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1 Introduction 

This paper describes a notation for concurrent programs 
called PCN for Program Composition Notation. The 
notation is being implemented at Caltech on multicom- 
puters (a network of computers that communicate by 
sending and receiving messages). A fragment of this 
notation has been implemented on a data-parallel com- 
puter - the Connection Machine - by Rajive Bagrodia 
at UCLA. PCN is an outgrowth of research on UNITY 
[l] and Strand (21. The central ideas underlying PCN 
axe discussed next. 

1.1 Composition 

The research goal of PCN is to study program com- 
position: methods by which smaller programs can be 
put together to obtain larger ones. Languages such 
as Fortran have only one method of program compo- 
sition - sequential composition: After one statement 
is completed, control flow passes to the next statement. 
Versions of Fortran have been proposed with another 
method of program composition: parallel composition. 
Functional programs employ functional composition. A 
variety of composition operators are discussed in [3]. 
Our primary goal, here, is to propose a notation that 
has a variety of program composition methods, and that 
allows programmers to specify their own composition 
operators in terms of the primitive operators in the no- 
tation. 

PCN deals with just one kind of programming en- 
tity: a program. In particular, PCN does not include 
constructs such as processes dr objects. The programs 
that are composed may be written in PCN itself, or in 
some other notation such as C, Fortran, Lisp, or ADA. 
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1.2 Single Assignment Variables 

Arguments have been made that logic programming, in 
which a variable is assigned a value at most once, is 
less prone to error than imperative programs, in which 
a variable can be assigned several values during the 
course of a program execution, because the meaning of 
a variable is clearer if it is assigned only once. However, 
destructive assignment allows less copying and more ef- 
fective use of memory than single-assignment notations. 
Also, program proof techniques can be used to reduce (if 
not eliminate) error in programs that employ destruc- 
tive assignment. PCN allows both single-assignment 
variables, and mutable variables, i.e., variables that can 
be assigned values an arbitrary number of times during 
an execution. 

For reasons that will become clear, we call a single- 
assignment variable a definition variable. A definition 
variable must be assigned a value at most once during 
an execution. A (run-time) error occurs if a definition 
variable is assigned a value more than once during an 
execution. 

A definition is a constant (i.e., integer, floating point 
number, character, string), or a definition variable, or 
a tuple whose elements are definitions. A tuple is a 
sequence of constants, variables (definition variables or 
mutable variables), and tuples between braces ‘{, and 
‘}. For example, {z, {y, (2,3})}, is a tuple. More about 
tuples and constants later. 

The initial value of a definition variable is a special 
symbol that indicates that it is undefined. The value of 
a definition variable is either undefined or it is a defi- 
nition. The value of a definition variable can change in 
only one way: the value of a variable that is undefined 
can become a definition. 

At a point in a computation, a definition e reduces to 
a definition e’ if e’ can be obtained from e by replacing 
occurrences of a variable in e by its definition, or (tran- 
sitive closure) if there exists a definition d such that e 
reduces to d and d reduces to e’. For example, at a 
point in a computation, {y, 2) reduces to ((2, l}, 2}, if 
Y is defined at that point as {z, 1); furthermore, {y, 2) 
reduces to {({0}, l}, 21, if z is defined at that point as 
w 
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At a point in a computation, an occurrence of a 
definition variable x can be replaced by its definition e, 
or by any definition e’ where e reduces to e’. 

By contrast, mutable variables have arbitrary val- 
ues initially and may take on arbitrary values during 
the course of a program execution Furthermore, since 
the value of a mutable variable may change during an 
execution, a mutable variable cannot be replaced by its 
(current) value in all contexts. 

Programs that are both clean, and efficient in mem- 
ory usage, can be developed by judicious use of defini- 
tions and mutable values. There are cases where it ap- 
pears helpful to start program development by writing 
programs that use only definitions, and later introduce 
mutable variables to obtain greater efficiency. 

1.3 Concurrency 

A great deal of research on concurrency deals with dif- 
ferent methods of communication between entities - 
blocked and unblocked sends/receives for message-passing 
systems, and different methods of locking data for shared- 
memory systems. Programs in PCN communicate with 
each other by means of shared variables, but PCN has 
no explicit constructs for locking. 

PCN has four basic composition operators, only one 
of which deals with concurrency explicitly: The parallel 
composition operator, ‘I]‘, The parallel composition op- 
erator is associative and commutative; so the order in 
which programs are composed in parallel is immaterial. 

The central idea about shared variables in parallel 
composition is as follows. 

A programmer must demonstrate, for a set S of pro- 
grams composed in parallel, that during an execution: 

1. A variable is modified by at most one program in 
S, and 

2. a variable that is a&n&l a va& by one program 
in S, and that is read by another program in S, 
is a definition variable. 

Therefore, a variable that is accessed by two or more 
programs composed in parallel can change value in only 
one way: from undefined to defined. This monotonicity 
property makes locking unnecessary. 

1.4 Nondeterminism 

PCN programs can be nondeterministic or determinis- 
tic. Nondeterminism is helpful because a system that 
is to be developed may be inherently nondeterministic. 
Nondeterminism is also helpful because it reduces over- 
specificity; for instance, we may not want to insist that 
a program produce the correct results the same way 
each time it is called, provided that it does produce 
correct results. On the other hand, PCN programs can 

be written in a manner that guarantees that the pro- 
grams are deterministic. Thus nondeterminism can be 
used in cases where it is helpful and avoided in cases 
where it is unhelpful. 

2 Data Types 

PCN has the usual basic data types (as in C, for in- 
stance), and the following structured data types: tu- 
ples, lists and arrays. Arrays are conventional (ss in 

Cl* 
A tuple is a sequence of items between braces ‘1’ 

and ‘}‘. Th e e ements 1 of a tuple can be arbitrary Bim- 
ple data types, or tuples themselves. A tuple is identical 
to a one-dimensional array, except that the elements of 
a tuple need not all be of the same type. The function, 
sizeof, applied to a tuple returns the number of ele- 
ments in the tuple. The elements of a tuple x are z[;] 
where 0 < i < sizeof( The number of steps required 
to access x[;] is independent of i. 

A list is a sequence of values between square brack- 
ets [, and 1, A list is a special case of a tuple: An 

empty list, 11, in 0, and a non-empty list, X, is a 2- 
tuple, (hz, tx}, where hx is the head of x and tz is the 

tail of z. For example, the list, [0, 1,2], is implemented 

as v4 0, WH. 
A constant is a number or a character, or a tuple 

(or list) whose elements are constants. A constant only 
reduces to itself. 

3 Programs 

A program is a program heading, type declaration of 
arguments and local variables, and a block. The scope of 
a variable is the program in which it appears. A variable 
that is used in a program and which is not declared 
in that program is assumed to be a single-assignment 
variable. Parameters are passed by reference. 

3.1 Blocks 

The syntax of a block is described next in BNF. All non- 
terminal symbols are in italics, and all terminal symbols 
are in plain or boldface type. The notation + su +‘, 
where su is a syntactic unit represents a list of zero 
or more instances of the syntactic unit where multiple 
instances are separated by commas. 

bEock :: assignment 1 
equation 1 
procedure-call 1 
guard - block 1 

{ Primitive-composition-operator + block + } 1 
{ user-de fined-composition-operator + argument )- ) 
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3.2 Assignments 

An assignment is of the form x := e, where x is a vari- 
able and e is an expression; x can be a definition variable 
or a mutable variable, and e can name definition vari- 
ables and mutable variables. An assignment, x := e, is 
executed as follows. 

1. Wait until all definition variables named in e re- 
duce to constants, and 

2. then assign to x the value of e with all definition 
variables replaced by the constants to which they 
reduce, and all mutable variables replaced by their 
values. 

For example, the execution of x := I + y + z, where y 
is a definition variable and z is a mutable variable, and 
z has value 3, is as follows: Wait until y reduces to a 
constant, say 2, and then assign 6 to x because 1+ y+z 
=1+2-l-3. 

If the left-hand side of the assignment is a definition 
variable, the execution of the assignment defines the 
variable as the value of the right-hand side, and the 
variable retains this definition thereafter. If the left- 
hand side of the assignment is a mutable variable, the 
execution of the assignment causes the variable to get 
the value of the right-hand side, and this value can be 
changed by subsequent assignments. 

3.3 Equations 

An equation is of the form, x = y, where x is a definition 
variable, and y is a constant, a variable.or a tuple. A 
definition y’ is obtained from y by replacing all mutable 
variables in y by their values. The equation is executed 
as follows: A definition y’ is obtained from y by re- 
placing all mutable variables in y by their values, and 
the value of x becomes the definition y’. The execution 
of an equation always terminates, whereas the execu- 
tion of an assignment may not terminate because the 
right-hand side of an assignment may name definition 
variables that never reduce to constants. 

3.4 Guarded Blocks 

The meaning of a block which has the syntax guard -+ 
block is given next. The syntax of a guard is: 

guard :: guard-element 1 guard-element,guard 
guard-element :: true 1 false 1 expression binary-relation 
expression 

where binary-relation is =, <, 5, >, or 2, or a 
special symbol + for pattern-matching. 

A (pattern) match is a syntactic convenience to refer 
to elements of tuples. The expression on the left side of 

the match is a tuple, and the expression on the right side 
is a variable. An example of a match is {x, y, 2) + z. 
The syntax for the left side of a match is: 
{ -X pattern-identifier Z+ } 
where pattern-identifier is an identifier that is not an 
argument or a local variable of the program; a pattern- 
identifier serves as a convenient place-holder for ele- 
ments of a tuple. 

A guard evaluates to one of three values: succeeds, 
suspends, or fails. For brevity, we shall say ‘a guard suc- 
ceeds ’ instead of saying ‘a guard evaluates to succeeds’; 
we use similar abbreviations for suspends and fails. We 
describe the evaluation of a guard by first giving the 
evaluation of a guard-element, and then defining the 
evaluation of a guard recursively. A guard is evaluated 
from left to right. 

The guard-element true succeeds, and false fails. 
The guard-element e * e’, where * is one of the usual 
comparison operators, =, <, 5, >, or 2, suspends if e or 
e’ names a definition variable that does not evaluate to 
a a constant; otherwise, the expression e*e’ is evaluated 
in the usual way, by replacing each mutable variable by 
its value, and each definition variable by the constant 
to which it reduces; if e * e’ holds the guard-element 
succeeds, and fails otherwise. 

For example, the guard-element a + b = x + y sus- 
pends if a, b, x or y is a definition variable that does not 
reduce to a constant. If x and y are definition variables 
that reduce to 3 and 4, respectively, and a, b are muta- 
ble variables with values 2 and 5, respectively, then the 
guard-element succeeds because 2i-5 = 3+4. 

A guard-element, {to, .., t&I} t x, suspends if x is 
a definition variable that does not reduce to a constant. 
If z reduces to a constant then the guard-element suc- 
ceeds if z is a tuple of size k and fails otherwise. If the 
guard succeeds, then all instances of pattern-identifier 
ti in the guard and its associated block are replaced by 
xl;], and thus ti serves a.s a place-holder for xl;]. 

For example, the guard-element {m, 5s) + x suc- 
ceeds if 2 is a 2-tuple, and in the guard and its associ- 
ated block, m is replaced by x(0], and xs by x[l]. 

The elements of a guard are evaluated from left to 
right 

1. 

2. 

3. 

until: 
-. 

An element is found that fails in which case the 
guard fails, or 

an element is found that suspends in which case 
the guard suspends, or 

all elements succeed, in which case the guard suc- 
ceeds. 

The execution of a block b with syntax g --+cisas 
follows: 

1. Wait until g succeeds or to fails, and 

2. if g succeeds then execute c else skip. 
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The meaning of an unguarded block, b is the same 
as that of the guarded block true 3 b. 

4 Composition Operators 

4.1 Sequential Composition 

The execution of a block, (; 4 block + }, is as follows: 
the blocks composed by sequential composition are exe- 
cuted in sequence. A sequential composition block ter- 
minates when the last block in its block-list, + block t, 
terminates. 

4.2 Parallel Composition 

The execution of the block, { 11 + block + }, is as fol- 
lows: all blocks composed by parallel composition are 
executed in parallel. A parallel composition block ter- 
minates when all blocks that it composes terminate. 

The execution of a parallel composition block is fair: 
For each block b that is composed in parallel: It is al- 
ways the case that b has terminated or a statement in 
b will be executed eventually. 

4.3 Choice Composition 

Restrict attention to choice blocks of the form: {? 4 
guard + block +}. (An unguarded block is treat as a 
guarded block with a true guard.) 

The execution of a choice block is as follows: Wait 
until at least one guard in the choice block succeeds or 
all guards fail; in the former case execute any block with 
a guard that succeeds, and in the latter case, skip. 

The execution of a choice block terminates if a guard 
succeeds and the block corresponding to the guard ter- 
minates, or if all guards in the block list fail. 

4.4 Fair Composition - UNITY 

This composition operator is the UNITY union opera- 
tor [I]. 

As in the case of choice blocks, restrict attention to 
choice blocks of the form: (0 + guard + block +}. 

The execution of a fair block is as follows. 

While at least one guard succeeds or suspends: se- 
lect a guara nondeterministically and fairly, and execute 
the corresponding block if the guard succeeds. 

The block terminates if and only if all guards fail. 

5 Quantification 

A sequence of items can be defined using quantification 
as in UNITY. 

A quantified-form has the syntax: 

a: identifier in 
integer-expression . . integer-expresion :: lexical-unit 

>>. 
The quantified-form, < a in n . . m :: exp > is a 

sequence in which the lexical unit exp appears once for 
each inst ante of i where n 5 i 5 m, and in the k-th 
appearance of exp, all instances of i in exp are replaced 
by k. 

Example << i in O..2 :: x[i] := y[i], u[i] := v[i] >> 
is the sequence: 
x[O) := y[o], u[O] := u/O], x[l] := y[l], u[l] := u[l], 42) := 
y[2], u[2] := 421. 

6 Examples 

In this section a few programs are developed to illus- 
trate the composition operators. Documentation within 
programs is in slanted font. We begin with a simple 
program flip that has two integer arguments, and flip 
interchanges the values of its arguments. The body of 
the program is a sequential composition block. 

f liP(% 4 
int u, v 
int w 

{; 
w -= u ) . , u:= v, u := w 

Declare parameters of program. 
Declare local variables of program. 

Begin sequential composition block. 
Block-list 
End sequential composition block 
and end program. 

Next consider a program j’ with three arguments, 
an integer n, a one-dimensional array x indexed i where 
0 5 i < n, and an index j where 0 < j < n. The pro- 
gram flips x[j - l] and x[j] if they are not in ascending 
order. 

f (n, j, 4 
int n, j, z[n]; 

(x[i - 11 > 4il) -+ f W4j - :Ll, +I) 
Single statement program. 

Next we write programs, SO, 31, 32, each with two 
arguments: n and x where x is an array indexed [0 . . n- 
l], and where the p&condition of each program is that 
x is in ascending order. For purposes of exposition as- 
sume that the elements of x are distinct. 

6.1 Simple Sort 

Fair Composition The simplest sorting routine is to 
repeatedly flip any pair of elements of x that are out of 
order until all pairs are in order. 
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fc(n, 4 
int n,x(n] 
{O<:iinl.,n-1:: (x[i - l] > +I) + flip(z[i - 

? +I) > 

Choice Composition Fair selection is not necessary 
in the last example, and so we can use choice compo- 
sition as shown next. This program flips any pair of 
elements of z that are out of order, and then calls itself. 

{? < i in 1 . . n - 1 :: (x[i - 1) > z[;]) --+ {; flip(s[i - 

;‘, +I), aO(n, 4) 2+ 

Sequential Composition The bubble sort is defined 
in the obvious way using sequential composition. 

{;*tt 1.. n-1,iin l..n-t:: f(n,i,z)>} 

Program as a Set of Equations Next, we give the 
specification of a sort program as a set of equations, 
and then we represent the equations in PCN, using def- 
inition variables. 

Specification The specification employs arrays z 
and y, and states that y is a sort of z. The specification 
uses a local array z indexed t, i where 0 5 t < n + 2. 
The specification of the program is the following set of 
equations: 

ViwhereO<isn-1:: z[O,i]=z[i] 
Vi where 0 5 i < n - 1 :: y[i] = z[n + l,i] 
Vi,twhereO<iSn-1,andwhereOLtLn:: 
z[t + l,i] = min(z[t,i],z[t,i + 1)) if (i - t) mod 2 = 0, 

max(z(t, i], z[t,i - 11) if (i - t) mod 2 # 0 

Program The program is a syntactic transforma- 
tion of the specification: 

definition z[n + 2][n] 

!iinO . . n - 1 :: z[O,C] := +I, 

y[i) := z[n+ 1, j), 
<< t in 0 ,. n :: z[t + l,i] := 

((i - t) mod 2 = 0 -+ min(+, i], z[t, i + I]), 
(i - t) mod 2 # 0 - max(z[t, i], z/t, i - I])) 

Parallel Composition The odd-even transposition 
sort is defined using sequential and parallel composi- 
tion. On every odd step, for all odd i, z[i - I] and 
z[;] are flipped if they are out of order, and on even 
steps the same is done for even i. Thus, on step num- 
ber t, program f(n,i, z) is called for all i such that 
(t -i)mod2 = 0. 

s2(n, 4 
int n,x[n] 
c << t in 0 . . n :: 

{I] <iin . . n :: ((t - i)mod 2 = 0) 
>> 

k 

7 Conclusion 

This very brief paper gives something of an overview of 
PCN. A great deal has been omitted for lack of space. 
DetaiIs can be obtained from the authors. 
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