. 

vfor(v=vstart;vtvmax;v+=vstep) 
sp[v*2+sl = m[v] * la[v][pl 

+ spCv*2+sl ; 
do 1 

for(j=O;j<lO;j+=l] 
l_ferryCj] = l[j] ; 

.l 1 
5.3 LANGUAGE p SC AND ITS COMPILER In the psc program listed above, the block 

The psc is a c-like language for nodal pro- after vfor is executed by FPU and the block 
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after do is executed by CPU. The real or 
complex arrays sp, m and la are located in the 
domain fast i.e. the high-speed floating-point 
data memory. The do block describes the data 
transfer from slow to ferry. These two blocks 
are executed parallelly. In the vfor-do state- 
ment, either FPU or CPU waits until the other 
finishes the operation. 

5.4 FLOATING-POINT OPERATION SYSTEM 
ASSEMBLY LANGUAGE sfa 

Psc compiler generates the object code for 
the floating point operation system by the qfa 
which is the assembly language specially 
designed for this floating point operation 
system. The qfa has better readability than 
the assembly language of MC68020, and allows 
easier tuning of PU program to the user. 
For example, the psc program 

vfor(i=O; i<6; i+=l) a[il=b[i]+cCil; 
do; 

is compiled to 
trO0: -c > c ; 
trOl: -b>b; 
tr02: a>-a; 
tr03: 5>e; 
ir61: 1 ; 
ir59: -1 ; 
@labO: 

trOl,ir61 ; ; 
trOO,ir61 ; ; 
tr03,ir59 & a=b+c ; ; 
tr02,ir61 ; ja @lab0 ; 

er: #O & fpc: @lab0 & start ; 
v-wait ; 

Here b and c are the input registers, and a is 
the register for the result of addition in the 
FPU. Variables are expressed by the name of 
array in the source program with preceding _ . 

The assembler of qfa translates the qfa 
source program to the instruction stream of the 
assembly language of the CPU for the CPU to 
write the instructions of the FPUC into the 
WCS. 

6. EVALUATION OF THE PROTOTYPE OF QCDPAX 

Fundamental performance has been measured on 
the prototype with four PU's. The clock rate 
of the floating-point system of the prototype 
is 80 ns, so the practical system which has the 
clock rate of 62.5ns will work about 20% faster. 

6.1 PERFORMANCE OF A SINGLE PU 
The execution time is measured for the ele- 

mentary functions, vector operations, whetstone 
benchmark test, and linear equation solution by 
Gauss-Jordan scheme. The results are shown in 
the tables 2, 3, and 4. Table 2 lists the 
execution time of fundamental functions. The 
execution time by SUN-3/260 compiled with the 
options of optimization and 68881 co-processor. 

Table 3. lists the execution speed and half 
performance vector length nl/z[ll] of vector 
operations. Tuning is added to the vector 
operation at the qfa level. 

The execution times of Whetstone benchmark 
test and linear equation solution by Gauss- 
Jordan scheme are listed in the Table 4. The 
execution times by SUN-3/260 with the options 
of optimization and 68881 co-processor, and 
SUN-4/280 with the option of -04 optimization 
are also listed. 

Parallel computers often demonstrate the 
Mandelbrot set calculation. It took 22.2 

Table 2. Execution time of fundamental 
functions. (unit: microsecond) 

function QCDPAX I'U SUN-3/260 
inverse 0.839 14.0 
l/sqrt 1.395 40.0 
sin 2.565 52.0 
cos 2.561 52.0 
atan 3.080 56.0 
exp 2.278 56.0 
In 1.959 40.0 
rnd 0.373 

Table 3. Performance of vector processing. (MFLOPS) 

Evaluated operations(vector length=500) scalar Vector (m/2) 

A(i)=B(i)tlO.O 
A(i)=B(i)tC(i) 
A(i)=3.0*B(i)+6.0 
A(i)=B(i)*C(i)tD(i) 
A(i)=(A(i+l)tA(i-1))*0.5 
S = S+X(i)*X(i) 
A(i,j)=B(i,j)*C(i,j)+D(i,j) array size=256x256 
if(A(i)>O) C(i)=A(i)tB(i) else C(i)=A(i)-B(i) 
Inner product of 3x3 complex matrices 

0.260 
0.178 
0.402 
0.270 
0.320 
0.388 
0.206 
0.110 

6.243 
4.164 

12.434 
6.24.6 

12.485 
22.160 
4.443 
3.12!3 

12.795 

( 66) 
( 35) 
( 79) 
( 38) 
( 78) 
(206) 

t ;9; 
( 1) 
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Table 4. Measured performance of a PU by benchmark test programs. 

Benchmark QCDPAX PU SUN-3/260 SUN-4/280 
test vector operation Optimized Optimized Unit 

program with tuning 

Whetstone 9.133 0.847 3.000 MWIPS 
Linear eq. 0.561 11.900 0.770 second 

seconds to calculate this set on 1000~1000 
points in the square cornered at (-2,-2i) and 
(2,2i) by one Puwiththe iteration limit of 100 
times. ln this case, which includes the vector 
operation with conditional branch, the per- 
formance of one PU was 1OMFLOPS. 

6.2 PERFORMANCE OF PARALLEL PROCESSING 
The Mandelbrot set calculation and display 

by four PU's took 7.20 seconds, and the net 
calculation time was 5.56 seconds. The differ- 
ence of these time is due to the display which 
takes 3.41 seconds to update 1000x1000 points. 
This time to display seems to be sufficiently 
small for the lattice QCD application. 

The Mandelblot set calculation is not a good 
example for the parallel processing because it 
does not need the inter-PU communication. 
Parallel processing inherently includes over- 
head i.e. the time spent for the process which 
is not appear in the serial processing such as 
the synchronization and the inter-PU communica- 
tion. The time for these processes must be 
sufficiently small. The times for the syn- 
chronization of all PU's and the broadcast 
1024byte data from one PU to all PU's were 
measured and listed in Table 5. The times of 
the PAX-64J, the former model of PAX computer, 
are also listed for comparison. The speed of 
data transfer between the high-speed data memo- 
ries of neighboring PU's was measured to be 
2.7MEi/s. 

The efficiency of parallel processing E is 

defined by, 
E = Ts/(Tp*P) (3) 

where TS is the execution time by serial 
processing, TP is the execution time by 
parallel processing, and P is the number of 
PU'S. This equation is equivalent to: 

E = (Tp-To)/Tp (4) 

if the algorithms for one PU in the parallel 
processing is same to that of serial process- 
ing. Where To is the overhead time. 

The efficiency of the parallel processing 
described by the equation (4) in the prototype 
of QCDPAX was measured on the solutions of 
Laplace equation by relaxation method and 
linear equation by Gauss-Jordan method. The 
results are listed in Table 6. The algorithms 
used these sample parallel processing are con- 
sistentC121, so, the efficiency of parallel 
processing in Table 6 do not change with the 
increase of the number of PU's proportional to 
the problem size. 

7. CONCLUSION 

QCDPAX with 288 processing units has been 
constructed by the high-performance VLSI chips 
and the architecture based on the more than ten 
years history of the research of PAX computers. 
As the maximum speed of one PU is 32MFLOPS, the 
peak performance of the system with 288 PU's is 
9.2GFLOPS. But the arithmetic logic unit and 
multiplier seldom works simultaneously, so the 
effective maximum speed of one W is considered 

Table 5. The execution time of synchronization and broadcast. 

Operation QCDPAX PAX-64J unit 
Synchronization 2.5 18.0 microsecond 
Broadcast(l024byte) 0.56 9.0 millisecond 

Table 6. Total execution time, overhead time, and efficiency on sample programs. 

Sample program scalar processing vector processing 
total overhead efficiency total overhead efficiency 

Laplace. equation 2.42s 0.0434s 0.98 0.220s 0.0434s 0.80 
Linear equation 1.44s 0.0348s 0.98 0.214s 0.0348~ 0.84 
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to be 16MFLOPS. At the practical lattice QCD 
simulation, the time for data transfer, the 
time for startup of the vector processing and 
the hyperplane method, arid the time for net 
calculation are estimated to be almost same. 
Therefore the practical speed of 288 PU system 
is estimated to be 288*16/3=1.5GFLOPS. In the 
case of 480 PU system, the peak performance is 
15GFLOPS and the practical speed is estimated 
to be 2.6GFLOPS. 

This performance will satisfy the needs of 
lattice QCD simulation. 
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