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Abstract 

In this paper we describe an interactive tool designed 
for performance prediction of parallel programs. Static 
performance prediction, in general, is a very difficult 
task. In order to avoid some inherent problems, we con- 
centrate on reasonably structured scientific programs. 
Our prediction system, which is built as a sub-system 
of a larger interactive environment, uses a parser, de- 
pendence analyzer, database and an X-window based 
front end in analyzing programs. The system provides 
the user with execution times of different sections of 
programs. When there are unknowns involved, such as 
number of processors or unknown loop bounds, the out- 
put is an algebraic expression in terms of these variables. 
We propose a simple analytical model as an attempt to 
predict performance degradation due to data references 
in hierarchical memory systems. The predicted execu- 
tion times of some Lawrence Livermore loop kernels are 
given together with the experimental values obtained 
by executing the loops on Alliant FX/8. 

1 Introduction 

As the field of parallel computation has evolved from a 
theoretical subdiscipline of computer architecture and 
algorithm design to an active branch of experimental 
computer science it has become increasingly dependent 
upon performance analysis as the principle tool for ex- 
plaining the behavior of multiprocessor systems. In par- 
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titular, researchers working on parallelizing large appli- 
cations are increasingly dependent on their techniques. 
While automatic parallelizers for FORTRAN and C are 
becoming more powerful, they still frequently fail to rec- 
ognize potential concurrency (especially if it involves in- 
terprocedural analysis). When they do fail, it is up to 
the user to determine where parallelization and vector- 
ization are best applied in the given application. 

In this paper we consider the design of an interactive 
performance predictor that allows users to consult an 
analytical model of the performance of a machine and 
the output of the compiler in order to help them bet- 
ter explain the performance of their applications. To 
see where a tool like the one we will describe fits into 
the activities of a user, it is best to briefly consider an 
anatomy of a performance evaluation session for a user 
with a large application which, for some unknown rea- 
son, is failing to get the desired performance on a vector 
multiprocessor supercomputer. We view the process as 
a sequence of four levels of analysis. 

l Global View. At this level the user would like to un- 
derstand the performance of the application in the 
large. To understand why the program might be 
running slowly, a global view of the code is needed. 
The appropriate tool here is an accurate parallel 
profiler that shows the percent of time spent in each 
routine and speedup statistics on a routine by rou- 
tine basis. Tools of this type are widely available, 
but vary in accuracy. GPROF is the most well 
known example and some vendors provide parallel 
versions of this tool. 

l Procedural View. If the programmer desires more 
information about the performance details of a 
given procedure or function invocation, a new view 
is needed that depicts the loop and “if” control 

521 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76263.76321&domain=pdf&date_stamp=1989-08-01


structure of the program. Statistics must be gath- 
ered to show the percent of time spent in each loop 
and subroutine call. For some runtime systems the 
overhead for executing concurrent loops is large in 
relation to typical loop bodies. In loops with heavy 
synchronization there may be a large cost associ- 
ated with this overhead. If that is the case one 
needs an event based trace and a summary to see if 
the granularity is too small or if too much time is 
spent in critical sections or waiting for semaphores. 
Tools that provide this information are now becom- 
ing available for parallel systems. Gist for the BBN 
butterfly [l] is a good example, Leech for CSRD 
Cedar is another. 

a Code Generation View. It may be the case that 
bad performance was due to a failure of the au- 
tomatic parallelization process to do its job. Users 
need to see where the compiler failed and what sort 
of code was generated when the compiler managed 
to do something. In particular, if a loop is 100 or 
more lines long, it may not be easy to see why the 
automatic tool failed. Segments of code this long 
often contain too many complex scalar expressions 
and subroutine calls to be sorted out by contempo- 
rary analyzers. The user is then required to put in 
directives to command the compiler to parallelize a 
section of code. One of the main jobs of our system, 
known as Sigma, is to help the user sort out seri- 
ous data dependences that prohibit parallelization 
from those that might confuse the compiler but are 
not serious. In particular, global flow analysis is 
essential here. 

l Model Prediction View. If the speedup for a given 
program segment was less than was expected, the 
programmer should be able to ask the system tools 
to make a prediction of performance for that seg- 
ment of code. The prediction should be based on a 
theoretical model of machine performance applied 
to the code generated by the compiler. If the pre- 
dicted behavior agrees with the actual behavior, 
the user can study the dominant terms in the pre- 
dicted performance formula to understand why the 
desired speed-up was not achieved. If the predicted 
behavior does not agree with the actual behavior, 
the programmer is then made aware that another 
factor outside the loop in question (or not covered 
by the theoretical model) must be influencing be- 
havior . 

In this paper we look at the last two items in this 
list with special emphasis on the process of integrating 
analytical models of performance into a working soft- 
ware tool. In Section 2 of this paper we will describe 

the design of an object code analyzer and its integration 
into a tool with a source code interface. In Section 3 we 
will illustrate its behavior by examining the well known 
Lawrence Livermore fortran kernels [lo]. Section 4 gives 
an outline on how an analytical model of bus memory 
traffic can be incorporated into, the predictor and Sec- 
tion 5 will describe extensions for other classes of par- 
allel systems. 

2 Object Code Analyzer 

The problem of extracting a static performance esti- 
mate from a segment of code can be very problematic. 
For example, if the code contains calls to an unknown 
subroutine there is nothing we can do. Also if there are 
data dependent branches we may have no idea of the 
branch frequency. In our experiment, we have focused 
on the problem of giving a static analysis of simple loop 
structures and we have focused our efforts on under- 
standing the behavior of the concurrent/vector execu- 
tion of these loops. Even here we have a hard problem. 
The behavior of a loop is a function of loop bounds 
and strides as well as vector lengths and the number 
of processors. Consequently, any static estimate must 
be expressed as a mathematical function (or algebraic 
expression) of these quantities. 

We are currently in the process of designing a perfor- 
mance predictor as a part of the Sigma system. Sigma 
can be viewed as a collection of tools to help program- 
mers with the task of parallelizing FORTRAN and C 
programs. It consists of 

Parsers and dependence analyizers for FORTRAN 
and C. 

A large data base to store data dependence and 

other information about a program. 

A library of program transformations to help in the 
restructuring of programs. 

An integrated, interactive front end that allows 
programmers to access the data base and transfor- 
mation system via the original source code of the 
application. 

More details can be found in [a], [7]. In this section we 
describe the design of the performance estimation tool 
that is the part of Sigma that is the focus of this paper. 

The current implementation of the predictor analyzes 
fortran programs targeted to the Alliant FX/8. The ex- 
tension of this tool to analyze the programs targeted to 
other MIMD architectures is discussed in the Section 5. 

The Alliant FX/8 is a shared memory vector multi- 
processor with from 1 to 8 processors. The processors 
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each have a vector instruction set and a large set of vec- 
tor registers. In addition there is a powerful concurrency 
control instruction set that allows very efficient parallel 
execution of fortran DO loops. The system has a 512KB 
cache that is shared by all processors. The bandwidth 
of the cache is well matched to the rate at which proces- 
sors can access data. The cache is connected to a bus 
and main memory with a bandwidth equal to about half 
that of the channel from cache to the processors. The 
software of the machine consists of an automatic paral- 
lelizing and vectorizing fortran compiler. This has the 
advantage that the programmer does not have to spend 
time in optimizing the program by inserting compiler di- 
rectives or library calls as in a system where automatic 
parallelization is unavailable. The programmer writes 
the program in standard fortran and compiles with nec- 
essary compiler switches. The compiler analyzes data 
dependences and uses any parallelizing and vectorizing 
constructs to optimize the program where possible. 

However, the compiler optimizations are limited due 
to several reasons. 

The compiler is restricted by the data structures 
and algorithms used in the program. 

The compiler has to assume the worst cases on un- 
known input data or hard to determined data at 
compile time. 

Automatic parallelizing compilers usually fail to 
recognize many aspects of the code that influence 
performance. 

The above restrictions imply that the programmer 
can almost always improve the performance if the neces- 
sary information is available. But the automatic paral- 
lelization limits the programmer’s control. Even though 
one can influence compilation by compiler directives, 
the very limited knowledge about the final object code 
usually prevents the programmer from doing so. This is 
where the assembly code produced by the compiler be- 
comes a good source of information. Assembly code rep- 
resents the exact sequence of instructions which runs on 
the target architecture. Some of the critical information 
can be only obtained at this level. However, the instruc- 
tion sets of modern parallel processing systems have be- 
come rather complicated. The vectorizing/parallelizing 
techniques are so complex that it will be hard for a pro- 
grammer to extract any useful information. Even if the 
programmer does understand the basic optimizations 
and transformations done by the compiler, performance 
estimates usually involve more complex analytical anal- 
ysis of this knowledge. 

At the initialization stage, the object code analyzer 
scans the assembly code and records all the important 

events that would affect performance. These events in- 
clude: 

The start and end of sequential loops. 

The start and end of concurrent loops. 

The start and end of vector loops. 

The location of vector instructions. 

Instruction cycle counts. 

Locations and targets of branch instructions. 

Cycle counting is more complicated than it appears. 
In the Alliant FXJ8 instructions are pipelined. Certain 
instruction sequencing can cause the pipeline to stall. 
These stalls have to be accounted for in computations. 
The actual timing of a memory reference depends on 
the location of data in the hierarchical memory. We will 
only be able to make a probabilistic assumption of cache 
hits and misses in this case. As we discuss Section 4, 
determination of the location of data and the estimation 
of delays due to data movements are complicated factors 
that we will attempt to resolve in our system. 

In our system the collected information is stored in 
the central data base of Sigma where the assembly 
language instructions are associated with the program 
statements of the source. This association is necessary 
in order to compute certain information about the per- 
formance of the program. For example, this data struc- 
ture makes it possible for us to compute cpu cycles 
within loops and display it together with the symbolic 
loop bound variables used in the source program. This 
data structure is also very useful in predicting hierarchi- 
cal memory factors. The memory estimation requires a 
more global analysis of the program which can be done 
more easily with the help of the source program and 
data dependence information. 

subroutine 1111 (na) 
real*8 x,y,Z,u,r,t 
common ~(iooo>,y(l000~,z~l0Oo~,u~~oo~~,~,~ 

do 7 k = 1,na 
x(k) = u(k) + r*(z(k> t r*y(k)) t 

t t,*(u(kt3) t r*(u(k+2) + r*u(ktl)) t 
t t*(u(ktb) t r*(u(k+S) t r*u(kt4)))) 

7 continue 
return 
end 

Figure 1: Kernel 7 

As an example let us take the fortran subroutine (Liv- 
ermore kernel No 7) in Figure 1. Here the do loop 
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llll.label-LE: 
movl d2,dl 
add1 a5Q(-780),dl 
movl dl,d7 
movl d3,d6 
fmoved fp7,fpO 
vmoved --BLNK--+24000+32:1[d7:l:d~,vO 
vmuadd fpO,vO,--BLNK--+2400O+4O:l~d7:l:d~,v0 
vmuadd fpO,vO,--BLNK-~+2400O+48:l~d7:l:d~,v0 
fmoved fp0 ,fpO 
vmuld vO,fpO,vO 
vmoved ~~BLNK~-+24000+8:1~d7:l:dl,v3 
fmoved fp7,fpO 
vmuadd fpO,v3,--BLNK--+2400O+l6:l~d7:l:dl,v3 
vmuadd fpO,v3,~~BLNK~~+24000+24:l~d7:1:dl,v3 
vaddd vO,v3,vO 
fmoved fp6,fpO 
vmuld vO,fpO,vO 
vmov ed --BLNK--+8000:l[d7:1:dj ,v6 
fmoved fp7,fpO 
vmuadd fpO,v6,--BLNK,,+1600O:l[d7:l:d],v6 
vmuadd fpO,v6,,, BLNK--+24000:1[d7:1:dl ,v6 
vaddd vO,v6,vO 
vmoved v0 ,,,BLNK,,+O:l[d7:1:d] 
add1 aSQ(-796),d2 
vcnt32 llll.label~LE 

Figure 2: Assembly Code for Inner Loop of Kernel 7 

S: 5 [cycles=81 
Concurrent Prolog Start 

S: 8 [cycles=141 
Concurrent Vector Loop Start k = 1 : na 

S: 13 [cycles=241 
Vector Loop Start 

S: II, V: 14 C cycles = 636 1 
Vector Loop End 
S: I [cycles=31 

Concurrent End 
S: 3 [cycles=71 

No of cycles = 54+na/#p/32*636 

Figure 3: Analyzer Output for Kernel 7 

is converted to a vector parallel loop by the compiler. 
This means the loop is split into two nested loops, so 
that the outer loop is parallelized over the processors 
and the inner loop is vectorized within the processors. 
The Alliant compiler blocks the loop into p different 

parts (where p is the number of processors) for this 
purpose. This way the range of each vector loop be- 
comes (no/p) * pn -+ 1 : (na/p) + (pn + l), where pn 
is the processor number. Figure 2 shows the assem- 
bly code for the inner vector loop made by the Alliant 
compiler. This code segment provides most of the in- 
formation that we need to analyze the loop. Knowing 
the number of cpu cycles for each instruction and the 
cycles introduced due to pipeline stalls it is possible to 
compute the total number of cycles in the loop. Here 
we obtain the loop bounds by associating the assembly 
code with the source program. Note that for the pur- 
poses of cycle counting it is the length of each vector, 
na/p, not the actual bounds of the loop, that is impor- 
tant to us. The vector loop executes (na/p)/32 times 
as the Alliant vector instructions handle the vectors of 
32 elements. This program structure is reflected in our 
analyzer output shown in Figure 3. Figure 3 also shows 
that the cycle count for inner vector loop is multiplied 

by (nal#p)/32 t o obtain the total cycles taken for the 
loop as we discussed earlier. 

To use the performance predictor interactively, the 
user loads the data base for the application. (This re- 
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testprogs/ 

ile-example/ 

t*( u(k+3) + r*( u(k+2) + r*u(k+l)) t 
t*( u(k+6) + rw( u(k+5) t r*u(kt4)))) 

I I 7 continue 
return 
end 

Vec:orl:oo$ S;;rt 

Vectir L&oD’End 
C cycles = 636 1 

s: 1 C cycles = 3 1 
Incurrent End - 

3 C cucles = 7 1 
114+24+(na-l+l)/#p/32*636+3+7 

lmplified : 54tna/*p/32*636 

Figure 4: Analyzer Output in Sigma 

quires a pass through the data dependence analyzers 
and the Alliant compiler to produce an assembly list- 
ing.) The system gives a list of all the routines in the 
program and the user then picks the subroutine of in- 
terest with the mouse. This generates a view of the 
text in an editor window. The process of getting an 
estimate only requires that the user select a block of 
code with the mouse and make the appropriate menu 
selection. As shown in Figure 4 a new window is cre- 
ated that displays the summary of the generated code 
and cycle time estimate as an algebraic expression of 
the routine parameters (such as loop bounds). As can 
be seen, the system also goes to some length to simplify 
the expressions. 

3 Experimental Results 

In order to investigate the accuracy of the system, we These formulae were compared with the actual per- 
experimented with some of the Lawrence Livermore for- formance figures of the loops. A driver was written 
tran kernels. In Section 2 we illustrated the kernel to call the loop as a subroutine. For the purpose of 
(Figure l), assembly language code for the inner vec- these experiments we selected the arrays small enough 
tor loop (Figure 2) and the analyzer output (Figure 3) so that the program data will completely fit in the cache. 
for the kernel 7 used in the experiment. Six such kernels The subroutine containing the loop was called in a loop 
were used in this experiment which was done on the 4- of several hundred repetitions. These repetitions were 
processor Aliiant FX/8 at the Indiana University. We done to nullify the effects of the the 10~s resolution of 
follow the standard kernel numbers of Lawrence Liver- the clock used for timing. 

more National Laboratory in listing the results. 
The following procedure was used to obtain the for- 

mulae of the cpu cycles for the loops. The kernels were 
first compiled using the Alliant parallelizing/vectorizing 
fortran compiler. We used the compiler switches -0 (to 
optimize), -AS (to allow the compiler to use associa- 
tivity) and -S (to force the compiler to produce the 
assembly code). Separately, the fortran sources were 
parsed by our special fortran parser. Then the assem- 
bly code and the dependence graph were fed into the 
analyzer and the formula for the kernel was obtained. 
These formulae are shown in the Table 1. Note that 
“#p” indicates the the number of processors in the tar- 
get machine. The divisions in the formulae should be 
rounded up to obtain the correct results. Once the num- 
ber of cpu cycles are obtained, they were multiplied by 
the clock period, 170~ in this case, to obtain the actual 
time. 
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KeTnel No Parameters PTOCS Estimated(p) Actual(p) % e,,iq 

1 1739.1 1732.1 
7 na=512 2 874.14 880.93 

4 441.66 447.34 1 10040 10290 1.269 =I 2.426 
8 na=512 2 5048.2 5176.8 

4 2552.1 2641.3 
1 1523.0 1542.1 

9 na=512 2 768.23 781.46 
4 390.83 400.79 
1 3101.0 3295.6 

10 na=512 2 1562.8 I 1659.8 
4 793.73 855.71 
1 335.24 336.61 

12 na=512 2 172.04 176.27 
4 90.440 94.852 
1 33472 34072 

18 kn=512 2 16743 16871 
in=5 4 8379.6 8549.4 

Table 2: Experimental results 

Kernel Formula 

7 54+na/#p/32*636 
8 329+3678*((-i$na)/#p/32) 
9 79+na/#p/32*555 
10 145+na/#p/32*1131 
12 52+na/#p/32*120 . . - , 
18 1 90+(-l+kn)/#p*(82+(-l+jn)/32+3076) 

Table 1: Formulae for Cycles 

The timing function was called immediately before 
and after the repetitive loop. Another dummy sub- 
routine with no executable statements was called the 
same number of repetitions to obtain the function call- 
ing overhead which is then subtracted. The Alliant com- 
mand “execute” was used to run the program on one, 
two and four processors. Actually each execution time 
was obtained after six runs, discarding the highest and 
the lowest and averaging the other four. Finally the 
time was divided by the number of repetitions to ob- 
tain the time taken for a loop. The experimental values 
(in /M) are shown together with the predicted values in 
the Table 2. 

4 Incorporating an Analytical 
Model of Bus Behavior 

The experiment in the previous section predicted per- 
formance for executions out of the cache. However in 
Alliant FX/B the bus is clearly the limiting factor in the 
performance when executing parallel-vector loops (this 
fact is well documented in a nu.mber of reports [6], (41). 
Consequently any methodology for predicting the per- 
formance for the Alliant hardware must include a model 
of the memory architecture. 

In this section we illustrate how a model of mem- 
ory contention can be incorporated into the prediction 
software. Our objective is to show that, the object and 
source code information discussed in the previous sec- 
tions of this paper together with known parameters of 
the hardware contain enough information to give a first 
order prediction of memory system performance prob- 
lems. 

The model we use is very simple, and is chosen more 
for the sake of illustration rather than as a final solution. 
(We are indebted to William Jalby for suggesting this 
model as a good test case.) A more interesting, but 
more complex model can be based on the work of any 
of the large number of research results in this area (for 

example PI, PI, WI, P31). 

526 



Consider a simple example of the form 

do i = 1,n 
x(i,l:k) = y(i,l:k) 

enddo 

The Alliant compiler will parallelise the loop and use 
vector instructions on each processor to do the com- 
putation in the loop body. Assuming no references to 
memory the computation will take 

fP = cm + [Wl (a + PW321) 

cycles of time where P is the number of processors, C,,, 
is the serial prolog and epilog time and CY and /3 are re- 
spectively the amount of scalar and vector code in the 
loop body. Assume that the cache miss rate of one exe- 
cution of the loop body is x and that the total number 
of references to memory or cache in one pass of the loop 
is W words. Then we make the (very rough) assumption 
that the effect of cache misses is to make the memory 
requests to the processor “appear” as a random expo- 
nentially distributed process with request rate 

M, = x 
W 

a + e/321 

Assume that the bus-memory system is an exponen- 
tially distributed random process with a service rate of 
M, words per second. In other words, the memory sys- 
tem is either busy or available for a request. (In fact, 
processors in the FX/8 can each have two outstanding 
memory requests, but for the sake of this simple discus- 
sion, that is not important.) 

Let our P processors be considered as a requesting 
system with request rate PM,. View the memory sys- 
tem as a server with a queue of length L where L is 
the number of outstanding requests that can be pend- 
ing at any time. A classical result for Poisson queues 
and state dependent arrival and service times is given 
as follows. Let p, be the probability that the queue 
contains s elements, then 

p 
d 

= PV -4 
l-pL+1 

for s = 1,2, . . . . L where p = w. This result, is sub- 
ject to the following key assumbtion. If a request is 
made to the system when the queue is full, the request 
is dropped. In other words the requesting processor is 
blocked until the queue has free space and then it con- 
tinues generating requests as if it had not been blocked. 
(For a proof see [3]). Th is assumption is inaccurate for 
our situation, because a blocked processor will issue a 
new request as soon as possible after there is room in 
the queue rather than resuming the previous request 

rate. On the other hand, for the purposes of our inter- 
active system approximations and for the purposes of 
this discussion it will be sufficient. 

Consider the simplest model derivable from these 
equations, i.e., assume that the queue size L is one so 
that the memory system is either busy servicing a re- 
quest or is free and that the processors are only working 
during the free periods. (In other words, when one pro- 
cessor is stalled, they are all stalled.) In this case, we 
have the probability that the memory system is busy 
serving a request is 

p1 = A- 
l+P 

and the probability that it is free is 

1 
PO =- 

1-t-P 

The assumption that the processors are only working 
when the memory system is in the free state implies 
that, if the parallel section of code requires TParp cy- 
cles of work to complete, the total number of cycles to 
complete the execution will be 

Ttotalp = TStallp + TPaTp 

where TStallp is the time spent in the stalled state 
waiting for the memory system. From the probabili- 
ties above we can expect TStallp to be pITtotal,, and 
TParp to be poTtotalp. But TParp is just 

m/Pl(~+Pw21) 
If we add in the execution time for the serial section of 
code then execution time in cycles Tp to complete the 
job satisfies 

TP = Cm +(I +~)([@l(a + PW321)) 

or 

PM, 
TP = C,,, + (l+ M ~ )WW +W/321) 

Another way to say this is that the speedup of the par- 
allel section is bounded by 

speedup = 
PC1 + &) 

1+& M. 

Clearly a more accurate model can be built by consid- 
ering the case where the queue size reflects the number 
of memory request the system may have pending and 
where the processors are only stalled when a request is 
in the queue, but the important point is that we have 
built an estimate of multiprocessor performance that is 
a function of the following terms 
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l c,,,, a! and p which are the coefficients derived 
from object code analysis. 

l M, which is the memory service rate. 

l P which is the number of processors, n the outer 
loop bound and k the the vector length. 

l MT which is a function of the above items and the 
cache miss ratio x. 

Of course, the key missing link to generating perfor- 
mance estimates for different values of n, k and P is the 
computation of x. For the example at the beginning of 
this section, it is easy to see that x is 1 because each 
element is referenced only once. 

Our current implementation of the above model takes 
x as an input parameter. This means the user has to 
compute x before analyzing a program. The Figure 5 
shows our estimation of number of cycles for the kernel 7 
(Figure 1) along with the actual experimental values for 
comparison. We used 

x = 0.4 

and 
M, = 16 bytes/cycle 

I I I I I Px 
100.00 200.00 300.00 4wloo 500.00 600.00 

Figure 5: Data Size Vs Machine Cycles 

700.00 

The value of x was determined by the fact that there 
are references to 10 memory locations within the loop 
and 6 of them are to the locations which are already 
referenced by previous iterations. The value of M, is 
taken from [6]. 

data moving from the cache to the processors 
4mn. 

is then 

In the Figure 5, estimated values are generally about 
5% lower than the actual values. This happens due to 
two main reasons. First, in our model we assumed that 
the requests which are not immediately served are lost. 
In practice these requests will queue up and increase 
the request rate. Second, in a more accurate model 
we have to consider the fact that the memory “writes” 
use more bus bandwidth than “reads”. A data block 
brought into the cache for reading will not be written 
back, but a “write cache load” will result in an eventual 
write-back. 

The kernel 7 has an unnested loop with one- 
dimensional arrays. However, in general the determi- 
nation of of x requires more sophisticated techniques. 
For example, consider the matrix vector product 

do i = I, n 
do j = I, m 

y(j) = y(j) + a(i,j>*x(i) 
enddo 

enddo 

To compute the value of x accurately we need to know 
the cache replacement policy of the machine. In the case 
of the Alliant, the cache is a direct mapped cache con- 
trolled by a write back scheme on dirty words. In other 
words, a word is loaded into c*ache position equal to it 
address modulo the cache size. Consequently, it is pos- 
sible that y(l), a(1, 1) and Z( 1) might be all mapped to 
the same position in the cache and almost all references 
will be cache misses. On the other hand, if we assume 
that this anomaly is rare, we can build a simple model 
of the behavior. In fact, from the perspective of build- 
ing a performance predictor we would like an optimistic 
model if an accurate one is not available. The reason 
for this claim is that we assume that this tool is being 
used to try to explain bad performance to an applica- 
tion programmer. If a performance predictor yields a 
pessimistic result based on an optimistic analysis, we 
can feel safe that the prediction is guiding the program- 
mer to the correct conclusions about his code. If, on 
the other hand, the prediction claims that performance 
should be good when, in fact, it is poor, the programmer 
is we11 advised to turn to more accurate runtime perfor- 
mance analysis tools. With this (admittedly arguable) 
justification, let us make the optimistic assumption that 
the cache is smart in the following sense. 

In this case, we are reading the vectors Z, y and the Define the reference window for an array at a given 
array a and writing the array y. The total amount of instance in time to be the set, of elements that will be 
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accessed prior to a repeated access to the element of 
the array. In other words, the reference window is like a 
working set for the array. In the example above, the ref- 
erence window for 1: at time (i, j) is a(i). Consequently, 
the window is a single element and is stationary until i 
changes. In the case of y we see the reference window 
is y(1 : m) and is fixed. Elements of a are accessed 
only once and never reuse in the loop, so the refer- 
ence window for a is empty. Let us assume that the 
cache is smart enough to keep the reference window for 
each array, and that it adds new elements and drops 
old ones whenever the window shifts position in the it- 
eration space. If the total of the sizes of the reference 
windows exceeds the cache size, we assume that the least 
recently used policy is employed to attempt to fit the 
elements of the reference windows. Hence, if the total 
is less than the cache size, any reference to an element 
of the current window for an array can be considered as 
a cache hit and any reference to another element is a 
miss. The total of the sizes of the reference windows in 
our example is 1 + m. Let CS be the size of the cache. 
If we ignore the first few outer iterations, the number 
of cache misses in the case that 1 + m < CS is just mn 
corresponding to the references to a. If 1 + m > CS 
then there is not enough room in the cache. According 
to our least recently used assumption, the element of a: 
will remain in the cache (in fact, a good compiler will 
keep it in a register), but only CS - 1 of the elements of 
a will be in the cache and m- CS- 1 elements will have 
to be loaded for each outer iteration. Putting all this to- 
gether with the fact that the total number of references 
is equal to 4mn we have 

1 ifl$m<CS 
X = %m-CS-l otherwise 

{ 4m 

In summary, we have reduced the estimation of the 
memory system performance to the estimation of the 
cache miss ratio which we have reduced to the symbolic 
identification of the reference windows. This last task 
is something we have already studied extensively and 
it is described in [2] and [5]. One further point must 
be made. An important factor of cache behavior not 
considered here is the effect of the cache line size on the 
estimate. This is particularly important when memory 
references are not sequential and a much more detailed 
analysis is needed in this case. 

5 Extending to Other Architec- 
t ures 

Our experiments, and the tools discussed in this paper 
concentrated entirely on the architecture and the com- 
piler of the Alliant FX/g. However, the general concepts 

discussed in this paper are applicable to many shared 
memory machines. The assembly language analyzing 
techniques that we used are very general. For each dif- 
ferent machine a set of regular expressions would have 
to be written to capture the different types of instruc- 
tions and compute the cycles. In fact in our software we 
were careful to keep these regular expressions as a sepa- 
rate module and create a general data structure contain- 
ing important events for analysis. This basically allows 
us to proceed in a machine independent way once the 
events are recorded. The overall structure of the object 
code will be less useful when the program is explicitly 
parallelized and vectorized by the user. In this case, the 
user already knows the overall structure. However, the 
analyzer can point out the deficiencies of the program- 
mer’s decisions. For example, the programmer may not 
have an accurate knowledge of the overheads involved 
in parallelization and be lead into making a poor deci- 
sion. The delays due to synchronizations, pipeline stalls 
and restrictions of other hardware facilities are always 
complex and are best handled by programs. 

Extensions of our theories and concepts of the mem- 
ory system timing will be admittedly less straight for- 
ward. By studying and developing tools to analyze the 

memory system in the Alliant we cover most of the hier- 
archical cache based system. Note that our analysis in 
Section 4 has a very general view of the overall memory 
systems. It will be necessary that some of the archi- 
tecture specific parameters such as cache line size to 
be included in the implementation. However, as long 
as the memory system of the target machine fits our 
model, the concepts should be valid and easy to imple- 
ment. Some of the other machines, however, would have 
different memory systems which cannot be modeled by 
ours. In the BBN Butterfly for example, the processors 
are connected to the memory by a network. Each pro- 
cessor also has a part of the memory which is “local” 
to it. The processors can access local memory without 
network delays. What is kept in the local memory is 
decided by the programmer. Our experience with the 
Butterfly shows that the decision of “what to keep in 
local memory” is not a trivial one for the programmer. 
The “hot spot contention” [ll] is another factor which 
degrades the performance in such a network connected 
system. Even though there is no obvious extension to 
our memory system studies to cover such architectures, 
it is evident that our basic prediction system can easily 
accommodate a different model in this case. Then the 
predictor can be used as a guide by the programmer in 
localizing variables and avoiding the hot spots. 
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6 Conclusions 

As we pointed out earlier, a performance prediction tool 
will greatly enhance the user’s ability to tune programs 
to exploit the architectures of today’s high speed su- 
percomputers. We have described the design of such 
a system which combines the object code and memory 
system analysis. The results of our object code ana- 
lyzer are presented in Section 3. The estimated times 
are within 8% of the values obtained in all the cases. 
Actually, our estimate was always optimistic and incor- 
poration of a refined memory model should correct the 
discrepancies. 

To account for the delays due to hierarchical memory 
and the memory bus saturation, we proposed a proba- 
bilistic model. How well the model fits into the system 
depends on the assumptions made in the derivations. 
An incomplete implementation of the memory model 
is incorporated in our tool. As illustrated in Figure 5, 
current implementation does a reasonable estimation of 
a simple fortran loop. With the future extensions to 
the current memory model, we expect to estimate more 
complex programs. 

We will also be concentrating on extending our re- 
sults to different architectures. It is important that our 
basic concepts are general enough to facilitate these ex- 
tensions. We intend to keep the concepts of the models 
general so that new architectures can be incorporated 
with minimal effort. 
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