
The Composition of Concurrent Programs

K. Mani Chandy, Stephen Taylor
California Institute of Technology

31 August 1989

1 Introduction

This paper describes a notation for concurrent programs
called PCN for Program Composition Notation. The
notation is being implemented at Caltech on multicom-
puters (a network of computers that communicate by
sending and receiving messages). A fragment of this
notation has been implemented on a data-parallel com-
puter - the Connection Machine - by Rajive Bagrodia
at UCLA. PCN is an outgrowth of research on UNITY
[l] and Strand (21. The central ideas underlying PCN
axe discussed next.

1.1 Composition

The research goal of PCN is to study program com-
position: methods by which smaller programs can be
put together to obtain larger ones. Languages such
as Fortran have only one method of program compo-
sition - sequential composition: After one statement
is completed, control flow passes to the next statement.
Versions of Fortran have been proposed with another
method of program composition: parallel composition.
Functional programs employ functional composition. A
variety of composition operators are discussed in [3].
Our primary goal, here, is to propose a notation that
has a variety of program composition methods, and that
allows programmers to specify their own composition
operators in terms of the primitive operators in the no-
tation.

PCN deals with just one kind of programming en-
tity: a program. In particular, PCN does not include
constructs such as processes dr objects. The programs
that are composed may be written in PCN itself, or in
some other notation such as C, Fortran, Lisp, or ADA.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-341-8/89/W l/O557 $1.50

1.2 Single Assignment Variables

Arguments have been made that logic programming, in
which a variable is assigned a value at most once, is
less prone to error than imperative programs, in which
a variable can be assigned several values during the
course of a program execution, because the meaning of
a variable is clearer if it is assigned only once. However,
destructive assignment allows less copying and more ef-
fective use of memory than single-assignment notations.
Also, program proof techniques can be used to reduce (if
not eliminate) error in programs that employ destruc-
tive assignment. PCN allows both single-assignment
variables, and mutable variables, i.e., variables that can
be assigned values an arbitrary number of times during
an execution.

For reasons that will become clear, we call a single-
assignment variable a definition variable. A definition
variable must be assigned a value at most once during
an execution. A (run-time) error occurs if a definition
variable is assigned a value more than once during an
execution.

A definition is a constant (i.e., integer, floating point
number, character, string), or a definition variable, or
a tuple whose elements are definitions. A tuple is a
sequence of constants, variables (definition variables or
mutable variables), and tuples between braces ‘{, and
‘}. For example, {z, {y, (2,3})}, is a tuple. More about
tuples and constants later.

The initial value of a definition variable is a special
symbol that indicates that it is undefined. The value of
a definition variable is either undefined or it is a defi-
nition. The value of a definition variable can change in
only one way: the value of a variable that is undefined
can become a definition.

At a point in a computation, a definition e reduces to
a definition e’ if e’ can be obtained from e by replacing
occurrences of a variable in e by its definition, or (tran-
sitive closure) if there exists a definition d such that e
reduces to d and d reduces to e’. For example, at a
point in a computation, {y, 2) reduces to ((2, l}, 2}, if
Y is defined at that point as {z, 1); furthermore, {y, 2)
reduces to {({0}, l}, 21, if z is defined at that point as
w

557

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76263.76325&domain=pdf&date_stamp=1989-08-01

At a point in a computation, an occurrence of a
definition variable x can be replaced by its definition e,
or by any definition e’ where e reduces to e’.

By contrast, mutable variables have arbitrary val-
ues initially and may take on arbitrary values during
the course of a program execution Furthermore, since
the value of a mutable variable may change during an
execution, a mutable variable cannot be replaced by its
(current) value in all contexts.

Programs that are both clean, and efficient in mem-
ory usage, can be developed by judicious use of defini-
tions and mutable values. There are cases where it ap-
pears helpful to start program development by writing
programs that use only definitions, and later introduce
mutable variables to obtain greater efficiency.

1.3 Concurrency

A great deal of research on concurrency deals with dif-
ferent methods of communication between entities -
blocked and unblocked sends/receives for message-passing
systems, and different methods of locking data for shared-
memory systems. Programs in PCN communicate with
each other by means of shared variables, but PCN has
no explicit constructs for locking.

PCN has four basic composition operators, only one
of which deals with concurrency explicitly: The parallel
composition operator, ‘I]‘, The parallel composition op-
erator is associative and commutative; so the order in
which programs are composed in parallel is immaterial.

The central idea about shared variables in parallel
composition is as follows.

A programmer must demonstrate, for a set S of pro-
grams composed in parallel, that during an execution:

1. A variable is modified by at most one program in
S, and

2. a variable that is a&n&l a va& by one program
in S, and that is read by another program in S,
is a definition variable.

Therefore, a variable that is accessed by two or more
programs composed in parallel can change value in only
one way: from undefined to defined. This monotonicity
property makes locking unnecessary.

1.4 Nondeterminism

PCN programs can be nondeterministic or determinis-
tic. Nondeterminism is helpful because a system that
is to be developed may be inherently nondeterministic.
Nondeterminism is also helpful because it reduces over-
specificity; for instance, we may not want to insist that
a program produce the correct results the same way
each time it is called, provided that it does produce
correct results. On the other hand, PCN programs can

be written in a manner that guarantees that the pro-
grams are deterministic. Thus nondeterminism can be
used in cases where it is helpful and avoided in cases
where it is unhelpful.

2 Data Types

PCN has the usual basic data types (as in C, for in-
stance), and the following structured data types: tu-
ples, lists and arrays. Arrays are conventional (ss in

Cl*
A tuple is a sequence of items between braces ‘1’

and ‘}‘. Th e e ements 1 of a tuple can be arbitrary Bim-
ple data types, or tuples themselves. A tuple is identical
to a one-dimensional array, except that the elements of
a tuple need not all be of the same type. The function,
sizeof, applied to a tuple returns the number of ele-
ments in the tuple. The elements of a tuple x are z[;]
where 0 < i < sizeof(The number of steps required
to access x[;] is independent of i.

A list is a sequence of values between square brack-
ets [, and 1, A list is a special case of a tuple: An

empty list, 11, in 0, and a non-empty list, X, is a 2-
tuple, (hz, tx}, where hx is the head of x and tz is the

tail of z. For example, the list, [0, 1,2], is implemented

as v4 0, WH.
A constant is a number or a character, or a tuple

(or list) whose elements are constants. A constant only
reduces to itself.

3 Programs

A program is a program heading, type declaration of
arguments and local variables, and a block. The scope of
a variable is the program in which it appears. A variable
that is used in a program and which is not declared
in that program is assumed to be a single-assignment
variable. Parameters are passed by reference.

3.1 Blocks

The syntax of a block is described next in BNF. All non-
terminal symbols are in italics, and all terminal symbols
are in plain or boldface type. The notation + su +‘,
where su is a syntactic unit represents a list of zero
or more instances of the syntactic unit where multiple
instances are separated by commas.

bEock :: assignment 1
equation 1
procedure-call 1
guard - block 1

{ Primitive-composition-operator + block + } 1
{ user-de fined-composition-operator + argument)-)

558

3.2 Assignments

An assignment is of the form x := e, where x is a vari-
able and e is an expression; x can be a definition variable
or a mutable variable, and e can name definition vari-
ables and mutable variables. An assignment, x := e, is
executed as follows.

1. Wait until all definition variables named in e re-
duce to constants, and

2. then assign to x the value of e with all definition
variables replaced by the constants to which they
reduce, and all mutable variables replaced by their
values.

For example, the execution of x := I + y + z, where y
is a definition variable and z is a mutable variable, and
z has value 3, is as follows: Wait until y reduces to a
constant, say 2, and then assign 6 to x because 1+ y+z
=1+2-l-3.

If the left-hand side of the assignment is a definition
variable, the execution of the assignment defines the
variable as the value of the right-hand side, and the
variable retains this definition thereafter. If the left-
hand side of the assignment is a mutable variable, the
execution of the assignment causes the variable to get
the value of the right-hand side, and this value can be
changed by subsequent assignments.

3.3 Equations

An equation is of the form, x = y, where x is a definition
variable, and y is a constant, a variable.or a tuple. A
definition y’ is obtained from y by replacing all mutable
variables in y by their values. The equation is executed
as follows: A definition y’ is obtained from y by re-
placing all mutable variables in y by their values, and
the value of x becomes the definition y’. The execution
of an equation always terminates, whereas the execu-
tion of an assignment may not terminate because the
right-hand side of an assignment may name definition
variables that never reduce to constants.

3.4 Guarded Blocks

The meaning of a block which has the syntax guard -+
block is given next. The syntax of a guard is:

guard :: guard-element 1 guard-element,guard
guard-element :: true 1 false 1 expression binary-relation
expression

where binary-relation is =, <, 5, >, or 2, or a
special symbol + for pattern-matching.

A (pattern) match is a syntactic convenience to refer
to elements of tuples. The expression on the left side of

the match is a tuple, and the expression on the right side
is a variable. An example of a match is {x, y, 2) + z.
The syntax for the left side of a match is:
{ -X pattern-identifier Z+ }
where pattern-identifier is an identifier that is not an
argument or a local variable of the program; a pattern-
identifier serves as a convenient place-holder for ele-
ments of a tuple.

A guard evaluates to one of three values: succeeds,
suspends, or fails. For brevity, we shall say ‘a guard suc-
ceeds ’ instead of saying ‘a guard evaluates to succeeds’;
we use similar abbreviations for suspends and fails. We
describe the evaluation of a guard by first giving the
evaluation of a guard-element, and then defining the
evaluation of a guard recursively. A guard is evaluated
from left to right.

The guard-element true succeeds, and false fails.
The guard-element e * e’, where * is one of the usual
comparison operators, =, <, 5, >, or 2, suspends if e or
e’ names a definition variable that does not evaluate to
a a constant; otherwise, the expression e*e’ is evaluated
in the usual way, by replacing each mutable variable by
its value, and each definition variable by the constant
to which it reduces; if e * e’ holds the guard-element
succeeds, and fails otherwise.

For example, the guard-element a + b = x + y sus-
pends if a, b, x or y is a definition variable that does not
reduce to a constant. If x and y are definition variables
that reduce to 3 and 4, respectively, and a, b are muta-
ble variables with values 2 and 5, respectively, then the
guard-element succeeds because 2i-5 = 3+4.

A guard-element, {to, .., t&I} t x, suspends if x is
a definition variable that does not reduce to a constant.
If z reduces to a constant then the guard-element suc-
ceeds if z is a tuple of size k and fails otherwise. If the
guard succeeds, then all instances of pattern-identifier
ti in the guard and its associated block are replaced by
xl;], and thus ti serves a.s a place-holder for xl;].

For example, the guard-element {m, 5s) + x suc-
ceeds if 2 is a 2-tuple, and in the guard and its associ-
ated block, m is replaced by x(0], and xs by x[l].

The elements of a guard are evaluated from left to
right

1.

2.

3.

until:
-.

An element is found that fails in which case the
guard fails, or

an element is found that suspends in which case
the guard suspends, or

all elements succeed, in which case the guard suc-
ceeds.

The execution of a block b with syntax g --+cisas
follows:

1. Wait until g succeeds or to fails, and

2. if g succeeds then execute c else skip.

559

The meaning of an unguarded block, b is the same
as that of the guarded block true 3 b.

4 Composition Operators

4.1 Sequential Composition

The execution of a block, (; 4 block + }, is as follows:
the blocks composed by sequential composition are exe-
cuted in sequence. A sequential composition block ter-
minates when the last block in its block-list, + block t,
terminates.

4.2 Parallel Composition

The execution of the block, { 11 + block + }, is as fol-
lows: all blocks composed by parallel composition are
executed in parallel. A parallel composition block ter-
minates when all blocks that it composes terminate.

The execution of a parallel composition block is fair:
For each block b that is composed in parallel: It is al-
ways the case that b has terminated or a statement in
b will be executed eventually.

4.3 Choice Composition

Restrict attention to choice blocks of the form: {? 4
guard + block +}. (An unguarded block is treat as a
guarded block with a true guard.)

The execution of a choice block is as follows: Wait
until at least one guard in the choice block succeeds or
all guards fail; in the former case execute any block with
a guard that succeeds, and in the latter case, skip.

The execution of a choice block terminates if a guard
succeeds and the block corresponding to the guard ter-
minates, or if all guards in the block list fail.

4.4 Fair Composition - UNITY

This composition operator is the UNITY union opera-
tor [I].

As in the case of choice blocks, restrict attention to
choice blocks of the form: (0 + guard + block +}.

The execution of a fair block is as follows.

While at least one guard succeeds or suspends: se-
lect a guara nondeterministically and fairly, and execute
the corresponding block if the guard succeeds.

The block terminates if and only if all guards fail.

5 Quantification

A sequence of items can be defined using quantification
as in UNITY.

A quantified-form has the syntax:

a: identifier in
integer-expression . . integer-expresion :: lexical-unit

>>.
The quantified-form, < a in n . . m :: exp > is a

sequence in which the lexical unit exp appears once for
each inst ante of i where n 5 i 5 m, and in the k-th
appearance of exp, all instances of i in exp are replaced
by k.

Example << i in O..2 :: x[i] := y[i], u[i] := v[i] >>
is the sequence:
x[O) := y[o], u[O] := u/O], x[l] := y[l], u[l] := u[l], 42) :=
y[2], u[2] := 421.

6 Examples

In this section a few programs are developed to illus-
trate the composition operators. Documentation within
programs is in slanted font. We begin with a simple
program flip that has two integer arguments, and flip
interchanges the values of its arguments. The body of
the program is a sequential composition block.

f liP(% 4
int u, v
int w

{;
w -= u) . , u:= v, u := w

Declare parameters of program.
Declare local variables of program.

Begin sequential composition block.
Block-list
End sequential composition block
and end program.

Next consider a program j’ with three arguments,
an integer n, a one-dimensional array x indexed i where
0 5 i < n, and an index j where 0 < j < n. The pro-
gram flips x[j - l] and x[j] if they are not in ascending
order.

f (n, j, 4
int n, j, z[n];

(x[i - 11 > 4il) -+ f W4j - :Ll, +I)
Single statement program.

Next we write programs, SO, 31, 32, each with two
arguments: n and x where x is an array indexed [0 . . n-
l], and where the p&condition of each program is that
x is in ascending order. For purposes of exposition as-
sume that the elements of x are distinct.

6.1 Simple Sort

Fair Composition The simplest sorting routine is to
repeatedly flip any pair of elements of x that are out of
order until all pairs are in order.

560

fc(n, 4
int n,x(n]
{O<:iinl.,n-1:: (x[i - l] > +I) + flip(z[i -

? +I) >

Choice Composition Fair selection is not necessary
in the last example, and so we can use choice compo-
sition as shown next. This program flips any pair of
elements of z that are out of order, and then calls itself.

{? < i in 1 . . n - 1 :: (x[i - 1) > z[;]) --+ {; flip(s[i -

;‘, +I), aO(n, 4) 2+

Sequential Composition The bubble sort is defined
in the obvious way using sequential composition.

{;*tt 1.. n-1,iin l..n-t:: f(n,i,z)>}

Program as a Set of Equations Next, we give the
specification of a sort program as a set of equations,
and then we represent the equations in PCN, using def-
inition variables.

Specification The specification employs arrays z
and y, and states that y is a sort of z. The specification
uses a local array z indexed t, i where 0 5 t < n + 2.
The specification of the program is the following set of
equations:

ViwhereO<isn-1:: z[O,i]=z[i]
Vi where 0 5 i < n - 1 :: y[i] = z[n + l,i]
Vi,twhereO<iSn-1,andwhereOLtLn::
z[t + l,i] = min(z[t,i],z[t,i + 1)) if (i - t) mod 2 = 0,

max(z(t, i], z[t,i - 11) if (i - t) mod 2 # 0

Program The program is a syntactic transforma-
tion of the specification:

definition z[n + 2][n]

!iinO . . n - 1 :: z[O,C] := +I,

y[i) := z[n+ 1, j),
<< t in 0 ,. n :: z[t + l,i] :=

((i - t) mod 2 = 0 -+ min(+, i], z[t, i + I]),
(i - t) mod 2 # 0 - max(z[t, i], z/t, i - I]))

Parallel Composition The odd-even transposition
sort is defined using sequential and parallel composi-
tion. On every odd step, for all odd i, z[i - I] and
z[;] are flipped if they are out of order, and on even
steps the same is done for even i. Thus, on step num-
ber t, program f(n,i, z) is called for all i such that
(t -i)mod2 = 0.

s2(n, 4
int n,x[n]
c << t in 0 . . n ::

{I] <iin . . n :: ((t - i)mod 2 = 0)
>>

k

7 Conclusion

This very brief paper gives something of an overview of
PCN. A great deal has been omitted for lack of space.
DetaiIs can be obtained from the authors.

Acknowledgement

This work was supported in part by JTFPMO grant
coordinated by JPL and by DARPA, order numer 6202,
monitored by ONR, N0001487-K-0745.

References

(l] K.M Chandy, and J.Misra, Parallel Program Design:
A Foundation, Addison-Wesley,1989

[2] LFoster and S.Taylor, Strand, New Concepts in Pur-
allel Programming, Prentice-Hall, 1989.

[3] C.A.R.Hoare, Communicating Sequential Proceasea,
Prentice-Hall International, 1984.

561

