
Building Analytical Models into an Interactive Performance
Prediction Tool

Daya Atapattu Dennis G annon

Department of Computer Science, Indiana University
Bloomington, Indiana

Abstract

In this paper we describe an interactive tool designed
for performance prediction of parallel programs. Static
performance prediction, in general, is a very difficult
task. In order to avoid some inherent problems, we con-
centrate on reasonably structured scientific programs.
Our prediction system, which is built as a sub-system
of a larger interactive environment, uses a parser, de-
pendence analyzer, database and an X-window based
front end in analyzing programs. The system provides
the user with execution times of different sections of
programs. When there are unknowns involved, such as
number of processors or unknown loop bounds, the out-
put is an algebraic expression in terms of these variables.
We propose a simple analytical model as an attempt to
predict performance degradation due to data references
in hierarchical memory systems. The predicted execu-
tion times of some Lawrence Livermore loop kernels are
given together with the experimental values obtained
by executing the loops on Alliant FX/8.

1 Introduction

As the field of parallel computation has evolved from a
theoretical subdiscipline of computer architecture and
algorithm design to an active branch of experimental
computer science it has become increasingly dependent
upon performance analysis as the principle tool for ex-
plaining the behavior of multiprocessor systems. In par-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-341-8/89/W l/O521 $1.50

titular, researchers working on parallelizing large appli-
cations are increasingly dependent on their techniques.
While automatic parallelizers for FORTRAN and C are
becoming more powerful, they still frequently fail to rec-
ognize potential concurrency (especially if it involves in-
terprocedural analysis). When they do fail, it is up to
the user to determine where parallelization and vector-
ization are best applied in the given application.

In this paper we consider the design of an interactive
performance predictor that allows users to consult an
analytical model of the performance of a machine and
the output of the compiler in order to help them bet-
ter explain the performance of their applications. To
see where a tool like the one we will describe fits into
the activities of a user, it is best to briefly consider an
anatomy of a performance evaluation session for a user
with a large application which, for some unknown rea-
son, is failing to get the desired performance on a vector
multiprocessor supercomputer. We view the process as
a sequence of four levels of analysis.

l Global View. At this level the user would like to un-
derstand the performance of the application in the
large. To understand why the program might be
running slowly, a global view of the code is needed.
The appropriate tool here is an accurate parallel
profiler that shows the percent of time spent in each
routine and speedup statistics on a routine by rou-
tine basis. Tools of this type are widely available,
but vary in accuracy. GPROF is the most well
known example and some vendors provide parallel
versions of this tool.

l Procedural View. If the programmer desires more
information about the performance details of a
given procedure or function invocation, a new view
is needed that depicts the loop and “if” control

521

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76263.76321&domain=pdf&date_stamp=1989-08-01

structure of the program. Statistics must be gath-
ered to show the percent of time spent in each loop
and subroutine call. For some runtime systems the
overhead for executing concurrent loops is large in
relation to typical loop bodies. In loops with heavy
synchronization there may be a large cost associ-
ated with this overhead. If that is the case one
needs an event based trace and a summary to see if
the granularity is too small or if too much time is
spent in critical sections or waiting for semaphores.
Tools that provide this information are now becom-
ing available for parallel systems. Gist for the BBN
butterfly [l] is a good example, Leech for CSRD
Cedar is another.

a Code Generation View. It may be the case that
bad performance was due to a failure of the au-
tomatic parallelization process to do its job. Users
need to see where the compiler failed and what sort
of code was generated when the compiler managed
to do something. In particular, if a loop is 100 or
more lines long, it may not be easy to see why the
automatic tool failed. Segments of code this long
often contain too many complex scalar expressions
and subroutine calls to be sorted out by contempo-
rary analyzers. The user is then required to put in
directives to command the compiler to parallelize a
section of code. One of the main jobs of our system,
known as Sigma, is to help the user sort out seri-
ous data dependences that prohibit parallelization
from those that might confuse the compiler but are
not serious. In particular, global flow analysis is
essential here.

l Model Prediction View. If the speedup for a given
program segment was less than was expected, the
programmer should be able to ask the system tools
to make a prediction of performance for that seg-
ment of code. The prediction should be based on a
theoretical model of machine performance applied
to the code generated by the compiler. If the pre-
dicted behavior agrees with the actual behavior,
the user can study the dominant terms in the pre-
dicted performance formula to understand why the
desired speed-up was not achieved. If the predicted
behavior does not agree with the actual behavior,
the programmer is then made aware that another
factor outside the loop in question (or not covered
by the theoretical model) must be influencing be-
havior .

In this paper we look at the last two items in this
list with special emphasis on the process of integrating
analytical models of performance into a working soft-
ware tool. In Section 2 of this paper we will describe

the design of an object code analyzer and its integration
into a tool with a source code interface. In Section 3 we
will illustrate its behavior by examining the well known
Lawrence Livermore fortran kernels [lo]. Section 4 gives
an outline on how an analytical model of bus memory
traffic can be incorporated into, the predictor and Sec-
tion 5 will describe extensions for other classes of par-
allel systems.

2 Object Code Analyzer

The problem of extracting a static performance esti-
mate from a segment of code can be very problematic.
For example, if the code contains calls to an unknown
subroutine there is nothing we can do. Also if there are
data dependent branches we may have no idea of the
branch frequency. In our experiment, we have focused
on the problem of giving a static analysis of simple loop
structures and we have focused our efforts on under-
standing the behavior of the concurrent/vector execu-
tion of these loops. Even here we have a hard problem.
The behavior of a loop is a function of loop bounds
and strides as well as vector lengths and the number
of processors. Consequently, any static estimate must
be expressed as a mathematical function (or algebraic
expression) of these quantities.

We are currently in the process of designing a perfor-
mance predictor as a part of the Sigma system. Sigma
can be viewed as a collection of tools to help program-
mers with the task of parallelizing FORTRAN and C
programs. It consists of

Parsers and dependence analyizers for FORTRAN
and C.

A large data base to store data dependence and

other information about a program.

A library of program transformations to help in the
restructuring of programs.

An integrated, interactive front end that allows
programmers to access the data base and transfor-
mation system via the original source code of the
application.

More details can be found in [a], [7]. In this section we
describe the design of the performance estimation tool
that is the part of Sigma that is the focus of this paper.

The current implementation of the predictor analyzes
fortran programs targeted to the Alliant FX/8. The ex-
tension of this tool to analyze the programs targeted to
other MIMD architectures is discussed in the Section 5.

The Alliant FX/8 is a shared memory vector multi-
processor with from 1 to 8 processors. The processors

522

each have a vector instruction set and a large set of vec-
tor registers. In addition there is a powerful concurrency
control instruction set that allows very efficient parallel
execution of fortran DO loops. The system has a 512KB
cache that is shared by all processors. The bandwidth
of the cache is well matched to the rate at which proces-
sors can access data. The cache is connected to a bus
and main memory with a bandwidth equal to about half
that of the channel from cache to the processors. The
software of the machine consists of an automatic paral-
lelizing and vectorizing fortran compiler. This has the
advantage that the programmer does not have to spend
time in optimizing the program by inserting compiler di-
rectives or library calls as in a system where automatic
parallelization is unavailable. The programmer writes
the program in standard fortran and compiles with nec-
essary compiler switches. The compiler analyzes data
dependences and uses any parallelizing and vectorizing
constructs to optimize the program where possible.

However, the compiler optimizations are limited due
to several reasons.

The compiler is restricted by the data structures
and algorithms used in the program.

The compiler has to assume the worst cases on un-
known input data or hard to determined data at
compile time.

Automatic parallelizing compilers usually fail to
recognize many aspects of the code that influence
performance.

The above restrictions imply that the programmer
can almost always improve the performance if the neces-
sary information is available. But the automatic paral-
lelization limits the programmer’s control. Even though
one can influence compilation by compiler directives,
the very limited knowledge about the final object code
usually prevents the programmer from doing so. This is
where the assembly code produced by the compiler be-
comes a good source of information. Assembly code rep-
resents the exact sequence of instructions which runs on
the target architecture. Some of the critical information
can be only obtained at this level. However, the instruc-
tion sets of modern parallel processing systems have be-
come rather complicated. The vectorizing/parallelizing
techniques are so complex that it will be hard for a pro-
grammer to extract any useful information. Even if the
programmer does understand the basic optimizations
and transformations done by the compiler, performance
estimates usually involve more complex analytical anal-
ysis of this knowledge.

At the initialization stage, the object code analyzer
scans the assembly code and records all the important

events that would affect performance. These events in-
clude:

The start and end of sequential loops.

The start and end of concurrent loops.

The start and end of vector loops.

The location of vector instructions.

Instruction cycle counts.

Locations and targets of branch instructions.

Cycle counting is more complicated than it appears.
In the Alliant FXJ8 instructions are pipelined. Certain
instruction sequencing can cause the pipeline to stall.
These stalls have to be accounted for in computations.
The actual timing of a memory reference depends on
the location of data in the hierarchical memory. We will
only be able to make a probabilistic assumption of cache
hits and misses in this case. As we discuss Section 4,
determination of the location of data and the estimation
of delays due to data movements are complicated factors
that we will attempt to resolve in our system.

In our system the collected information is stored in
the central data base of Sigma where the assembly
language instructions are associated with the program
statements of the source. This association is necessary
in order to compute certain information about the per-
formance of the program. For example, this data struc-
ture makes it possible for us to compute cpu cycles
within loops and display it together with the symbolic
loop bound variables used in the source program. This
data structure is also very useful in predicting hierarchi-
cal memory factors. The memory estimation requires a
more global analysis of the program which can be done
more easily with the help of the source program and
data dependence information.

subroutine 1111 (na)
real*8 x,y,Z,u,r,t
common ~(iooo>,y(l000~,z~l0Oo~,u~~oo~~,~,~

do 7 k = 1,na
x(k) = u(k) + r*(z(k> t r*y(k)) t

t t,*(u(kt3) t r*(u(k+2) + r*u(ktl)) t
t t*(u(ktb) t r*(u(k+S) t r*u(kt4))))

7 continue
return
end

Figure 1: Kernel 7

As an example let us take the fortran subroutine (Liv-
ermore kernel No 7) in Figure 1. Here the do loop

523

llll.label-LE:
movl d2,dl
add1 a5Q(-780),dl
movl dl,d7
movl d3,d6
fmoved fp7,fpO
vmoved --BLNK--+24000+32:1[d7:l:d~,vO
vmuadd fpO,vO,--BLNK--+2400O+4O:l~d7:l:d~,v0
vmuadd fpO,vO,--BLNK-~+2400O+48:l~d7:l:d~,v0
fmoved fp0 ,fpO
vmuld vO,fpO,vO
vmoved ~~BLNK~-+24000+8:1~d7:l:dl,v3
fmoved fp7,fpO
vmuadd fpO,v3,--BLNK--+2400O+l6:l~d7:l:dl,v3
vmuadd fpO,v3,~~BLNK~~+24000+24:l~d7:1:dl,v3
vaddd vO,v3,vO
fmoved fp6,fpO
vmuld vO,fpO,vO
vmov ed --BLNK--+8000:l[d7:1:dj ,v6
fmoved fp7,fpO
vmuadd fpO,v6,--BLNK,,+1600O:l[d7:l:d],v6
vmuadd fpO,v6,,, BLNK--+24000:1[d7:1:dl ,v6
vaddd vO,v6,vO
vmoved v0 ,,,BLNK,,+O:l[d7:1:d]
add1 aSQ(-796),d2
vcnt32 llll.label~LE

Figure 2: Assembly Code for Inner Loop of Kernel 7

S: 5 [cycles=81
Concurrent Prolog Start

S: 8 [cycles=141
Concurrent Vector Loop Start k = 1 : na

S: 13 [cycles=241
Vector Loop Start

S: II, V: 14 C cycles = 636 1
Vector Loop End
S: I [cycles=31

Concurrent End
S: 3 [cycles=71

No of cycles = 54+na/#p/32*636

Figure 3: Analyzer Output for Kernel 7

is converted to a vector parallel loop by the compiler.
This means the loop is split into two nested loops, so
that the outer loop is parallelized over the processors
and the inner loop is vectorized within the processors.
The Alliant compiler blocks the loop into p different

parts (where p is the number of processors) for this
purpose. This way the range of each vector loop be-
comes (no/p) * pn -+ 1 : (na/p) + (pn + l), where pn
is the processor number. Figure 2 shows the assem-
bly code for the inner vector loop made by the Alliant
compiler. This code segment provides most of the in-
formation that we need to analyze the loop. Knowing
the number of cpu cycles for each instruction and the
cycles introduced due to pipeline stalls it is possible to
compute the total number of cycles in the loop. Here
we obtain the loop bounds by associating the assembly
code with the source program. Note that for the pur-
poses of cycle counting it is the length of each vector,
na/p, not the actual bounds of the loop, that is impor-
tant to us. The vector loop executes (na/p)/32 times
as the Alliant vector instructions handle the vectors of
32 elements. This program structure is reflected in our
analyzer output shown in Figure 3. Figure 3 also shows
that the cycle count for inner vector loop is multiplied

by (nal#p)/32 t o obtain the total cycles taken for the
loop as we discussed earlier.

To use the performance predictor interactively, the
user loads the data base for the application. (This re-

524

testprogs/

ile-example/

t*(u(k+3) + r*(u(k+2) + r*u(k+l)) t
t*(u(k+6) + rw(u(k+5) t r*u(kt4))))

I I 7 continue
return
end

Vec:orl:oo$ S;;rt

Vectir L&oD’End
C cycles = 636 1

s: 1 C cycles = 3 1
Incurrent End -

3 C cucles = 7 1
114+24+(na-l+l)/#p/32*636+3+7

lmplified : 54tna/*p/32*636

Figure 4: Analyzer Output in Sigma

quires a pass through the data dependence analyzers
and the Alliant compiler to produce an assembly list-
ing.) The system gives a list of all the routines in the
program and the user then picks the subroutine of in-
terest with the mouse. This generates a view of the
text in an editor window. The process of getting an
estimate only requires that the user select a block of
code with the mouse and make the appropriate menu
selection. As shown in Figure 4 a new window is cre-
ated that displays the summary of the generated code
and cycle time estimate as an algebraic expression of
the routine parameters (such as loop bounds). As can
be seen, the system also goes to some length to simplify
the expressions.

3 Experimental Results

In order to investigate the accuracy of the system, we These formulae were compared with the actual per-
experimented with some of the Lawrence Livermore for- formance figures of the loops. A driver was written
tran kernels. In Section 2 we illustrated the kernel to call the loop as a subroutine. For the purpose of
(Figure l), assembly language code for the inner vec- these experiments we selected the arrays small enough
tor loop (Figure 2) and the analyzer output (Figure 3) so that the program data will completely fit in the cache.
for the kernel 7 used in the experiment. Six such kernels The subroutine containing the loop was called in a loop
were used in this experiment which was done on the 4- of several hundred repetitions. These repetitions were
processor Aliiant FX/8 at the Indiana University. We done to nullify the effects of the the 10~s resolution of
follow the standard kernel numbers of Lawrence Liver- the clock used for timing.

more National Laboratory in listing the results.
The following procedure was used to obtain the for-

mulae of the cpu cycles for the loops. The kernels were
first compiled using the Alliant parallelizing/vectorizing
fortran compiler. We used the compiler switches -0 (to
optimize), -AS (to allow the compiler to use associa-
tivity) and -S (to force the compiler to produce the
assembly code). Separately, the fortran sources were
parsed by our special fortran parser. Then the assem-
bly code and the dependence graph were fed into the
analyzer and the formula for the kernel was obtained.
These formulae are shown in the Table 1. Note that
“#p” indicates the the number of processors in the tar-
get machine. The divisions in the formulae should be
rounded up to obtain the correct results. Once the num-
ber of cpu cycles are obtained, they were multiplied by
the clock period, 170~ in this case, to obtain the actual
time.

525

KeTnel No Parameters PTOCS Estimated(p) Actual(p) % e,,iq

1 1739.1 1732.1
7 na=512 2 874.14 880.93

4 441.66 447.34 1 10040 10290 1.269 =I 2.426
8 na=512 2 5048.2 5176.8

4 2552.1 2641.3
1 1523.0 1542.1

9 na=512 2 768.23 781.46
4 390.83 400.79
1 3101.0 3295.6

10 na=512 2 1562.8 I 1659.8
4 793.73 855.71
1 335.24 336.61

12 na=512 2 172.04 176.27
4 90.440 94.852
1 33472 34072

18 kn=512 2 16743 16871
in=5 4 8379.6 8549.4

Table 2: Experimental results

Kernel Formula

7 54+na/#p/32*636
8 329+3678*((-i$na)/#p/32)
9 79+na/#p/32*555
10 145+na/#p/32*1131
12 52+na/#p/32*120 . . - ,
18 1 90+(-l+kn)/#p*(82+(-l+jn)/32+3076)

Table 1: Formulae for Cycles

The timing function was called immediately before
and after the repetitive loop. Another dummy sub-
routine with no executable statements was called the
same number of repetitions to obtain the function call-
ing overhead which is then subtracted. The Alliant com-
mand “execute” was used to run the program on one,
two and four processors. Actually each execution time
was obtained after six runs, discarding the highest and
the lowest and averaging the other four. Finally the
time was divided by the number of repetitions to ob-
tain the time taken for a loop. The experimental values
(in /M) are shown together with the predicted values in
the Table 2.

4 Incorporating an Analytical
Model of Bus Behavior

The experiment in the previous section predicted per-
formance for executions out of the cache. However in
Alliant FX/B the bus is clearly the limiting factor in the
performance when executing parallel-vector loops (this
fact is well documented in a nu.mber of reports [6], (41).
Consequently any methodology for predicting the per-
formance for the Alliant hardware must include a model
of the memory architecture.

In this section we illustrate how a model of mem-
ory contention can be incorporated into the prediction
software. Our objective is to show that, the object and
source code information discussed in the previous sec-
tions of this paper together with known parameters of
the hardware contain enough information to give a first
order prediction of memory system performance prob-
lems.

The model we use is very simple, and is chosen more
for the sake of illustration rather than as a final solution.
(We are indebted to William Jalby for suggesting this
model as a good test case.) A more interesting, but
more complex model can be based on the work of any
of the large number of research results in this area (for

example PI, PI, WI, P31).

526

Consider a simple example of the form

do i = 1,n
x(i,l:k) = y(i,l:k)

enddo

The Alliant compiler will parallelise the loop and use
vector instructions on each processor to do the com-
putation in the loop body. Assuming no references to
memory the computation will take

fP = cm + [Wl (a + PW321)

cycles of time where P is the number of processors, C,,,
is the serial prolog and epilog time and CY and /3 are re-
spectively the amount of scalar and vector code in the
loop body. Assume that the cache miss rate of one exe-
cution of the loop body is x and that the total number
of references to memory or cache in one pass of the loop
is W words. Then we make the (very rough) assumption
that the effect of cache misses is to make the memory
requests to the processor “appear” as a random expo-
nentially distributed process with request rate

M, = x
W

a + e/321

Assume that the bus-memory system is an exponen-
tially distributed random process with a service rate of
M, words per second. In other words, the memory sys-
tem is either busy or available for a request. (In fact,
processors in the FX/8 can each have two outstanding
memory requests, but for the sake of this simple discus-
sion, that is not important.)

Let our P processors be considered as a requesting
system with request rate PM,. View the memory sys-
tem as a server with a queue of length L where L is
the number of outstanding requests that can be pend-
ing at any time. A classical result for Poisson queues
and state dependent arrival and service times is given
as follows. Let p, be the probability that the queue
contains s elements, then

p
d

= PV -4
l-pL+1

for s = 1,2, L where p = w. This result, is sub-
ject to the following key assumbtion. If a request is
made to the system when the queue is full, the request
is dropped. In other words the requesting processor is
blocked until the queue has free space and then it con-
tinues generating requests as if it had not been blocked.
(For a proof see [3]). Th is assumption is inaccurate for
our situation, because a blocked processor will issue a
new request as soon as possible after there is room in
the queue rather than resuming the previous request

rate. On the other hand, for the purposes of our inter-
active system approximations and for the purposes of
this discussion it will be sufficient.

Consider the simplest model derivable from these
equations, i.e., assume that the queue size L is one so
that the memory system is either busy servicing a re-
quest or is free and that the processors are only working
during the free periods. (In other words, when one pro-
cessor is stalled, they are all stalled.) In this case, we
have the probability that the memory system is busy
serving a request is

p1 = A-
l+P

and the probability that it is free is

1
PO =-

1-t-P

The assumption that the processors are only working
when the memory system is in the free state implies
that, if the parallel section of code requires TParp cy-
cles of work to complete, the total number of cycles to
complete the execution will be

Ttotalp = TStallp + TPaTp

where TStallp is the time spent in the stalled state
waiting for the memory system. From the probabili-
ties above we can expect TStallp to be pITtotal,, and
TParp to be poTtotalp. But TParp is just

m/Pl(~+Pw21)
If we add in the execution time for the serial section of
code then execution time in cycles Tp to complete the
job satisfies

TP = Cm +(I +~)([@l(a + PW321))

or

PM,
TP = C,,, + (l+ M ~)WW +W/321)

Another way to say this is that the speedup of the par-
allel section is bounded by

speedup =
PC1 + &)

1+& M.

Clearly a more accurate model can be built by consid-
ering the case where the queue size reflects the number
of memory request the system may have pending and
where the processors are only stalled when a request is
in the queue, but the important point is that we have
built an estimate of multiprocessor performance that is
a function of the following terms

527

l c,,,, a! and p which are the coefficients derived
from object code analysis.

l M, which is the memory service rate.

l P which is the number of processors, n the outer
loop bound and k the the vector length.

l MT which is a function of the above items and the
cache miss ratio x.

Of course, the key missing link to generating perfor-
mance estimates for different values of n, k and P is the
computation of x. For the example at the beginning of
this section, it is easy to see that x is 1 because each
element is referenced only once.

Our current implementation of the above model takes
x as an input parameter. This means the user has to
compute x before analyzing a program. The Figure 5
shows our estimation of number of cycles for the kernel 7
(Figure 1) along with the actual experimental values for
comparison. We used

x = 0.4

and
M, = 16 bytes/cycle

I I I I I Px
100.00 200.00 300.00 4wloo 500.00 600.00

Figure 5: Data Size Vs Machine Cycles

700.00

The value of x was determined by the fact that there
are references to 10 memory locations within the loop
and 6 of them are to the locations which are already
referenced by previous iterations. The value of M, is
taken from [6].

data moving from the cache to the processors
4mn.

is then

In the Figure 5, estimated values are generally about
5% lower than the actual values. This happens due to
two main reasons. First, in our model we assumed that
the requests which are not immediately served are lost.
In practice these requests will queue up and increase
the request rate. Second, in a more accurate model
we have to consider the fact that the memory “writes”
use more bus bandwidth than “reads”. A data block
brought into the cache for reading will not be written
back, but a “write cache load” will result in an eventual
write-back.

The kernel 7 has an unnested loop with one-
dimensional arrays. However, in general the determi-
nation of of x requires more sophisticated techniques.
For example, consider the matrix vector product

do i = I, n
do j = I, m

y(j) = y(j) + a(i,j>*x(i)
enddo

enddo

To compute the value of x accurately we need to know
the cache replacement policy of the machine. In the case
of the Alliant, the cache is a direct mapped cache con-
trolled by a write back scheme on dirty words. In other
words, a word is loaded into c*ache position equal to it
address modulo the cache size. Consequently, it is pos-
sible that y(l), a(1, 1) and Z(1) might be all mapped to
the same position in the cache and almost all references
will be cache misses. On the other hand, if we assume
that this anomaly is rare, we can build a simple model
of the behavior. In fact, from the perspective of build-
ing a performance predictor we would like an optimistic
model if an accurate one is not available. The reason
for this claim is that we assume that this tool is being
used to try to explain bad performance to an applica-
tion programmer. If a performance predictor yields a
pessimistic result based on an optimistic analysis, we
can feel safe that the prediction is guiding the program-
mer to the correct conclusions about his code. If, on
the other hand, the prediction claims that performance
should be good when, in fact, it is poor, the programmer
is we11 advised to turn to more accurate runtime perfor-
mance analysis tools. With this (admittedly arguable)
justification, let us make the optimistic assumption that
the cache is smart in the following sense.

In this case, we are reading the vectors Z, y and the Define the reference window for an array at a given
array a and writing the array y. The total amount of instance in time to be the set, of elements that will be

528

accessed prior to a repeated access to the element of
the array. In other words, the reference window is like a
working set for the array. In the example above, the ref-
erence window for 1: at time (i, j) is a(i). Consequently,
the window is a single element and is stationary until i
changes. In the case of y we see the reference window
is y(1 : m) and is fixed. Elements of a are accessed
only once and never reuse in the loop, so the refer-
ence window for a is empty. Let us assume that the
cache is smart enough to keep the reference window for
each array, and that it adds new elements and drops
old ones whenever the window shifts position in the it-
eration space. If the total of the sizes of the reference
windows exceeds the cache size, we assume that the least
recently used policy is employed to attempt to fit the
elements of the reference windows. Hence, if the total
is less than the cache size, any reference to an element
of the current window for an array can be considered as
a cache hit and any reference to another element is a
miss. The total of the sizes of the reference windows in
our example is 1 + m. Let CS be the size of the cache.
If we ignore the first few outer iterations, the number
of cache misses in the case that 1 + m < CS is just mn
corresponding to the references to a. If 1 + m > CS
then there is not enough room in the cache. According
to our least recently used assumption, the element of a:
will remain in the cache (in fact, a good compiler will
keep it in a register), but only CS - 1 of the elements of
a will be in the cache and m- CS- 1 elements will have
to be loaded for each outer iteration. Putting all this to-
gether with the fact that the total number of references
is equal to 4mn we have

1 ifl$m<CS
X = %m-CS-l otherwise

{ 4m

In summary, we have reduced the estimation of the
memory system performance to the estimation of the
cache miss ratio which we have reduced to the symbolic
identification of the reference windows. This last task
is something we have already studied extensively and
it is described in [2] and [5]. One further point must
be made. An important factor of cache behavior not
considered here is the effect of the cache line size on the
estimate. This is particularly important when memory
references are not sequential and a much more detailed
analysis is needed in this case.

5 Extending to Other Architec-
t ures

Our experiments, and the tools discussed in this paper
concentrated entirely on the architecture and the com-
piler of the Alliant FX/g. However, the general concepts

discussed in this paper are applicable to many shared
memory machines. The assembly language analyzing
techniques that we used are very general. For each dif-
ferent machine a set of regular expressions would have
to be written to capture the different types of instruc-
tions and compute the cycles. In fact in our software we
were careful to keep these regular expressions as a sepa-
rate module and create a general data structure contain-
ing important events for analysis. This basically allows
us to proceed in a machine independent way once the
events are recorded. The overall structure of the object
code will be less useful when the program is explicitly
parallelized and vectorized by the user. In this case, the
user already knows the overall structure. However, the
analyzer can point out the deficiencies of the program-
mer’s decisions. For example, the programmer may not
have an accurate knowledge of the overheads involved
in parallelization and be lead into making a poor deci-
sion. The delays due to synchronizations, pipeline stalls
and restrictions of other hardware facilities are always
complex and are best handled by programs.

Extensions of our theories and concepts of the mem-
ory system timing will be admittedly less straight for-
ward. By studying and developing tools to analyze the

memory system in the Alliant we cover most of the hier-
archical cache based system. Note that our analysis in
Section 4 has a very general view of the overall memory
systems. It will be necessary that some of the archi-
tecture specific parameters such as cache line size to
be included in the implementation. However, as long
as the memory system of the target machine fits our
model, the concepts should be valid and easy to imple-
ment. Some of the other machines, however, would have
different memory systems which cannot be modeled by
ours. In the BBN Butterfly for example, the processors
are connected to the memory by a network. Each pro-
cessor also has a part of the memory which is “local”
to it. The processors can access local memory without
network delays. What is kept in the local memory is
decided by the programmer. Our experience with the
Butterfly shows that the decision of “what to keep in
local memory” is not a trivial one for the programmer.
The “hot spot contention” [ll] is another factor which
degrades the performance in such a network connected
system. Even though there is no obvious extension to
our memory system studies to cover such architectures,
it is evident that our basic prediction system can easily
accommodate a different model in this case. Then the
predictor can be used as a guide by the programmer in
localizing variables and avoiding the hot spots.

529

6 Conclusions

As we pointed out earlier, a performance prediction tool
will greatly enhance the user’s ability to tune programs
to exploit the architectures of today’s high speed su-
percomputers. We have described the design of such
a system which combines the object code and memory
system analysis. The results of our object code ana-
lyzer are presented in Section 3. The estimated times
are within 8% of the values obtained in all the cases.
Actually, our estimate was always optimistic and incor-
poration of a refined memory model should correct the
discrepancies.

To account for the delays due to hierarchical memory
and the memory bus saturation, we proposed a proba-
bilistic model. How well the model fits into the system
depends on the assumptions made in the derivations.
An incomplete implementation of the memory model
is incorporated in our tool. As illustrated in Figure 5,
current implementation does a reasonable estimation of
a simple fortran loop. With the future extensions to
the current memory model, we expect to estimate more
complex programs.

We will also be concentrating on extending our re-
sults to different architectures. It is important that our
basic concepts are general enough to facilitate these ex-
tensions. We intend to keep the concepts of the models
general so that new architectures can be incorporated
with minimal effort.

References

[l] BBN ADVANCED COMPUTERS INC. Mach 100
Software Tools, May 1989.

[2] BHUYAN, L., YANG, Q., AND ARGAWAL, D. Per-

formance of multiprocessor interconnection net-
works. IEEE Computer (Feb. 1988), 25-37.

[3] COFFMAN, E., AND DENNING, P. Operating Sys-
tems Theory. Prentice-Hall, 1973.

[4] GALLIVAN, K., GANNON, D., JALBY, W., MAL-
ONY, A., AND WIJSHOFF, H. Behavioral char-
acterization of multiprocessor memory systems: A
case study. In Proceedings of ACM SIGMETRICS
Conference on Measuring and Modeling Computer
Systems (Berkeley, CA, May 1989), pp. 79-88.

[5] GALLIVAN, K., JALBY, W., AND GANNON, D.
On the problem of optimizing data transfers for
complex memory systems. In Proceedings of Inter-
national Conference on Supercomputing (St. Malo,
France, July 1988), pp. 238-253.

PI

VI

PI

PI

PO1

P13

[121

P31

GALLIVAN, K., JALBY, IV., MALONY, A., AND
WIJSHOFF, H. Performanc:e prediction of loop con-
structs on multiprocessor hierarchical-memory sys-
tems. In Proceedings of Third International Con-
ference on Supercomputing (Crete, Greece, June
1989), pp. 433-442.

GANNON, D., ATAPATTU? D., LEE, M.-H., AND
SHEI, B. A software tool for building supercom-
puter applications. In Parallel Computations and
Their impact on Mechanics, A. K. Noor, Ed. The
American Society of Mechanical Engineers, New
York, 1987.

GANNON, D., GUARNA, V., GAUR, Y., AND
JABLONOWSKI, J. A software tool for program-
ming parallel systems. In Proceedings of Supercom-
puting 88 (Orlando, Florida, Nov. 1988), IEEE,
ACM SIGARCH, pp. 3-11.

KRUSKAL, C., AND SNIR, M. The performance of
multistage interconnection networks for multipro-
cessors. IEEE Transactions on Computers C-32
(Dec. 1983), 1091-1098.

MCMAHON, F. The livermore fortran kernels: A
computer test of the numerical performance range.
Tech. Rep. UCRL-53745, Lawrence Livermore Na-
tional Laboratory., Dec. 1986.

PHISTER, G., AND NORTON, A. Hot spot con-
tention and combining in multistage interconnec-
tion networks. In Proceedings of International Con-
ference on parallel Proces.sing (1985), pp. 790-797.

SETHI, A., AND DEO, N. Interference in multipro-
cessor systems with localized memory access prob-
abilities. IEEE Transactions on Computers C-28,
2 (Feb. 1979).

YEN, D., PATEL, J., AIVD DAVIDSON, E. Mem-
ory interference in synchronous multiprocessor sys-
tems. IEEE Transactions on Computers C-31
(Nov. 1982), 1116-1121.

530

