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ABSTRACT 

In this paper we present a new method for extracting the 
maximum parallelism or vector operations out of DO loops with 
tight recurrences using sequential programming languages. We 
have named the method Graph Traverse Scheduling (GTS). 
It is devised to produce code for shared memory multiprocessors 
or vector machines. When parallelizing, hardware support for 
fast synchronization is assumed. 

The method is presented for single nested loops including 
one or several recurrences and we show how parallel and vector 
code is generated. Based on the dependence graph of a loop, we 
first evaluate its parallelism and vector length of statements. 
Then we apply GTS to distribute loop iterations between tasks 
or to generate vector operations of a given length. When this 
method is applied for parallel code generation, dependences not 
included in the sequential execution of each task must be 
explicitly synchronized. A method to minimize the number of 
explicit synchronizations is also presented. We also present how 
to compute the synchronization-free parallelism obtaining fully 
independent tasks. 

When GTS is applied for vector code generation, a 
sequential loop ofvector operations is obtained. 

Keywords: Dependence Graph, Recurrences, Parallelism 
evaluation, Parallelization, Vecto-rization, Synchronization. 

1. INTRODUCTION 

Vectorizing and parallelizing compilers exist today for high 
performance vector and parallel computers in order to execute 
efficiently sequential programs written in conventional 
languages such as Fortran and C. This compilers, such as the 
Parafrase [KKLWBOI, PFC [AIKe or UFTN LCole871. examine 
DO loops trying to obtain parallel or vector code depending on 
some characteristics of the loop. They build a dependence graph 
from the analysis of data dependences within the scope of each 
loop. Many of these compilers study only the innermost or two 
innermost loops, but some of them examine the whole loop nest. 
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Restructuring compilers are based on the analysis of 
dependences within the scope of each loop. We first review some 
concepts on data dependences and introduce some notation used 
along this paper. Between each pair of statements Si and Sj, 
where Si precedes Z$ in the sequential execution of the loop, some 
d&u dependences are defined [KKPL81 I. Sj is flow-dependenton Si 
(denoted S; S Sj) if Sj uses a variable that Si can modify. sj is anti- 
dependent on & (denoted Si 6. S$ if Si uses a variable that can be 
modified by L$ sj is output-dependent on !$ (denoted & 6’Sj) if a 
certain variable can be modified by both of them. The statement 
Si is called the dependence source and q is called the dependence 
sink of the dependence relation. The number of iterations a 
dependence extends across is known as the dependence distance. 
This paper supposes constant distances known at compile time. 

By analyzing the dependences within the iteration range 
between each pair of statements we can build the dependence 
graph of a program. It is a directed graph G (V, E) with a set of 
nodes 

V={S1, . . . . S,} 

representing statements in the body loop, and a set of arcs 

E = t&j I S, Sj c VI 
representing data dependences between statements and its 
associated dependence distance. There is an arc between two 
nodes if some dependence test results affirmative [Bane79, 
Wolf891. In this paper we only consider one arc between two 
nodes but can easily be generallized to several arcs. 

A chain or path C, between two nodes is a set of arcs 

Cij= {4k, dw ..- , dmjl 
such that each node is visited only once. The weight of a chain is 
defined as 

w(cij’ = t :  dkl 

%I “ii 
Several chains can exist between any p& of nodes. A recurrence 
R is a cycle or closed chain Ce For a given recurrence R we 
define its transformed set R’ as the set of nodes included in the 
recurrence 

R* = {Si 13 k f-l d;, E R}. 
A Hamiltonian recurrence is a recurrence that involves all 

the nodes of the graph. If a graph has a hamiltonian recurrence, 
we will call it hamiltonian graph and its associated loop 
hamiltonian loop. 

Existing methods can obtain full parallel or vector code 
when iterations of the loop are independent. In this case, 
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parallelization obtains a DOALL loop [Davi81 I where all 
iterations can be executed in parallel. Vectorization obtains a 
block of vector operations or a loop of vector operations when the 
iteration range is larger than the vector register length. Figure 
1 shows a loop with these characteristics and the outcoming 
parallel and vector code. 

DOI=l,512 

A(l) = B(I) + C(I) 

END0 

parallel code 

D0l=1,512,128 

A(l:l + 127) = B(l:l + 127) + C&t+ 127) 

EN00 

l veeorregisterlength= 128 

DOALLIzl.512 

A(l) = B(l) + C(I) 

ENDOALL 

Figure 1: Full vectorizable orparallelizable loop. 

Problems arise when recurrences are present, that is to say, 
when cycles in the dependence graph appear. In this case, 
several parallelization methods have been presented. 
DOACROSS [Cytr861 tries to partially overlap the execution of 
succesive iterations in order to satisfy dependences. Partial 
Partitioning paciu791, Minimum Distance [PeCy%71 and Cycle 
Shrinking [Poly88] try to split up the loop iterati6n range in 
iteration sets or partitions, whose execution (independent or 
synchronized in the later case) satisfies the dependences of the 
recurrence. In the former approach, the number of partitions 
created is given by the greatest common divisor of ail distances 
in the graph while in the others, such number is given by the 
minimum distance. 

Vectorization tries to isolate recurrences by applying Loop 
Distribution IBCKT791 or recognizing some patterns or special 
kind of recurrences and generate special code for them [W0lf891. 

In this paper we describe Graph Traverse Scheduling, 
method first presented in [LaAy891 for shared memory 
multiprocessors, for partitioning recurrence loops and 
generating code well-suited for vector and parallel machines. 

When GTS is applied to loop parallelization, it obtains the 
full parallelism out of the loop while minimizing explicit 
synchronizations. GTS is presented in this paper for single 
nested loops while Partial Partitioning, Cycle Shrinking and 
Minimum Distance consider multiple nested loops. In the case of 
single nested loops, GTS can obtain more parallelism than the 
previous methods. We will focus on this kind of loops without 
considering the extension to nested loops. Besides, the previous 
methods try to obtain partitions that can be executed in parallel 
without intertask synchronization. In the case of single- 
recurrence loops we can obtain more independent tasks than 
them. In the case of multiple recurrence loops we need to insert 
intertask synchronization in order to achive the maximum 
parallelism available. 

When GTS is applied to loop vectorization, it replaces a 
sequential loop that uses scalar instructions involved in one or 
several recurrences by a new sequential loop that uses vector 
instructions of a given length. 

We have organized this paper as follows. Section 2 
introduces the GTS method for loops with a single hamiltonian 
recurrence and the scheduling algorithm. In this case, fully 
independent tasks are generated for parallel code and maximum 
length of vector operations for vector code. Section 3 deals with 
the evaluation of the parallelism and length of vector operations 
for multiple-recurrence loops. It also presents code generation 
for parallel and vectir machines including synchronization 
instructions in the former case when necessary. Loops without a 

hamiltonian recurrence that invol.ves all statements are 
considered in section 4. Section 5 shows how to obtain fully 
independent tasks or constant vector operations. Finally, a brief 
comparison with existing methods is done. 

2. SINGLE-RECURRENCE HAMrLTON1A.N LOOPS 

2.1 Parallelization 

The parallelism of a loop is defined as the average number of 
active processors executing iterations of the loop if no 
synchronization and scheduling overbead is assumed. 

Figure 2.a shows a loop and its associated hamiItonian 
dependence graph. Figure 2.b shows a scheduling of operations 
well suited for parallel machines In this scheduling, S, stands 
for the execution of the jth iteration of statement Si. This 
scheduling shows the maximum parallelism that we can obtain 
out of it. The parallelism of the loop is constant except for the last 
cycle, in which the parallelism depends on the iteration limits. 

REALA(1:200),8(1:200),C(1:200) 

DOi=l,98 

A(i+3] = S(i] + 2 

C[i + 21 = A[i] * Dfi] 

B(i +4] = C[i] 

EN00 

(4 

d3,=4 

d12=3 

d 23=2 

task0 taskt task2 task3 task4 task5 task6 task7 task8 
_------------- 
S 11 512 513 514:_s3Jw-.5_3& S21 s22 s23 

s24 s25 s26 52 7 slS s16's33 s34 s35 L---m ----a- 

s36 s37 S38 53 9 S28 529 517 Sl8 s19 

SllO Sill Sll2 s113 s310 s311 s210 s211 5212 

. 

.  _ :  .  .  

.  .  .  .  I  .  .  .  

51 91 Sl 92 51 93 is194 : 5391 5392 s291 s292 s293 

5294 5295 

:s 

s296 ; 297 ii 195 ,:is196: 

iis ,....: ,.....: s 

393 s394 s395 .,..... I ,....., 

s396 %97 5398 
. . . . . . . . 

:S2g8 I:.....'is, g+;s, g8; 

:......I . . . 
m . . . . . I. . . . . . I 

(b) 

t 

\ 

52 1 s22 s23 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s13! . . . . 5?.?...%. ..53?...SX 
511 512 513 514 s15 s16 517 sl8 sl9 

524 52s 526 527 528 529 5210 S211 5212 

s36 537 538 539 5310 S311 5312 5313 5314 

. . . . 

S285 S286 5287 s28, s289 s290 5291 s292 s293 

5387 5388 5389 5390 5391 5392 5393 5394 5395 _~~_---~----_---~_-~~~~~~~~~~~~~ 

5191 s 1 92 5193 5194 sl95 5196 5197 s198 

s294 5295 5296 s297 s29S 

' s396 s 397 5398 

(4 

Figure 2: Single Recurrence Loop 

The distance of an arc determines the number of iterations 
of the statement associated to the sink node that can be initially 
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executed. Then, the sum of the distances associated to the arcs 
forming a recurrence R determines the number of tasks P that 
can be and, thus, the parallelism ofthe loop 

P=w(R) = 1 

d..CR 

dij. 

The scheduling, for a single-re%rrence hamil-tonian loop, 
initially assigns to each task a statement and iteration index 
with no initial dependences. This scheduling is obtained by 
traversing the graph backwards and assigning to consecutive 
tasks all initial dependence-free iteration indices of each 
statement. For a general recurrence R={dlj, d+ . . . . d,, d,& 
included in a normalized DO loop, this schedule will generate P 
tasks, numbered from 0 up to P-l, each of them starting with the 
statement 

s11. sl2. . . . Sldnl. s,l, s,2. . . . s,d,,. .., ski, $2. ..I Sk,& sjl, $2. .., sjdlj 

where Sij stands for statement S iteration index j. 

Starting from the initial statement and iteration index, 
each task executes serially the statement and index directly 
dependent on the previous one. This scheduling is obtained by 
traversing the graph through the recurrence path. The source 
code of each statement is modified by applying alignment 
[Padu791 and adding an offset to the loop index variable. This 
offset, for a given statement Si, is equal to the weight ofthe chain 
going from the initial statement of the task to Sj. This 
scheduling guarantees that dependences within the recurrence 
are embedded in the sequential execution of each task loop. 

Although the task numbering proposed is unimportant at 
this point, observe that this scheduling satisfies that if taski 
executes iteration j of Sk, then task(,+i, mod p executes the 
iteration (j-+1) of the same statement. This will ease 
synchronization generation described in section 3.2. 

Figure 3.a shows the parallel code generated for the 
sequential loop of figure 2.a. Observe that several statements 
and iterations have been extracted from the inner DO loop in 
order to use the same code for all the tasks. The execution of 
statements at the beginning of the DOALL is dependent on the 
number of the task (iterations above the dashed line in the 
scheduling of figure 2.b). Statements below the inner DO loop 
are only executed by tasks that have not reached the end of the 
computation assigned to them in the scheduling of figure 2.b 
(iterations inside dotted lines that cannot be executed in the 
inner DO loop). 

Figure 4.b shows the parallel code generated by a compiler 
for a single-recurrence hamiltonian loop with n statements. In 
this scheme we can distinguish three parts: prolog, core and 
epilog. The prolog part includes those statements and iterations 
extracted from the inner DO loop in order to use the same code 
for all the tasks in the core part. The epilog part includes those 
statements and final iterations not executed in the core part that 
must be executed to complete the computation assigned to each 
task. Without loss of generality, we have assumed that Z+ 6 S+ i 
(15 i I n-l) and S, S S,. If this is not the case, the compiler will 
reorder the statements so that the previous condition is 
satisfied. In this scheme, wij = w(Cgl with CriCR. The compiler 
should rewrite each statement in order to include the offset 
indicated. 

2.2 Vectorization 

The vectorization process will transform the original DO loop 
into a loop with vector operations. 

Figure 2.c shows the scheduling of operations that is well- 
suited to execute the program of figure 2.a on a vector machine. 
This scheduling shows in each row the range of iterations of a 

I 

DOALL j = 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..s..... 
IF(jZ6) 

C&Ii] I Au-51 * OIj.51 

ENDIF 

IF(is4) 

Bfj + 11 = q-31 

ENDIF 

. ..* . . . . . . . . . . 
‘prolog part 

. . . . . . . . . . . . . . 

*core part DOi=l+j,93,9 

A[i + 31 = S[i] + 2 

C[i+S] = A[i+3]‘D[i+3] 

B[i+9] = C[i+5] 

ENDO 
. .._...._................................................ 

IF (i I; 98) 

A[i+3] = B[i] + 2 

ENDIF 

IF(i+3<98) 

‘epilog part 

C[i+5] = A[ic3]‘D(ic3] 

ENDIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

ENDOALL 

(a) 

,,,.........,............................................ 

C(4:6)=A(l:3) l D(1:3) *prchg part 

8(3:7)=C(l:5) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-...... 

DOi=1,90,9 

A(i+3:i+ll)=B(i:i+6) + 2 

*core part 

C(i+5:i+13)=A(ic3:i+11)*D(i+3:i+ll) 

B(i+9:i+17)=C(i+S:i+13) 

END0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A(94:101)=S(91:98) + 2 

C(96: 100) = A(94:PS) l D(94:98) 

E(100: 102)= C(96:98) 

‘epilog part 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(b) 

Figure 3: Parallel and vector code generated for the example 

of figure 2. 

given statement that can be executed in vector form on a vector 
processor. Before entering the vector loop, some statements 6s 
and Ss in figure 2.~) have to be executed sequentially in order to 
free those indices Sr, not dependent on Sii. 

The vector length VI or number of iterations of S1 that can be 
executed in vector form is determined by the self dependence of 
Si, that is to say 

~1’ N I ‘1 i ’ S1 i+vl 
and therefore, by the weight of the recurrence 

vl = w(R) = c dij . 

d;;ER 

After that, vl iterations of each sta$ment along the recurrence 
can be executed in vector mode so that all dependences in the 
graph are satisfied. 

The scheduling initially assigns to each vector operation of 
Si vl iterations starting at 

1 + w(Cu) 

where I is the loop control variable. This variable will be 
incremented by vl at every iteration of the outcomingloop. 



Figure 3.b shows the code generated by the compiler for the 
loop of figure 2-a. Observe that several initial iterations (those 
above the dotted line) and final iterations (those below the 
dashed line and dependent on the iteration limits of the loop) 
have been extractedout ofthe DO loop. 

DOALLj=O,P-1 

IFO-Q~) Sz(/-w*, + 1) ENDIF 

IFU-q,) $30.w3, + t) ENDIF 

1.. 

IFUWn,) Qj-w”, + 1) ENDIF 

DOi=l+j.N-w1n.P 

%I 

%*w,2) 
.*. 

%(i +wtd 
END0 

IF (i SN) $11 ENDIF 

IF(lcw12sN) s2(i*w,2) ENDIF 

. 

IF(i+wj(n.,)SN) S(n-tx1 +w,(~-,$ ENDIF 

ENDOALL 

(4 

DOi=l,w~, 

IFlSw,2 *2i 

. 

IF’Swt(n.1) S(n-l)l 

*nl 

END0 

‘cndv I L(N-~7,) I VIA t vl 

DO I = 1, endv, VI 

S,(l:i +vl-1) 

S2(i+wl2:i+w12+vI.l) 

. . 

S,(i+w~n:i+wln+vl-1) 

END0 

DOj-I,N 

Slj 

IFjzendv+1+~2~ 

IF j 2 cndv + 1 + w(~.,),, 

IFjaendv+l 

END0 

0.4 

ENDIF 

ENDIF 

$4 ENDIF 

SW) j ENDIF 

$nj ENDIF 

Figure 4: Generalscheme of the code generated by applying 

GTS for a single recurrence loop. 

Figure 4.c shows the general vector code generated by the 
compiler for a general single-recurrence hamiltonian loop. We 
can distinguish three parts: prolog, core and epilog. The prolog 
part is the original loop in which each statement sj dbhg the 
graph (excluding the first one) is included in a conditional 
statement so that the wlj initial iterations are only executed. 
The core part is generated as described above. The epilog part is 
the origina loop, in which each statement Sj along the graph is 
included in a conditional statement so that only the iteration 
range left in the core part is executed. The prolog and epilog part 
can also be vector code (i.e figure 3.b) but its generation is 
dficult for the general case and does not extend to the case with 
more recurrences. In this scheme, SJi f k, : i + kl) stands for the 
vector operation of statement S, on the specified iteration range. 
The compiler must appropriately rewrite the statement. 

Observe that this code can take advantage of the chaining 
facilities provided by some vector machines such as the 

CRAY KhenW. When the first result of one vector statement in 
the DO loop comes out of the pipeline, the next statement can be 
immediately started. 

3. MULTIPLE RECURRENCE LOOPS 

3.1 Parallelism and Vector Length 

We shall now consider a loop consisting of n statements with one 
or more recurrences. We define B as the set of recurrences in the 
loop. For each recurrence REB we define its parallelism per 
sentence as 

l,(R) = w$ . 
The parallelism of the loop will be limited by its most restrictive 
recurrence. Thus 

I = n. minREB (I,(R)) 

Figure 5.a shows a multiple recurrence loop and 5.b its 
associated dependence graph and parallelism computation. 

DOis1.99 

Ati + 31 = Ali-51 + C[i] 

Bll + 21 = Alij - C[i + 1 I l 2 

CIl+31 = B[i1/3 

END0 

(a) 

R, = (d,r) 

R2 = Cd23.+2) 
R3 = t&z, d23, dgt) 

II&w = s 

l&+2) = 2 -) 11 = 6 

llJR3) = 813 

VNS,) = 8 
Vl(S2) = 4 

Vl(S3) = 4 

(b) 

figure 5: Parallelism and vector length computation of a 

multiple recurrence graph. 

For the general case, this parallelism need not to be an 
integer value. The instantaneous parallelism will follow a cyclic 
pattern with a mean value equal to the one evaluated by means 
ofthe previous expression. 

In order to generate vector code for the same loop, the 
maximum vector length vl(SJ of statement S is limited by the 
weigth of the most restrictive recurrence that includes Si. 
Therefore, 

vl(Si) = min l w(R) 

R&CR 

Figure 5.b shows also the vector length limit for each statement 
in the loop offigure 5.a. 
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3.2 Parallel Code Generation 

In the case of a Ioop with more than one recurrence, the 
scheduling will be performed by applying to a hamiltonian 
recurrence the same procedure described in section 2.1. We will 
call scheduling recurrence a recurrence R,,hcB that includes all 
the statements of the loop ( lRschj=n)- If there is no such 
recurrence, one must be obtained by adding dummy 
dependences that do not limit the parallelism of the loop. This 
problem is considered in section 4. If several hamiltonian 
recurrences involving all statements exist, one of them must be 
selected based on the minimization of the number of tasks 
generated. Thus Rsch must satisfy 

P= w(Rsch ) 5 w(R) V Rsch. REB I IR~~~~=IRI =n . 

Once Rsch has been obtained, arcs not belonging to Rsch 
represent dependences that must be explicitly synchronized. 
Figure 6.a shows the scheduling of operations for the loop of 
figure 5 and the explicit synchronization needed to enforce the 
dependence ds2. However, dependence dl, need not to be 
explicitly synchronized because it is embedded in the sequential 
execution of each task. 

Dependences not included in the sequential execution must 
be enforced through some intertask synchronization 
mechanism. Many mechanisms for interprocessor 
synchronization in multiprocessor systems have been proposed. 
They can be based on indivisible read-modify-write memory 
access (T&S, GAS , . ..) or on fetch-and-operate instructions 
supported by simple processing at the memory modules and 
combining networks [Gott83]. FulYempty bita are used in HEP 
for fast synchronization [KowaSSl and other systems use a 
dedicated bus (Alliant [Alli86l) or special registers (CRAY X-MP 
[Chen851) for this purpose. Fast mechanisms are needed when 
the frequency ofsynchronization is high [Poly88], [SeJe881. 

Although other mechanisms such as full/empty bits can be 
used very easily with GTS, we shall use semaphores as the 
synchronization primitive. As coupling between tasks will be 
very tight, we need a fast implementation of these primitives. In 
ordqr to achieve high performance levels, the system should run 
the parallel program with as many processors as tasks 
generated (to avoid context switching overhead) and should 
directly offer the fast hardware synchronization mechanisms to 
the tasks. 

Explicit synchronization must be introduced for any arc 
dij%ch in the graph going from node &to Sj. The statement 4, 
source of the dependence, will signal the end of its execution to 
the statement 9, sink of the same dependence, in order to allow 
its execution. For each arc du, P semaphores will be needed 
(semi&t), Olt<P). The signal operation on the semaphore 
semij(t) will be inserted in task t after the source statement SC 
Its associated wait operation will be inserted in task t’ before 
the sink statement Sj. If iteration k of & is executed in task t, the 
iteration of the statement sj executed in the same task will be 
k + w(Q). Due to the task numbering proposed in section 2, the 
iteration k + dii of S; will be executed in task 

task0 task1 task2 task3 task4 task5 task6 task7 

$11 512 513 

4 
s24 - - 

rem32101 = 0; sem32[11= 1; sem32[2] = 1; 

sem32[31= 0; sem32[41= 0; sem32[51= 0; 

sem32(6] = 0; sem32[7] = 0 

OOACROSS j = 0,7 

IFtjZ5) 

wait(sem32&4) mod SI) 

Blj-21 q Alj-41. C&3]* 2 

ENOIF 

IF(j23) 

CIJ + 11 = B&2] / 3 

signal(sem32(jj) 

ENDIF 

DOi=l+j,95,8 

Ati + 31 = Ali- + C[i] 

wait (sem32KjP) mcd 61) 

B[i+Sl = A[i+31-C[i+4]*2 

C[i + Bl = B[i + 51/ 3 

signal(sem32[jl) 

EN00 

IF (i 699) 

A[i + 31 = A[i-51 + C[il 

ENDIF 

IF(i+3599) 

wait (sem32((j-4) mod 81) 

B(i + 51 = A[i + 31 - C[i +4] l 2 

ENDIF 

ENDOACROSS 

(b) 

Figure 6: Scheduling andparallel code for the multiple 
recurrence loop of Figure 5 

The tasks that will execute these iterations are 

(w(Cj 1) + K) mod P 1 OSK<$~ 

and therefore the tasks that. will execute the associated signal 
will be 

t’ = (t + tj - w(Cij)) mod P ; ‘ijc Rsch 
We will now obtain an exDression for the initial values of the 
semaphores used. Any dependence arc dil allows the execution of 
the first dij iterations of Sj. If t’ is the task that executes a wait 
operation, the associated signal will be excuted in task t on 
sempahore t given by 

t = (t’ + w(Cij) - dij) modP 

t = (w(Cjl) + K + w(Cij) - dij) modP. 

For a given Rsch 

W(Cjl) + W(Cij) = P + tici 

and therefore 

(t - w(Cil) + dij) modP < dij 

If dij 5 P, the semi$t) with t fulfilling the previous condition 
must be initialized to one. Otherwise, they must be initialized to 
zero. If dij > P, all the semij(t) will be initialized to Ldij / PJ and 
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only those fulfilling 

(t - w(Ci,) f $j) modP < dij modP 

will be initialized to Ldij / PJ + 1. Therefore, each semaphore 
semi:(t) will be initialized to 

Ldij/PJ+l if (t + CL. 
?1 

- w(Cil)) mod P < d.j mod P 

L% ’ ” 
if (t + $j - w(CiI)) mod P 2 dij mod P 

Next, we present the optimization criterion for reducing 
synchronization. A synchronization does not have to be enforced 
if the dependence that it represents is already enforced by the 
sequential scheduling or other explicit synchronizations. An arc 
dIJ need not to be synchronized if another path C!u t {du} can be 
found whose weight w(Cn) satisfies 

( dij-w(Cij)) mod P = 0 

This arc reduction process can be carried out before 
selecting Rsch, leaving the graph with the minimum number of 
arcs. 

Figure 6.b shows the parallel code the compiler will 
generate for the example of figure 5. Observe that the only 
dependence that will be synchronized is dzs. as drl is covered by 
the sequential execution of each task. 

3.3 Vector Code Generation 

Although vl(Si) limits the vector length of statement S, it is very 
difficult to find a scheduling for a general graph where each 
statement is executed with its associated vector length. 

The method we will propose for generating vector code tries 
to execute in the core part loop as many iterations of each 
statement as the maximum vector length of all the statements 
in the loop. Those statements with a vector length lower than 
this maximum will be included in a sequential loop of vector 
instructions with their associated vector length. In order to 
make this method easy, several conditions must be fulfilled. If 
this is not the case, we shall add new arcs and modify the 
existing ones as described in next section. 

Given a graph G(V, E) and Rs,.n, we renumber its nodes 
traversing Rscn and starting with a statement S1 such that 

vl(SI)=max s cv vl(S$. 
i 

The conditions that must be fulfilled in order to generate vector 
code following the algorithm described later in this section are 
[Aygu891: 

(1) w(R,& = vl(Sr); 

(2) Dependences not included in Rscn must have a 
distance large enough so that they do not limit the 
length ofthe vector instructions. This condition can be 
expressed as 

, w.. 11 if i<j 

?jaRsch 
dij P ” 

Vl(Si, Sj) - w.. 
Jl 

if i?j 

(3) 

where 

vl(Si, Sj) = max (vl(Si), vl(Sj)). 

Different statements can have different vector length 
vi(S) but 

g.c.d (vl(Si). vl(Sj)) = min (vl(Si). vl(Sj)) m, s.. 
J 

This condition is imposed in order to reduce the 
generated vector code size. 

We shall now describe the method for generating vector 
code for a loop thatfulfils the previous conditions. 

Let NL be the number of different vi(S) in the graph and 
VlL. -42, . ..vlNr. be the different vl(S.,) in decreasing order. The 
code generated will consist on NL nested loops L1, La, ,,,, hL 
where Lx is the outer loop. Each loop Li will have an iteration 
variable Ii with initial value Ii-l, end value 

Ii-l +Vli.l- 1 

and increment vii. Loop Lr will have .an iteration variable I, with 
initial value 1, end value 

(N-win) - (N-w. )modvlI - 1 
In 

and increment ~1,. 

Each statement Sj along Rsch will be included in the loop Lk 
such that Vlk=Vl(Sj). Its vector length will be vlk and the initial 
index will be Ik+Wlj. All the statements will be in the same 
lexical order as they appear in Rsch. 

Figure 7 shows the scheduling and vector code generated 
for the graph of figure 5, which fulfIla the previous conditions. In 
this case, the vector length of S, and S, is half the length of Sr. 
Observe that the DO loop controled by the variable j is executed 
twice in order to do as many iterations of Sz and Ss as iterations 
of sl. 

4. ADDITION OF DEPENDENCES 

If no scheduling recurrence involving all the statements can be 
found in order to apply GTS, new dummy arcs have to be 
introduced. 

We define E’ a set of arcs dd’ such that E + E’ allows to find a 
recurrence Rseb 

If we want to generate parallel code, the distance of the arcs 
in E’ must not limit the parallelism of the graph, thus 

IIs 2 IjS(R2) , ‘fRIEB’-B , R2 C B 

where B’is the set of recurrences of G’(V, E + E’). Following the 
same algorithm described in section 3.2, arcs in E not included in 
Rsch should be explicitly synchronized. 

Many sets E’ of dummy arcs can be used to obtain a 
scheduling recurrence. For each of them, the total number of 
tasks generated and explicit synchronizations may be different. 
An interesting selection criterion would be to minimize the 
number of tasks (P= w(Rsch)? II). If several E’ satisfy this 
condition, the one with less additional arcs must be selected in 
order to reduce the synchronization cost. 

If we intend to generate vector code, E’ must not reduce the 
vector length ofeach statement in the new graph with respect to 
the original value. But in many cases we may have to reduce the 
vector length of some statements because the conditions to easily 
generate code are very restrictive. Observe that iterations of a 
given statement are executed in ord.er. Thus, the distance of any 
arc can be modified without deteriorating the correctness of the 
program. However, the reduction of an arc distance will produce 
a slower program. Many solutions with different efficiency can 
be found. 

5. SYNCHRONIZATION-FREE PARALLELISM AND CONSTANT 
VECTOR LENGTH 

In the previous section we have shown how to introduce dummy 
arcs in order to obtain a scheduling recurrence. There is a trade- 
off between number of tasks and explicit synchronizations. This 
leads to the possibility of generating a scheduling recurrence 
that does not requiere explicit synchronizations. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._................. 

s2 1 522 - 

531 532 533 S34 - 
_ _ _ - 

S23 
- _ _ - 

SJ5 ,................................................. . . . . 

Sl 1 S12 S13 514 515 516 S17 S18 

s24 s25 s26 S27- - - - 

536 537 S38 539 - - - - 

- - _ - 
S28 S23 S2 10 S2 11 

- - - _ 
5310 5311 5312 5313 

s19 Sl 10 Sl 11 Sl 12 Sl 13 Sl 14 Sl 15 Sl16 

. . . 

Sl81 5182 183 i s . . 184 Sll35 S186 Sl87 Sl88 

S204 5205 S286 S287 - - - - 

5386 S387 5388 5389 - - - * 
- - _ _ 

S288 S2B9 s290 S231 
- - - - 

. . . ...* ** . . . . . . . . . . . . . . . . . . SW! .Su.!.fX??..%.?~.. 

Sl83 Sl30 5 191 s132 5193 %34 %95 s196 

5292 5293 s294 5295 - - - - 

s394 5395 5396 5397 - - - - 
- - _ - 

s296 s297 S298 s239 
- - - - 

5398 s399 

SJ97 S198 S1gg ..a . . . . . . . . ..a... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..I 

(a) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._ 

DOi=l,S *probg parl 

IFiL3 

B[i + 21 = A[i] . C[i + 11 l 2 

ENDIF 

C[i+3] = B[i]/3 

_ .EN.F? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ 
DOi=1,88,8 *core part 

A[f+3:i+lO] = A[i-Pi-61 + C[i:i+7] 

DOj=i.i+4.4 

B[j+5:j+81 = AIj+3:i+61-Cti+4:j+71’2 

C[j+B:j+ll] = Bfj+5:j+8]/3 

EN00 

. ..E.~?.?...................................................*..... 
DOiz89.99 ‘epilog part 

AIi + 31 = A[i-51 + C[il 

IF i292 

B[i + 21 = A[i] . C[i + 11 l 2 

ENDIF 

IF i894 

CIi+31 = B[i1/3 

ENDIF 

..EN?P...,..................................................... 

lb) 

Figure 7: Scheduling and vector code generation for the loop 

of figure 5 

Given a dependence graph G, we shall define the 
synchronization-free parallelism Ik as the maximum number of 
independent processors executing iterations of the loop. The 
scheduling presented in section 2.a for a single recurrence loop 
always attains this parallelism. For multiple recurrence loops, 
this parallelism is always lower than or equal to the parallelism 
of the loop, In this case, we must find a set E’={dti 1 St, Sl E V} 
such that a Rsch involving all nodes of V exists and all arcs in E 
need not be synchronized. 

For loops where the number of statements is small, all 
possible Rsch can be examined. For each of them, we can 

evaluate the additional distances di1.c E’ such that the following 
three conditions are satisfied: 

- dij’ 2 0; 

- dij’ 5 mindkjcn(d& 

- (dij - W(C$) mod W(Rs,.h) = 0, WdgE E n Cu C Rseh. 

The trivial solution is that all d,‘=O excepting one that has a 
value of 1. This solution leads us to the sequential execution of 
the resulting loop but sometimes we can find a solution such that 
IIt= w(R,& > 1. In this case the efficiency of the parallelization 
process will be 

This algorithm can also be used for obtaining the resulting 
parallelism if we synchronize a given number of arcs of E. This 
should be used to establish a trade-off between the number of 
arcs to synchronize and the parallelism that the scheduling 
offers. 

For example, the graph of figure 5 can be executed with four 
processors without synchronization instructions. In this case, a 
scheduling recurrence that obtains this #f is Rseh={dls’, dsz’, 
dsr’) with associated distances drs’= 1, dss’=Z and dzr’= 1. 
Figure 8.a shows the modified graph and figure 8.b the parallel 
code generated for the loop offigure 5. 

(a) 

DOALL j = 0,3 

IF(j23) 

qj+ l] = Blj-2113 

ENDIF 

IF(jZ1) 

El&21 = A&4]. C&3] l 2 

ENDtF 

DOi=l+j,96.4 

A[i +3] = ALi- + C[i] 

C[i+4] = B[i+1]13 

B[i+5j = A[l+3]-C[i+4]‘2 

END0 

IF(is99) 

A[i +3] I A[&51 + C[i] 

ENDlF 

IF (i + 1599) 

C[i+4] = B[i+l]/3 

ENDlF 

ENDOALL 

(b) 

Figure 8: modified graph and full parallel code for the loop of 

Figure 5 

In section 1 we have shown that Partial Partitioning also 
tries to find independent iteration sets, This method obtains a 
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(Ir=gcd+.c E (dij) that is never better than the one obtained by 
GTS. Fo? example, Partial Partioning generates sequential code 
for the loop of figure 5 . 

When vectorizing, we can reduce the vector length of all 
statements to vl= min vl(Si). If the compiler detects that min 
Vl(Si) is too small for efficient vector execution, vl will be reduced 
to a value of one, and therefore, sequential code will be 
generated. The distances in the original graph must be reduced 
so that all the recurrences have the same weight, following the 
method described in section 4. On the modified graph G’, a 
scheduling recurrence Rsch must be selected and code generated 
as described in section 2.2. 

Figure 9.a shows the modified graph and 9.b the vector code 
generated for the loop of figure 5. 

0 
4 

51 

/" 
0 

2 52 

KS 

2 2 

53 

(4 

DOi=l,Z 

C[i + 31 = Elfi] I3 

END0 

DOi=1,96,4 

A[i+3:i+6] = A[i-5:i-21 + C[i:i+3] 

B[i+2:i+5] = A[i:i+3]-C[icl:i+4]*2 

C[i+5:i+6] = S[i+Z:i+5]/3 

END0 

DO i = 97,100 

A(i + 31 = A[i-5] + C(i] 

E[i+2] =A[i]-C[i+l]*Z 

IF izt99 

C[i+3] = 6[i]/3 

ENDIF 

END0 

(b) 

Figure 9: modified graph and constant length vector code for 

the loop of Figure 5 

6. COMPARISON WITH OTHER METHODS 

GTS allows to restructure programs with tight recurrences 
obtaining their full parallelism or maximum vector length 
operations. 

When parallelizing, the method is able to obtain 
independent tasks where other methods would need 
synchronization or would not be able to parallelize at all. Cycle 
Shrinking and Minimum Distance can obtain parallelism in 
cases where Partial Partitioning cannot, but GTS is superior to 
both of them. A restriction of them not present in GTS is that 
dii > 1, Wdij CE. In fact, Cycle Shrinking and Minimum Distance 
obtain the same parallelism than GTS only in the case of 
a, =const, Vi& 

One important feature of Partial Partitioning, Minimum 
Distance and GTS is that they generate two loops, being the the 
innermost one a DO loop and the outermost one a DOALL or 
DOACROSS loop. In Cycle Shrinking this order is reversed, and 
then, barrier synchronization at the end of the DOALL loop is 
required. This reduces the system performance introducing hot 
spots and making it very sensitive to fluctuations in the 
execution time of the statements (due to memory conflicts, . ..l. 

GTS never uses barrier synchronization. Different pairs of 
tasks use different pairs of synchronizing objects (semaphores in 
this case) avoiding hot spots. Being this synchronization less 
rigid than barrier synchronization, fluctuations in the execution 
time of the statements have less influence. The number of 
synchronization objects (semaphores) is proportional to the 
parallelism we want to obtain and the number of arcs to be 
synchronized. For a given program, if this number is considered 
to be too large, we can reduce the parallelism to make it 
practical. 

An important feature of the method is that we know the 
actual parallelism of the loop. A measurement of the efficiency of 
the parallelization process can be obtained as 

P 

q=R’ 
Methods leading to n< 1 do not extracit the full parallelism of the 
loop. 

Loop distribution can be appli.ed before GTS, but it is 
preferable to apply GTS to the whole loop without applying loop 
distribution. Figure 10.a shows the dependence graph of a loop 
with four statements. If one time unit is assumed for executing a 
statement, the sequential execution of the whole loop will take 
4,N unit times. If loop distribution is applied before GTS, it will 
obtain two blocks (IQ ={Si, Sz} and n2 =(Ss, S4}). The execution of 
the first block will take N time units and the execution of the 
second (2/3)*N. Therefore, the sequential execution of both 
blocks will take (Q3J.N unit times. If we try to apply GTS to the 
whole loop, we must obtain a scheduling recurrence by adding 
dummy arcs. In this case, we will obtain the graph shown in 
figure 10.b. We have added an arc d,, with an associated 
distance of 0. Then an execution time of N units is achieved. 

A n *F 1 51 52 2 1 1 0. *’ : *.f 1 s1 52 2 J 

6 
1 

P 53 

\ 

(4 lb) 

Figure 10: Additional JrCS vs. loop distribution 

When vectorizing, GTS is able 60 extract vector operations 
where others methods mark loops as unvectorizable after 
applying loop distribution. 
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A compiler that includes GTS as a recurrence restructuring 
method will probably generate more code than using other 
methods (three times approximately). 

GTS can also be used to produce code for VLIW machines. 
In this case, No-op instructions and the synchronous operation 
through a single sequencing unit can be used instead of explicit 
synchronization. GTS can thus generate optimum code for these 
machines. 

7. CONCLUSIONS 

In this paper we have presented GTS, a new method for 
restructuring recurrences for parallel and vector machines. 

GTS is based on a detailed analysis of the dependence 
graph of a loop. Code generation is done by traversing the graph 
and rewriting the statements based on its distances, This 
method includes, in the sequential execution of each parallel 
task, the maximum number of dependencea. Other dependences 
must be explicitly synchronized. A method to minimize the 
number of explicit synchronizations has also been presented. 
Vector code tries to execute the maximum number of iterations 
in vector mode. The compiler must be able to detect when the 
length of vector operations is small and generate sequential 
code. 

GTS is able to obtain more independent tasks than other 
parallelizing methods, which are not able of extract parallelism 
or do not obtain the maximum. 

We have also shown how the parallelism of the loop can be 
evaluated. This measurement is a good reference of the 
efficiency of parallelization methods. 

This method has been included in a parallelizing compiler 
for programs written in sequential C language for a 
multiprocessorsystem. 
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