
GTS: Parallelization and Vectorization
of Tight Recurrences

E. Ayguadh, J. Labarta, J. Torres and P. Borensztejn

Departament d’Arquitectura de Computadors

Universitat Politkcnica de Catalunya

Pau Gargallo, 5 08028-Barcelona SPAIN

E-mail: eduard@ac.upc.es

ABSTRACT

In this paper we present a new method for extracting the
maximum parallelism or vector operations out of DO loops with
tight recurrences using sequential programming languages. We
have named the method Graph Traverse Scheduling (GTS).
It is devised to produce code for shared memory multiprocessors
or vector machines. When parallelizing, hardware support for
fast synchronization is assumed.

The method is presented for single nested loops including
one or several recurrences and we show how parallel and vector
code is generated. Based on the dependence graph of a loop, we
first evaluate its parallelism and vector length of statements.
Then we apply GTS to distribute loop iterations between tasks
or to generate vector operations of a given length. When this
method is applied for parallel code generation, dependences not
included in the sequential execution of each task must be
explicitly synchronized. A method to minimize the number of
explicit synchronizations is also presented. We also present how
to compute the synchronization-free parallelism obtaining fully
independent tasks.

When GTS is applied for vector code generation, a
sequential loop ofvector operations is obtained.

Keywords: Dependence Graph, Recurrences, Parallelism
evaluation, Parallelization, Vecto-rization, Synchronization.

1. INTRODUCTION

Vectorizing and parallelizing compilers exist today for high
performance vector and parallel computers in order to execute
efficiently sequential programs written in conventional
languages such as Fortran and C. This compilers, such as the
Parafrase [KKLWBOI, PFC [AIKe or UFTN LCole871. examine
DO loops trying to obtain parallel or vector code depending on
some characteristics of the loop. They build a dependence graph
from the analysis of data dependences within the scope of each
loop. Many of these compilers study only the innermost or two
innermost loops, but some of them examine the whole loop nest.

Permission to copy without fix all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-341-8/89/0011/0531$1.50

Restructuring compilers are based on the analysis of
dependences within the scope of each loop. We first review some
concepts on data dependences and introduce some notation used
along this paper. Between each pair of statements Si and Sj,
where Si precedes Z$ in the sequential execution of the loop, some
d&u dependences are defined [KKPL81 I. Sj is flow-dependenton Si
(denoted S; S Sj) if Sj uses a variable that Si can modify. sj is anti-
dependent on & (denoted Si 6. S$ if Si uses a variable that can be
modified by L$ sj is output-dependent on !$ (denoted & 6’Sj) if a
certain variable can be modified by both of them. The statement
Si is called the dependence source and q is called the dependence
sink of the dependence relation. The number of iterations a
dependence extends across is known as the dependence distance.
This paper supposes constant distances known at compile time.

By analyzing the dependences within the iteration range
between each pair of statements we can build the dependence
graph of a program. It is a directed graph G (V, E) with a set of
nodes

V={S1, S,}

representing statements in the body loop, and a set of arcs

E = t&j I S, Sj c VI
representing data dependences between statements and its
associated dependence distance. There is an arc between two
nodes if some dependence test results affirmative [Bane79,
Wolf891. In this paper we only consider one arc between two
nodes but can easily be generallized to several arcs.

A chain or path C, between two nodes is a set of arcs

Cij= {4k, dw ..- , dmjl
such that each node is visited only once. The weight of a chain is
defined as

w(cij’ = t : dkl

%I “ii
Several chains can exist between any p& of nodes. A recurrence
R is a cycle or closed chain Ce For a given recurrence R we
define its transformed set R’ as the set of nodes included in the
recurrence

R* = {Si 13 k f-l d;, E R}.
A Hamiltonian recurrence is a recurrence that involves all

the nodes of the graph. If a graph has a hamiltonian recurrence,
we will call it hamiltonian graph and its associated loop
hamiltonian loop.

Existing methods can obtain full parallel or vector code
when iterations of the loop are independent. In this case,

531

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76263.76322&domain=pdf&date_stamp=1989-08-01

parallelization obtains a DOALL loop [Davi81 I where all
iterations can be executed in parallel. Vectorization obtains a
block of vector operations or a loop of vector operations when the
iteration range is larger than the vector register length. Figure
1 shows a loop with these characteristics and the outcoming
parallel and vector code.

DOI=l,512

A(l) = B(I) + C(I)

END0

parallel code

D0l=1,512,128

A(l:l + 127) = B(l:l + 127) + C&t+ 127)

EN00

l veeorregisterlength= 128

DOALLIzl.512

A(l) = B(l) + C(I)

ENDOALL

Figure 1: Full vectorizable orparallelizable loop.

Problems arise when recurrences are present, that is to say,
when cycles in the dependence graph appear. In this case,
several parallelization methods have been presented.
DOACROSS [Cytr861 tries to partially overlap the execution of
succesive iterations in order to satisfy dependences. Partial
Partitioning paciu791, Minimum Distance [PeCy%71 and Cycle
Shrinking [Poly88] try to split up the loop iterati6n range in
iteration sets or partitions, whose execution (independent or
synchronized in the later case) satisfies the dependences of the
recurrence. In the former approach, the number of partitions
created is given by the greatest common divisor of ail distances
in the graph while in the others, such number is given by the
minimum distance.

Vectorization tries to isolate recurrences by applying Loop
Distribution IBCKT791 or recognizing some patterns or special
kind of recurrences and generate special code for them [W0lf891.

In this paper we describe Graph Traverse Scheduling,
method first presented in [LaAy891 for shared memory
multiprocessors, for partitioning recurrence loops and
generating code well-suited for vector and parallel machines.

When GTS is applied to loop parallelization, it obtains the
full parallelism out of the loop while minimizing explicit
synchronizations. GTS is presented in this paper for single
nested loops while Partial Partitioning, Cycle Shrinking and
Minimum Distance consider multiple nested loops. In the case of
single nested loops, GTS can obtain more parallelism than the
previous methods. We will focus on this kind of loops without
considering the extension to nested loops. Besides, the previous
methods try to obtain partitions that can be executed in parallel
without intertask synchronization. In the case of single-
recurrence loops we can obtain more independent tasks than
them. In the case of multiple recurrence loops we need to insert
intertask synchronization in order to achive the maximum
parallelism available.

When GTS is applied to loop vectorization, it replaces a
sequential loop that uses scalar instructions involved in one or
several recurrences by a new sequential loop that uses vector
instructions of a given length.

We have organized this paper as follows. Section 2
introduces the GTS method for loops with a single hamiltonian
recurrence and the scheduling algorithm. In this case, fully
independent tasks are generated for parallel code and maximum
length of vector operations for vector code. Section 3 deals with
the evaluation of the parallelism and length of vector operations
for multiple-recurrence loops. It also presents code generation
for parallel and vectir machines including synchronization
instructions in the former case when necessary. Loops without a

hamiltonian recurrence that invol.ves all statements are
considered in section 4. Section 5 shows how to obtain fully
independent tasks or constant vector operations. Finally, a brief
comparison with existing methods is done.

2. SINGLE-RECURRENCE HAMrLTON1A.N LOOPS

2.1 Parallelization

The parallelism of a loop is defined as the average number of
active processors executing iterations of the loop if no
synchronization and scheduling overbead is assumed.

Figure 2.a shows a loop and its associated hamiItonian
dependence graph. Figure 2.b shows a scheduling of operations
well suited for parallel machines In this scheduling, S, stands
for the execution of the jth iteration of statement Si. This
scheduling shows the maximum parallelism that we can obtain
out of it. The parallelism of the loop is constant except for the last
cycle, in which the parallelism depends on the iteration limits.

REALA(1:200),8(1:200),C(1:200)

DOi=l,98

A(i+3] = S(i] + 2

C[i + 21 = A[i] * Dfi]

B(i +4] = C[i]

EN00

(4

d3,=4

d12=3

d 23=2

task0 taskt task2 task3 task4 task5 task6 task7 task8
_-------------
S 11 512 513 514:_s3Jw-.5_3& S21 s22 s23

s24 s25 s26 52 7 slS s16's33 s34 s35 L---m ----a-

s36 s37 S38 53 9 S28 529 517 Sl8 s19

SllO Sill Sll2 s113 s310 s311 s210 s211 5212

.

. _ : . .

. . . . I . . .

51 91 Sl 92 51 93 is194 : 5391 5392 s291 s292 s293

5294 5295

:s

s296 ; 297 ii 195 ,:is196:

iis ,....: ,.....: s

393 s394 s395 .,..... I ,.....,

s396 %97 5398
.

:S2g8 I:.....'is, g+;s, g8;

:......I . . .
m I. I

(b)

t

\

52 1 s22 s23

. s13! 5?.?...%. ..53?...SX
511 512 513 514 s15 s16 517 sl8 sl9

524 52s 526 527 528 529 5210 S211 5212

s36 537 538 539 5310 S311 5312 5313 5314

. . . .

S285 S286 5287 s28, s289 s290 5291 s292 s293

5387 5388 5389 5390 5391 5392 5393 5394 5395 _~~_---~----_---~_-~~~~~~~~~~~~~

5191 s 1 92 5193 5194 sl95 5196 5197 s198

s294 5295 5296 s297 s29S

' s396 s 397 5398

(4

Figure 2: Single Recurrence Loop

The distance of an arc determines the number of iterations
of the statement associated to the sink node that can be initially

532

executed. Then, the sum of the distances associated to the arcs
forming a recurrence R determines the number of tasks P that
can be and, thus, the parallelism ofthe loop

P=w(R) = 1

d..CR

dij.

The scheduling, for a single-re%rrence hamil-tonian loop,
initially assigns to each task a statement and iteration index
with no initial dependences. This scheduling is obtained by
traversing the graph backwards and assigning to consecutive
tasks all initial dependence-free iteration indices of each
statement. For a general recurrence R={dlj, d+ d,, d,&
included in a normalized DO loop, this schedule will generate P
tasks, numbered from 0 up to P-l, each of them starting with the
statement

s11. sl2. . . . Sldnl. s,l, s,2. . . . s,d,,. .., ski, $2. ..I Sk,& sjl, $2. .., sjdlj

where Sij stands for statement S iteration index j.

Starting from the initial statement and iteration index,
each task executes serially the statement and index directly
dependent on the previous one. This scheduling is obtained by
traversing the graph through the recurrence path. The source
code of each statement is modified by applying alignment
[Padu791 and adding an offset to the loop index variable. This
offset, for a given statement Si, is equal to the weight ofthe chain
going from the initial statement of the task to Sj. This
scheduling guarantees that dependences within the recurrence
are embedded in the sequential execution of each task loop.

Although the task numbering proposed is unimportant at
this point, observe that this scheduling satisfies that if taski
executes iteration j of Sk, then task(,+i, mod p executes the
iteration (j-+1) of the same statement. This will ease
synchronization generation described in section 3.2.

Figure 3.a shows the parallel code generated for the
sequential loop of figure 2.a. Observe that several statements
and iterations have been extracted from the inner DO loop in
order to use the same code for all the tasks. The execution of
statements at the beginning of the DOALL is dependent on the
number of the task (iterations above the dashed line in the
scheduling of figure 2.b). Statements below the inner DO loop
are only executed by tasks that have not reached the end of the
computation assigned to them in the scheduling of figure 2.b
(iterations inside dotted lines that cannot be executed in the
inner DO loop).

Figure 4.b shows the parallel code generated by a compiler
for a single-recurrence hamiltonian loop with n statements. In
this scheme we can distinguish three parts: prolog, core and
epilog. The prolog part includes those statements and iterations
extracted from the inner DO loop in order to use the same code
for all the tasks in the core part. The epilog part includes those
statements and final iterations not executed in the core part that
must be executed to complete the computation assigned to each
task. Without loss of generality, we have assumed that Z+ 6 S+ i
(15 i I n-l) and S, S S,. If this is not the case, the compiler will
reorder the statements so that the previous condition is
satisfied. In this scheme, wij = w(Cgl with CriCR. The compiler
should rewrite each statement in order to include the offset
indicated.

2.2 Vectorization

The vectorization process will transform the original DO loop
into a loop with vector operations.

Figure 2.c shows the scheduling of operations that is well-
suited to execute the program of figure 2.a on a vector machine.
This scheduling shows in each row the range of iterations of a

I

DOALL j = 0.8 ..s.....
IF(jZ6)

C&Ii] I Au-51 * OIj.51

ENDIF

IF(is4)

Bfj + 11 = q-31

ENDIF

. ..*
‘prolog part

.

*core part DOi=l+j,93,9

A[i + 31 = S[i] + 2

C[i+S] = A[i+3]‘D[i+3]

B[i+9] = C[i+5]

ENDO
. .._...._..

IF (i I; 98)

A[i+3] = B[i] + 2

ENDIF

IF(i+3<98)

‘epilog part

C[i+5] = A[ic3]‘D(ic3]

ENDIF .

ENDOALL

(a)

,,,.........,..

C(4:6)=A(l:3) l D(1:3) *prchg part

8(3:7)=C(l:5)
. ..-......

DOi=1,90,9

A(i+3:i+ll)=B(i:i+6) + 2

*core part

C(i+5:i+13)=A(ic3:i+11)*D(i+3:i+ll)

B(i+9:i+17)=C(i+S:i+13)

END0
.

A(94:101)=S(91:98) + 2

C(96: 100) = A(94:PS) l D(94:98)

E(100: 102)= C(96:98)

‘epilog part

.

(b)

Figure 3: Parallel and vector code generated for the example

of figure 2.

given statement that can be executed in vector form on a vector
processor. Before entering the vector loop, some statements 6s
and Ss in figure 2.~) have to be executed sequentially in order to
free those indices Sr, not dependent on Sii.

The vector length VI or number of iterations of S1 that can be
executed in vector form is determined by the self dependence of
Si, that is to say

~1’ N I ‘1 i ’ S1 i+vl
and therefore, by the weight of the recurrence

vl = w(R) = c dij .

d;;ER

After that, vl iterations of each sta$ment along the recurrence
can be executed in vector mode so that all dependences in the
graph are satisfied.

The scheduling initially assigns to each vector operation of
Si vl iterations starting at

1 + w(Cu)

where I is the loop control variable. This variable will be
incremented by vl at every iteration of the outcomingloop.

Figure 3.b shows the code generated by the compiler for the
loop of figure 2-a. Observe that several initial iterations (those
above the dotted line) and final iterations (those below the
dashed line and dependent on the iteration limits of the loop)
have been extractedout ofthe DO loop.

DOALLj=O,P-1

IFO-Q~) Sz(/-w*, + 1) ENDIF

IFU-q,) $30.w3, + t) ENDIF

1..

IFUWn,) Qj-w”, + 1) ENDIF

DOi=l+j.N-w1n.P

%I

%*w,2)
.*.

%(i +wtd
END0

IF (i SN) $11 ENDIF

IF(lcw12sN) s2(i*w,2) ENDIF

.

IF(i+wj(n.,)SN) S(n-tx1 +w,(~-,$ ENDIF

ENDOALL

(4

DOi=l,w~,

IFlSw,2 *2i

.

IF’Swt(n.1) S(n-l)l

*nl

END0

‘cndv I L(N-~7,) I VIA t vl

DO I = 1, endv, VI

S,(l:i +vl-1)

S2(i+wl2:i+w12+vI.l)

. .

S,(i+w~n:i+wln+vl-1)

END0

DOj-I,N

Slj

IFjzendv+1+~2~

IF j 2 cndv + 1 + w(~.,),,

IFjaendv+l

END0

0.4

ENDIF

ENDIF

$4 ENDIF

SW) j ENDIF

$nj ENDIF

Figure 4: Generalscheme of the code generated by applying

GTS for a single recurrence loop.

Figure 4.c shows the general vector code generated by the
compiler for a general single-recurrence hamiltonian loop. We
can distinguish three parts: prolog, core and epilog. The prolog
part is the original loop in which each statement sj dbhg the
graph (excluding the first one) is included in a conditional
statement so that the wlj initial iterations are only executed.
The core part is generated as described above. The epilog part is
the origina loop, in which each statement Sj along the graph is
included in a conditional statement so that only the iteration
range left in the core part is executed. The prolog and epilog part
can also be vector code (i.e figure 3.b) but its generation is
dficult for the general case and does not extend to the case with
more recurrences. In this scheme, SJi f k, : i + kl) stands for the
vector operation of statement S, on the specified iteration range.
The compiler must appropriately rewrite the statement.

Observe that this code can take advantage of the chaining
facilities provided by some vector machines such as the

CRAY KhenW. When the first result of one vector statement in
the DO loop comes out of the pipeline, the next statement can be
immediately started.

3. MULTIPLE RECURRENCE LOOPS

3.1 Parallelism and Vector Length

We shall now consider a loop consisting of n statements with one
or more recurrences. We define B as the set of recurrences in the
loop. For each recurrence REB we define its parallelism per
sentence as

l,(R) = w$.
The parallelism of the loop will be limited by its most restrictive
recurrence. Thus

I = n. minREB (I,(R))

Figure 5.a shows a multiple recurrence loop and 5.b its
associated dependence graph and parallelism computation.

DOis1.99

Ati + 31 = Ali-51 + C[i]

Bll + 21 = Alij - C[i + 1 I l 2

CIl+31 = B[i1/3

END0

(a)

R, = (d,r)

R2 = Cd23.+2)
R3 = t&z, d23, dgt)

II&w = s

l&+2) = 2 -) 11 = 6

llJR3) = 813

VNS,) = 8
Vl(S2) = 4

Vl(S3) = 4

(b)

figure 5: Parallelism and vector length computation of a

multiple recurrence graph.

For the general case, this parallelism need not to be an
integer value. The instantaneous parallelism will follow a cyclic
pattern with a mean value equal to the one evaluated by means
ofthe previous expression.

In order to generate vector code for the same loop, the
maximum vector length vl(SJ of statement S is limited by the
weigth of the most restrictive recurrence that includes Si.
Therefore,

vl(Si) = min l w(R)

R&CR

Figure 5.b shows also the vector length limit for each statement
in the loop offigure 5.a.

534

3.2 Parallel Code Generation

In the case of a Ioop with more than one recurrence, the
scheduling will be performed by applying to a hamiltonian
recurrence the same procedure described in section 2.1. We will
call scheduling recurrence a recurrence R,,hcB that includes all
the statements of the loop (lRschj=n)- If there is no such
recurrence, one must be obtained by adding dummy
dependences that do not limit the parallelism of the loop. This
problem is considered in section 4. If several hamiltonian
recurrences involving all statements exist, one of them must be
selected based on the minimization of the number of tasks
generated. Thus Rsch must satisfy

P= w(Rsch) 5 w(R) V Rsch. REB I IR~~~~=IRI =n .

Once Rsch has been obtained, arcs not belonging to Rsch
represent dependences that must be explicitly synchronized.
Figure 6.a shows the scheduling of operations for the loop of
figure 5 and the explicit synchronization needed to enforce the
dependence ds2. However, dependence dl, need not to be
explicitly synchronized because it is embedded in the sequential
execution of each task.

Dependences not included in the sequential execution must
be enforced through some intertask synchronization
mechanism. Many mechanisms for interprocessor
synchronization in multiprocessor systems have been proposed.
They can be based on indivisible read-modify-write memory
access (T&S, GAS , . ..) or on fetch-and-operate instructions
supported by simple processing at the memory modules and
combining networks [Gott83]. FulYempty bita are used in HEP
for fast synchronization [KowaSSl and other systems use a
dedicated bus (Alliant [Alli86l) or special registers (CRAY X-MP
[Chen851) for this purpose. Fast mechanisms are needed when
the frequency ofsynchronization is high [Poly88], [SeJe881.

Although other mechanisms such as full/empty bits can be
used very easily with GTS, we shall use semaphores as the
synchronization primitive. As coupling between tasks will be
very tight, we need a fast implementation of these primitives. In
ordqr to achieve high performance levels, the system should run
the parallel program with as many processors as tasks
generated (to avoid context switching overhead) and should
directly offer the fast hardware synchronization mechanisms to
the tasks.

Explicit synchronization must be introduced for any arc
dij%ch in the graph going from node &to Sj. The statement 4,
source of the dependence, will signal the end of its execution to
the statement 9, sink of the same dependence, in order to allow
its execution. For each arc du, P semaphores will be needed
(semi&t), Olt<P). The signal operation on the semaphore
semij(t) will be inserted in task t after the source statement SC
Its associated wait operation will be inserted in task t’ before
the sink statement Sj. If iteration k of & is executed in task t, the
iteration of the statement sj executed in the same task will be
k + w(Q). Due to the task numbering proposed in section 2, the
iteration k + dii of S; will be executed in task

task0 task1 task2 task3 task4 task5 task6 task7

$11 512 513

4
s24 - -

rem32101 = 0; sem32[11= 1; sem32[2] = 1;

sem32[31= 0; sem32[41= 0; sem32[51= 0;

sem32(6] = 0; sem32[7] = 0

OOACROSS j = 0,7

IFtjZ5)

wait(sem32&4) mod SI)

Blj-21 q Alj-41. C&3]* 2

ENOIF

IF(j23)

CIJ + 11 = B&2] / 3

signal(sem32(jj)

ENDIF

DOi=l+j,95,8

Ati + 31 = Ali- + C[i]

wait (sem32KjP) mcd 61)

B[i+Sl = A[i+31-C[i+4]*2

C[i + Bl = B[i + 51/ 3

signal(sem32[jl)

EN00

IF (i 699)

A[i + 31 = A[i-51 + C[il

ENDIF

IF(i+3599)

wait (sem32((j-4) mod 81)

B(i + 51 = A[i + 31 - C[i +4] l 2

ENDIF

ENDOACROSS

(b)

Figure 6: Scheduling andparallel code for the multiple
recurrence loop of Figure 5

The tasks that will execute these iterations are

(w(Cj 1) + K) mod P 1 OSK<$~

and therefore the tasks that. will execute the associated signal
will be

t’ = (t + tj - w(Cij)) mod P ; ‘ijc Rsch
We will now obtain an exDression for the initial values of the
semaphores used. Any dependence arc dil allows the execution of
the first dij iterations of Sj. If t’ is the task that executes a wait
operation, the associated signal will be excuted in task t on
sempahore t given by

t = (t’ + w(Cij) - dij) modP

t = (w(Cjl) + K + w(Cij) - dij) modP.

For a given Rsch

W(Cjl) + W(Cij) = P + tici

and therefore

(t - w(Cil) + dij) modP < dij

If dij 5 P, the semi$t) with t fulfilling the previous condition
must be initialized to one. Otherwise, they must be initialized to
zero. If dij > P, all the semij(t) will be initialized to Ldij / PJ and

535

only those fulfilling

(t - w(Ci,) f $j) modP < dij modP

will be initialized to Ldij / PJ + 1. Therefore, each semaphore
semi:(t) will be initialized to

Ldij/PJ+l if (t + CL.
?1

- w(Cil)) mod P < d.j mod P

L% ’ ”
if (t + $j - w(CiI)) mod P 2 dij mod P

Next, we present the optimization criterion for reducing
synchronization. A synchronization does not have to be enforced
if the dependence that it represents is already enforced by the
sequential scheduling or other explicit synchronizations. An arc
dIJ need not to be synchronized if another path C!u t {du} can be
found whose weight w(Cn) satisfies

(dij-w(Cij)) mod P = 0

This arc reduction process can be carried out before
selecting Rsch, leaving the graph with the minimum number of
arcs.

Figure 6.b shows the parallel code the compiler will
generate for the example of figure 5. Observe that the only
dependence that will be synchronized is dzs. as drl is covered by
the sequential execution of each task.

3.3 Vector Code Generation

Although vl(Si) limits the vector length of statement S, it is very
difficult to find a scheduling for a general graph where each
statement is executed with its associated vector length.

The method we will propose for generating vector code tries
to execute in the core part loop as many iterations of each
statement as the maximum vector length of all the statements
in the loop. Those statements with a vector length lower than
this maximum will be included in a sequential loop of vector
instructions with their associated vector length. In order to
make this method easy, several conditions must be fulfilled. If
this is not the case, we shall add new arcs and modify the
existing ones as described in next section.

Given a graph G(V, E) and Rs,.n, we renumber its nodes
traversing Rscn and starting with a statement S1 such that

vl(SI)=max s cv vl(S$.
i

The conditions that must be fulfilled in order to generate vector
code following the algorithm described later in this section are
[Aygu891:

(1) w(R,& = vl(Sr);

(2) Dependences not included in Rscn must have a
distance large enough so that they do not limit the
length ofthe vector instructions. This condition can be
expressed as

, w.. 11 if i<j

?jaRsch
dij P ”

Vl(Si, Sj) - w..
Jl

if i?j

(3)

where

vl(Si, Sj) = max (vl(Si), vl(Sj)).

Different statements can have different vector length
vi(S) but

g.c.d (vl(Si). vl(Sj)) = min (vl(Si). vl(Sj)) m, s..
J

This condition is imposed in order to reduce the
generated vector code size.

We shall now describe the method for generating vector
code for a loop thatfulfils the previous conditions.

Let NL be the number of different vi(S) in the graph and
VlL. -42, . ..vlNr. be the different vl(S.,) in decreasing order. The
code generated will consist on NL nested loops L1, La, ,,,, hL
where Lx is the outer loop. Each loop Li will have an iteration
variable Ii with initial value Ii-l, end value

Ii-l +Vli.l- 1

and increment vii. Loop Lr will have .an iteration variable I, with
initial value 1, end value

(N-win) - (N-w.)modvlI - 1
In

and increment ~1,.

Each statement Sj along Rsch will be included in the loop Lk
such that Vlk=Vl(Sj). Its vector length will be vlk and the initial
index will be Ik+Wlj. All the statements will be in the same
lexical order as they appear in Rsch.

Figure 7 shows the scheduling and vector code generated
for the graph of figure 5, which fulfIla the previous conditions. In
this case, the vector length of S, and S, is half the length of Sr.
Observe that the DO loop controled by the variable j is executed
twice in order to do as many iterations of Sz and Ss as iterations
of sl.

4. ADDITION OF DEPENDENCES

If no scheduling recurrence involving all the statements can be
found in order to apply GTS, new dummy arcs have to be
introduced.

We define E’ a set of arcs dd’ such that E + E’ allows to find a
recurrence Rseb

If we want to generate parallel code, the distance of the arcs
in E’ must not limit the parallelism of the graph, thus

IIs 2 IjS(R2) , ‘fRIEB’-B , R2 C B

where B’is the set of recurrences of G’(V, E + E’). Following the
same algorithm described in section 3.2, arcs in E not included in
Rsch should be explicitly synchronized.

Many sets E’ of dummy arcs can be used to obtain a
scheduling recurrence. For each of them, the total number of
tasks generated and explicit synchronizations may be different.
An interesting selection criterion would be to minimize the
number of tasks (P= w(Rsch)? II). If several E’ satisfy this
condition, the one with less additional arcs must be selected in
order to reduce the synchronization cost.

If we intend to generate vector code, E’ must not reduce the
vector length ofeach statement in the new graph with respect to
the original value. But in many cases we may have to reduce the
vector length of some statements because the conditions to easily
generate code are very restrictive. Observe that iterations of a
given statement are executed in ord.er. Thus, the distance of any
arc can be modified without deteriorating the correctness of the
program. However, the reduction of an arc distance will produce
a slower program. Many solutions with different efficiency can
be found.

5. SYNCHRONIZATION-FREE PARALLELISM AND CONSTANT
VECTOR LENGTH

In the previous section we have shown how to introduce dummy
arcs in order to obtain a scheduling recurrence. There is a trade-
off between number of tasks and explicit synchronizations. This
leads to the possibility of generating a scheduling recurrence
that does not requiere explicit synchronizations.

536

. .._.................

s2 1 522 -

531 532 533 S34 -
_ _ _ -

S23
- _ _ -

SJ5 ,...

Sl 1 S12 S13 514 515 516 S17 S18

s24 s25 s26 S27- - - -

536 537 S38 539 - - - -

- - _ -
S28 S23 S2 10 S2 11

- - - _
5310 5311 5312 5313

s19 Sl 10 Sl 11 Sl 12 Sl 13 Sl 14 Sl 15 Sl16

. . .

Sl81 5182 183 i s . . 184 Sll35 S186 Sl87 Sl88

S204 5205 S286 S287 - - - -

5386 S387 5388 5389 - - - *
- - _ _

S288 S2B9 s290 S231
- - - -

.* ** SW! .Su.!.fX??..%.?~..

Sl83 Sl30 5 191 s132 5193 %34 %95 s196

5292 5293 s294 5295 - - - -

s394 5395 5396 5397 - - - -
- - _ -

s296 s297 S298 s239
- - - -

5398 s399

SJ97 S198 S1gg ..aa... ..I

(a)

. .._

DOi=l,S *probg parl

IFiL3

B[i + 21 = A[i] . C[i + 11 l 2

ENDIF

C[i+3] = B[i]/3

_ .EN.F? . _
DOi=1,88,8 *core part

A[f+3:i+lO] = A[i-Pi-61 + C[i:i+7]

DOj=i.i+4.4

B[j+5:j+81 = AIj+3:i+61-Cti+4:j+71’2

C[j+B:j+ll] = Bfj+5:j+8]/3

EN00

. ..E.~?.?...*.....
DOiz89.99 ‘epilog part

AIi + 31 = A[i-51 + C[il

IF i292

B[i + 21 = A[i] . C[i + 11 l 2

ENDIF

IF i894

CIi+31 = B[i1/3

ENDIF

..EN?P...,...

lb)

Figure 7: Scheduling and vector code generation for the loop

of figure 5

Given a dependence graph G, we shall define the
synchronization-free parallelism Ik as the maximum number of
independent processors executing iterations of the loop. The
scheduling presented in section 2.a for a single recurrence loop
always attains this parallelism. For multiple recurrence loops,
this parallelism is always lower than or equal to the parallelism
of the loop, In this case, we must find a set E’={dti 1 St, Sl E V}
such that a Rsch involving all nodes of V exists and all arcs in E
need not be synchronized.

For loops where the number of statements is small, all
possible Rsch can be examined. For each of them, we can

evaluate the additional distances di1.c E’ such that the following
three conditions are satisfied:

- dij’ 2 0;

- dij’ 5 mindkjcn(d&

- (dij - W(C$) mod W(Rs,.h) = 0, WdgE E n Cu C Rseh.

The trivial solution is that all d,‘=O excepting one that has a
value of 1. This solution leads us to the sequential execution of
the resulting loop but sometimes we can find a solution such that
IIt= w(R,& > 1. In this case the efficiency of the parallelization
process will be

This algorithm can also be used for obtaining the resulting
parallelism if we synchronize a given number of arcs of E. This
should be used to establish a trade-off between the number of
arcs to synchronize and the parallelism that the scheduling
offers.

For example, the graph of figure 5 can be executed with four
processors without synchronization instructions. In this case, a
scheduling recurrence that obtains this #f is Rseh={dls’, dsz’,
dsr’) with associated distances drs’= 1, dss’=Z and dzr’= 1.
Figure 8.a shows the modified graph and figure 8.b the parallel
code generated for the loop offigure 5.

(a)

DOALL j = 0,3

IF(j23)

qj+ l] = Blj-2113

ENDIF

IF(jZ1)

El&21 = A&4]. C&3] l 2

ENDtF

DOi=l+j,96.4

A[i +3] = ALi- + C[i]

C[i+4] = B[i+1]13

B[i+5j = A[l+3]-C[i+4]‘2

END0

IF(is99)

A[i +3] I A[&51 + C[i]

ENDlF

IF (i + 1599)

C[i+4] = B[i+l]/3

ENDlF

ENDOALL

(b)

Figure 8: modified graph and full parallel code for the loop of

Figure 5

In section 1 we have shown that Partial Partitioning also
tries to find independent iteration sets, This method obtains a

537

(Ir=gcd+.c E (dij) that is never better than the one obtained by
GTS. Fo? example, Partial Partioning generates sequential code
for the loop of figure 5 .

When vectorizing, we can reduce the vector length of all
statements to vl= min vl(Si). If the compiler detects that min
Vl(Si) is too small for efficient vector execution, vl will be reduced
to a value of one, and therefore, sequential code will be
generated. The distances in the original graph must be reduced
so that all the recurrences have the same weight, following the
method described in section 4. On the modified graph G’, a
scheduling recurrence Rsch must be selected and code generated
as described in section 2.2.

Figure 9.a shows the modified graph and 9.b the vector code
generated for the loop of figure 5.

0
4

51

/"
0

2 52

KS

2 2

53

(4

DOi=l,Z

C[i + 31 = Elfi] I3

END0

DOi=1,96,4

A[i+3:i+6] = A[i-5:i-21 + C[i:i+3]

B[i+2:i+5] = A[i:i+3]-C[icl:i+4]*2

C[i+5:i+6] = S[i+Z:i+5]/3

END0

DO i = 97,100

A(i + 31 = A[i-5] + C(i]

E[i+2] =A[i]-C[i+l]*Z

IF izt99

C[i+3] = 6[i]/3

ENDIF

END0

(b)

Figure 9: modified graph and constant length vector code for

the loop of Figure 5

6. COMPARISON WITH OTHER METHODS

GTS allows to restructure programs with tight recurrences
obtaining their full parallelism or maximum vector length
operations.

When parallelizing, the method is able to obtain
independent tasks where other methods would need
synchronization or would not be able to parallelize at all. Cycle
Shrinking and Minimum Distance can obtain parallelism in
cases where Partial Partitioning cannot, but GTS is superior to
both of them. A restriction of them not present in GTS is that
dii > 1, Wdij CE. In fact, Cycle Shrinking and Minimum Distance
obtain the same parallelism than GTS only in the case of
a, =const, Vi&

One important feature of Partial Partitioning, Minimum
Distance and GTS is that they generate two loops, being the the
innermost one a DO loop and the outermost one a DOALL or
DOACROSS loop. In Cycle Shrinking this order is reversed, and
then, barrier synchronization at the end of the DOALL loop is
required. This reduces the system performance introducing hot
spots and making it very sensitive to fluctuations in the
execution time of the statements (due to memory conflicts, . ..l.

GTS never uses barrier synchronization. Different pairs of
tasks use different pairs of synchronizing objects (semaphores in
this case) avoiding hot spots. Being this synchronization less
rigid than barrier synchronization, fluctuations in the execution
time of the statements have less influence. The number of
synchronization objects (semaphores) is proportional to the
parallelism we want to obtain and the number of arcs to be
synchronized. For a given program, if this number is considered
to be too large, we can reduce the parallelism to make it
practical.

An important feature of the method is that we know the
actual parallelism of the loop. A measurement of the efficiency of
the parallelization process can be obtained as

P

q=R’
Methods leading to n< 1 do not extracit the full parallelism of the
loop.

Loop distribution can be appli.ed before GTS, but it is
preferable to apply GTS to the whole loop without applying loop
distribution. Figure 10.a shows the dependence graph of a loop
with four statements. If one time unit is assumed for executing a
statement, the sequential execution of the whole loop will take
4,N unit times. If loop distribution is applied before GTS, it will
obtain two blocks (IQ ={Si, Sz} and n2 =(Ss, S4}). The execution of
the first block will take N time units and the execution of the
second (2/3)*N. Therefore, the sequential execution of both
blocks will take (Q3J.N unit times. If we try to apply GTS to the
whole loop, we must obtain a scheduling recurrence by adding
dummy arcs. In this case, we will obtain the graph shown in
figure 10.b. We have added an arc d,, with an associated
distance of 0. Then an execution time of N units is achieved.

A n *F 1 51 52 2 1 1 0. *’ : *.f 1 s1 52 2 J

6
1

P 53

\

(4 lb)

Figure 10: Additional JrCS vs. loop distribution

When vectorizing, GTS is able 60 extract vector operations
where others methods mark loops as unvectorizable after
applying loop distribution.

538

A compiler that includes GTS as a recurrence restructuring
method will probably generate more code than using other
methods (three times approximately).

GTS can also be used to produce code for VLIW machines.
In this case, No-op instructions and the synchronous operation
through a single sequencing unit can be used instead of explicit
synchronization. GTS can thus generate optimum code for these
machines.

7. CONCLUSIONS

In this paper we have presented GTS, a new method for
restructuring recurrences for parallel and vector machines.

GTS is based on a detailed analysis of the dependence
graph of a loop. Code generation is done by traversing the graph
and rewriting the statements based on its distances, This
method includes, in the sequential execution of each parallel
task, the maximum number of dependencea. Other dependences
must be explicitly synchronized. A method to minimize the
number of explicit synchronizations has also been presented.
Vector code tries to execute the maximum number of iterations
in vector mode. The compiler must be able to detect when the
length of vector operations is small and generate sequential
code.

GTS is able to obtain more independent tasks than other
parallelizing methods, which are not able of extract parallelism
or do not obtain the maximum.

We have also shown how the parallelism of the loop can be
evaluated. This measurement is a good reference of the
efficiency of parallelization methods.

This method has been included in a parallelizing compiler
for programs written in sequential C language for a
multiprocessorsystem.

REFERENCES

[AIKe87] J.R. Allen and K. Kennedy, “Automatic Translation
of FORTRAN Programs to Vector Form”,ACM Trans.
on Program-ming Languages and Systems, Vol. 9,
No.4, pp. 491542, October 1987.

[AN861 Alliant Computer Systems Corp., “Alliant FZUSeries:
Product Summary”, 1986.

[Aygu89] E. Ayguade, “Automatic Parallelization of
Recurrences in Numerical Sequential Programs”,
Ph. D. Thesis, Computer Architecture Department of
the Catalonian Politechnic University, (in Spanish),
Sept. 89.

[Bane791 U. Banerjee. “Speedup of Ordinary Programs”, Univ.
Illinois at Urbana-Champaign, DCS Report
UIUCDCS-R-79-989,Oct. 1979.

[BCKT79] U. Banerjee, S. Chen, D.J. Kuck and R.A. Towle,
“Time and Parallel Processor Bounds for Fortran-like

Loops”, IEEE Trans. on Computers, Vol. C-28, No.9,
pp. 660-670, Sept. 1979.

[Chen85] S.S. Chen, “Cray X-MP-4 Series”, Cray Research
Presentations, Aug. 1985.

[Cytr86] R.G. Cytron, “Doacross: Beyond Vectorization for
Multiprocessors”, Proc. of the 1986 ICPP, pp. 836-844,
Aug. 1986.

[Davi81 I J.R. Beckman Daview, “Parallel Loop Constructs for
Multiprocessors”, Univ. Illinois at Urbana-
Champaign, DCS Report UIUCDCS-R-81-1070,
May 1981.

[Gott83] A. Gottieb, “The NYU Ultracomputer: Designing an
MIMD Shared Memory Parallel Computer”, IEEE
Trans. on Computers, Feb. 1983.

[Cole&71 H.B. Coleman, “The Vectorizing Compiler for the
UNISYS ISP”, Proc. of the 1987 ICPP, pp. 567576,
Aug. 1987.

[KKLW80] D.J. Kuck, R.H. Kuhn, B. Leasure and M. Wolfe, “The
structure of an Advanced Vectorizer for Pipelined
Processors”. Tutorial on Supercomputers: Designs
and Applications, K. Hwang Ed., IEEE Press,
pp. 163-178,1984.

[KKPLBI] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure and M.
Wolfe, “Dependence Graph and Compiler
Optimizations”, Proc. 8th Symp. on Principles of
Programming Languages, pp- 207-218, Jan. 1981.

[Kowa85] J.S. Kowalik (editor), “Parallel MIMD Computation:
HEP Supercomputer and its Applications”, The MIT
Press, Cambridge-Massachusets, 1985.

[LaAy89] J. Labarta and E. Ayguade, “GTS: Extracting Full
Parallelism Out of DO loops”, Proc. of the Conf. on
Parallel Architectures and Languages Europe
PARLESS, Vol.II, pp. 43-54, June 1989.

[Padu79] D.A. Padua, “Multiprocessors: Discussions of Some
Theoretical and Practical Problems”, Univ. of Illinois
at Urbana-Champaign, DCS Report UIUCDCS-R-79-
990,Nov. 1979.

[PeCy87] J.K. Peir and R. Cytron, “Minimum Distance: A
Method for Partitioning Recurences for Multipro-
cessors”. Proc. of 1987 ICPP, pp.217-225,Aug. 1987.

[Poly881 C.P. Polychronopoulos, “Parallel Programming and
Compilers”, Kluwer Academic Publishers, London,
1988.

[SeJe88] A. Seznec and Y. Jegou, “Synchronizing Processors
Through Memory Requests in a Tightly Coupled
Multiprocessor”, Proc, 15th Annual Int’l Symp. on
Computer Architecture, pp. 393-400,June 1988.

[Wolf891 M.J. Wolfe, “Optimizing Supercompilers for
Supercomputers”, Reasearch Monographs in Parallel
and Distributed Computing, PITMAN Publishing,
London, 1989.

539

