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Abstract 
Refined Languages (Refined Fortran, Refmed C, etc.) are 
extensions of their parent languages in which it is possible to 
express parallelism, but impossible to create races or 
deadlocks. Where strictly deterministic behavior is desired, 
multiple executions of a Refined Fortran program with the same 
input data can be guaranteed to either compute the same results 
or terminate with the same run-time errors regardless of 
differences in scheduling. Where asynchronous behavior is 
desired, freedom from races can be guaranteed. The Refined 
Languages approach achieves its goal by extending sequential 
imperative programming languages with data- (rather than 
control-) oriented constructs, and by viewing the expression of 
parallelism in data- (rather than control-) oriented terms. 
Earlier versions of Refined Fortran are discussed in [l]-[2]; the 
present work supersedes and extends work reported in these 
earlier publications. 

1. Motivation 
If automatic parallelism detection were always able to 
recognize opportunities for safe parallel execution, then 
parallel algorithms could be coded in sequential languages; no 
parallelism-oriented language constructs would be necessary. 

The major reason that no parallelism detector finds all safe 
parallelism is the tin-resolvability of some of the aliases 
created through the use of array subscripting and pointer 
dereferencing. Neither traditional flow analysis 131, nor array 
subscript analysis [4]-[6], nor pointer analysis [7] resolves all 
relevant aliases, so parallelism-oriented language extensions 
are required. 

2. The Refined Language Approach 
In a Refined Language the programmer specifies potential 
parallel execution of code segments Cl, C2 , . . . , Zr, by writing 

them in such way as to indicate that there are no read/write, 
write/read, or write/write dependences between any two of 
Cl’ c2 , . . . I 2,. 

The Refined Language extensions are nothing more than 
constructs which enable the programmer to provide the 
necessary alias-resolution information to a parallelizing 
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compiler in cases in which it is impossible to do so in the 
parent language. They are used when code contains references 
which the programmer thinks will never be aliases for one 
another, but which automatic parallelism detection techniques 
would be unable to resolve. 

The Refined Language compiler does not, however, take 
the programmer’s word for anything. Before it considers 
generating parallel code, the compiler verifies that if the 
relevant references were never aliases for one another, then 
parallel execution would indeed be safe. If so, and if it decides 
that parallel execution is cost effective, it generates parallel 
code containing run-time checks which result in fatal errors if, 
in fact, those references turn out to be aliases for one another. 

In order to recognize the potential parallelism intended by 
the programmer, a Refined Language compiler performs the 
same code analysis as does a parallelism detector. In the case of 
Refined Language compiling, though, we refer to this analysis 
as paraIIeIism recognition rather than parallelism detection. 

The Refined Language programmer specifies potential 
parallel execution because the Refined Language compiler’s 
back end performs cost/benefit analysis to determine which of 
the parallelism specified by the programmer is cost effective, 
and will, therefore, be exploited. 

The major Refined Language constructs for writing 
synchronous, deterministic parallel code are the PARTITION 
statement and the DISTINCT statement. The bulk of our 
presentation of Refined Fortran will consist of a discussion of 
these two statements. Quite recently, Refined Languages have 
been extended to allow the writing of asynchronous parallel 
code through the use of the atom statement which is very 
briefly presented in [8]. 

Since Refined Fortran is still in the development stage, 
specific details, especially questions of syntax, can be 
expected to change. When the 8X standard is finalized, Refined 
Fortran constructs for dealing with pointers will be introduced. 
In the meantime, the Refined Language approach to dealing 
with pointers may be found in [8]. 

3. The PARTITION Statement 
3.1 Fixed Number of Partition Elements 

Consider the Fortran code for quicksort shown in Figure 3- 
1. The two recursive calls to QUICKSORT may safely be 
executed in parallel with one another, but no parallelism 
detector that we know of will determine that this is the case. 
Inter-procedural subscript analysis gives false positives which 
indicate that no parallelism is possible. 

In Refined Fortran QUICKSORT might be written as in 
Figure 3-2. Since each of the two recursive calls to 
QUICKSORT writes elements of the array A. the programmer 
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SUBROUTINE QUICKSORT(A, LOW, HIGH) 
INTEGER A( 1) 
IhTEGER LOW 
INTEGER HIGH 
INTEGER TEMP 
INTEGER PIVOT 
INTEGER I 
INTEGER J 
PIVOT = A((LOW+HIGH)/2) 
3 = HIGH 
I=LOW 
IF (PIVOT .LT. A(J)) THEN 

J=J-1 
GOT010 

ENDIF 
IF (A(I) .LT. PIVOT) THEN 

I=I+l 
GOT020 

ENDIF 
IF (I .LE. J) THEN 

TEMP = A(1) 
A(I) = A(J) 
A(J) = TEMP 
J=J-1 
I=I+l 

ENDIF 
IF (I .LT. J) GO TO 10 
IF (J .GT. LOW) THEN 

CALL QUICKSORT(AL0W.J) 
ENDIF 
IF (HIGH .GT. I) THEN 

CALL QUICKSORT(A,I,HIGH) 
ENDIF 
RETURN 

END 

10 

20 

yUlCKSUI-r 

Figure 3-l 

indicates that these are intended to be non-overlapping 
subarrays of A. This is accomplished through 

*the use of the PARTITION statement, which 
dynamically gives new names LOWER and 
UPPER to non-overlapping subarrays of array 
A. 

*rewriting the two recursive calls to QUICKSORT 
so that they reference LOWER, and UPPER 
respectiveIy 

The effect of 

PARTITION A(K) (LOWER(K .LE. J), UPPER& .GE. I)) 

is to: 

*rename as LOWER the set of elements, A(K). of 
array A for which the predicate K <= J is true 

*rename as UPPER the set of elements, A(K), of 
array A for which the predicate K <= J is 
false and the predicate K ~1 is true 

In a PARTITION statement. each predicate entails the 
conjunction of the negations of all previous predicates; the 
partition elements (sub-data-structures) defined by these 
predicates are, therefore, guaranteed to be non-overlapping; the 
compiler need perform no work to verify this. 

Note that, in the code of Figure 3-2, a reference to 
LOWER(l) or UPPER(l) is a reference to A(l) -- legal if A(I) is 

within the defined bounds of LOWE’R or UPPER respectively, 
and illegal otherwise. In general, a partition element name is 
simply an access-restricted alias for* the partitioned data 
structure, and can be used anywhere that a reference to the data 
structure is valid. 

If the PARTITZON statement were simply a programmer’s 
assertion which the compiIer were required to trust, then 
freedom from races would in no way be assured. In a Refined 
Language this is emphatically not the case; a PARTITION 
statement, in addition to specifying dynamic renaming of data, 
contains the information which the compiler needs to insert 
run-time checks to guarantee that access violations, should 
they occur, are flagged as fatal run- time errors. 

In the case of QUICKSORT. the PARTITION statement 
indicates that the following run-time checks are necessary: 

*each reference to an element of LOWER, say to 
LOWER(K), must be preceded by a test for 
Kc=J 

*each reference to an element of UPPER, say to 
UPPER(K), must be preceded by a test for 
-T (K<=J)rr (KLZ) 

A failed check results in a fatal run-time error rather than a 
race. The text of the error message indicates exactly where a 
race could have occurred. As QVICKSORT is called recursively, 
the amount of required checking grows logarithmically. It is, 
however, quite simple to optimize these checks to at most a 
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SUBROUTINE QUICKSORT(A, LOW. HIGH) 
INTEGER A(1) 
INTEGER LOW 
INTEGER HIGH 
INTEGER TEMF 
INTEGER PIVOT 
INTEGER I 
INTEGER J 
PARTITION ELEMENTS(LOWER, UPPER) 
yt”,G& A((LOW+HIGH)/‘L) 

I=LOW 
IF (PIVOT .LT. A(J)) THEN 

J=J-1 
GOT020 

ENDIF 
IF (A(I) .LT. PIVOT) THEN 

I=I+ 1 
GOT020 

ENDIF 
IF (I .LE. J) THEN 

TEMP = A(1) 
A(I) = A(J) 
A(J) = TEMP 
J=J- 1 
I=I+l 

ENDIF 
IF (I .LT. J) GO TO 10 
PARTITION A(K) (LOWER(K .LE. J), UPPER(K .GE. I)) 
IF (J .GT. LOW) THEN 

CALL QUICKSORT(LOWER,LOW,J) 
ENDIF 
IF (HIGH .GT. I) THEN 

CALLQUICKSORT(UPPER.I,HIGH) 
ENDIF 
RETURN 

END 

Parallel Quicksort in Refined Fortran 
Figure 3-2 

SUBROUTINE GJRED(A,M,N,K) 
REAL A(M.N) 
DOlOI=l,M 

IF (1.EQ.K) GOT0 10 
DO201= l.N 

A(J,J) = A(1.J) - A(I.J)*(A(K,J)/A(K,K)) 
20 coNrINuE 
10 CONTINUE 

END 

Figure 3-3 
Inner Loops of Gauss Jordan EIimination 

single upper and lower bound check with no loss of 
determinacy . 

Consider, as a second example, the code of Figure 3-3, 
which constitutes the inner loops of Gauss-Jordan elimination. 
The iterations of both the DO 10 and the DO 20 loop may 
safely be executed in parallel with one another. A parallelism 
detector would, however, have a relatively hard time detecting 
that this is the case since the GCD and Bancrjee tests[4], [6] 
result in false depcndences for both loops. 

Most parallelism detectors use the GCD and Banerjee tests 
only to determine whether there is a dependence; they don’t do 
the additional, time-intensive, work of computing the 
solutions of the dependence equations. Doing this extra work 
would reveal that the only dependence is in the case of I = K, 
knowing this, however, is still insufficient. A parallelism 
detector would still have to recognize that the earlier statement 
IF (I.EQ. K) GOT0 10 rules out the case of I = K as an actual 
dependence by eliminating the iteration for I = K. 

A Refined Fortran version of the same parallel algorithm 
is shown in Figure 3-4. 

609 



SUBROUTINE GJRED(A,M,N.K) 
PARTITION ELEMENTS(PIVROW, REST) 
REAL A(M,N) 
PARTITION A(I,J)(REST(I.NE.K), PIVROW) 
DOlOI=l,M 

IP (1.EQ.K) GOT0 10 
DO20J=l,N 

REST(I,J) = REST(I,J) - 
REST(I,J)*(PIVROW(K,J)/PIVROW(K,K)) 

20 CONTINUE 
10 coNTmuE 

END 

Refined Fortran Version of Gauss Jordan Elimination 
Figure 3-4 

S=l 
DO 10 I = 1, LG(N) 

s = 2*s 
DO 20 J = 1, N/S 

X(J*S) = X(J*S) + X(J*S - (S/2)) 
20 CON-I-lNuE 
10 CONTINUE 

Summing the Elements of an Array 
Figure 3-5 

PARTITION ELEMENTS(SEGMENT[]) 

S=l 
DO 10 I = 1, LG(N) 

s = 2*s 
PARTITION X(K) SEGMENT[J] 

((J - l)*S .LT. K .AND. K .LE. J*S), J = 1, N/S) 
DO 20 J = 1, N/S 

SEGMENT[J](J*S) = SEGMENT[J](J*S) 
+ SEGMENT[J](J*S- (S/2)) 

20 CONTINUE 
10 CONTINUE 

Refined Fortran Code 
for Summing the Elements of an Array 

Figure 3-6 

The programmer, “knowing” that there will not be a K-th 
iteration of the DO 10 loop, tells the compiler as much in the 
PARTITION statement by indicating that a reference to 
REST(K,JJ would be illegal for any value of J. (Alternatively, 
the programmer is telling the compiler that should there be a 
K-th iteration, the compiler is to declare a fatal error). The 
compiler, seeing that on the (T,J) iteration of the nest of loops: 

l REST(I,J) is read 
l REST(I,J) is written 
l PIVROW is read -- where PIVROW dots 

not overlap with REST 

recognizes that all iterations of the two loops may be exccutcd 
in parallel with one another. 

3.2. Variable Number of Partition Elements 
In the preceding section we dealt with the partitioning of arrays 
into fixed numbers of partition elements. In the present section 
we consider the case in which the data partitioning which 
justifies an algorithm’s parallel execution involves a run-time- 
decided number of partition elements. 

Consider the code of Figure 3-5 which sums the elements 
of an IV-element one-dimensional array X, leaving the sum in 
X(N): This code utilizes the standard log-time parallel 
algorithm for solving first-order linear recurrences, 
successively dividing the array into halves, quarters, eighths, 
etc.; after each division the individual segments may be 
proccsscd in prdlcl with one anollier, i.e., the iterations of 
the DO 20 loop may bc cxccutcd in parallel with one another. 
As of the moment WC arc aware of a number of automatic 
vcctorizers/parallclizcrs which do not dctcct the indicated 
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SUBROUTINE GAUSS( A, M, N, IROW ) 
REAL A(M,N) 
REAL X(M) 
INTEGER IROW 
DOSI=l,M 

IROW = I 
CONTINUE 

DOlOK=l,M 
BIG=0 
DO20I=K.M 

IF (ABS(A(IROW(I),K)).GT.BIG) THEN 
BIG = ABS(A(IROW(I),K)) 
IBIG = I 

ENDIF 
CONTINUE 
*******************t*** 
swap IRO W(BIG) and IROW 
*********************** 
1TEMP = IROW(IBIG) 
IROW(IBIG) = IROW 
IROW =‘ITEMP . . 
************************ 
PIVOT = A(IROW(K),K) 
A(IROW(K),K) = 1.0 
DO40J=K+l,N 

A(IROW(K),J) = A(IROW(K),J) / PIVOT 
CONTINUE 
DOSOI=K+l,M 

X(1) = A(IROW(I),K) 
A(IROW(I),K) = 0.0 
DO60J=K+l,N 

A(IROW(I),J) = A(IROW(I),J) - X(1) * A(IROW(K),J) 
CONTINUE 

CONTINUE 
CONTINUE 

Gaussian Elimination with Partial Pivoting 
Figure 4-l 

parallelism, and unaware of any automatic vectorizer / 
parallelizer which does; the problem is that, without taking 
into account the way in which the value of S varies from 
iteration to iteration, the GCD and Banerjee tests report non- 
existent dependences. While a parallelism detector could 
attempt to trace the sets of possible values of all variables 
occurring in subscript expressions, possibly through the use of 
symbolic execution, it is not clear that the attempt would 
succeed sufficiently frequently to justify the apparently 
enormous compile-time overhead. 

Figure 3-6 shows Refined Fortran code for the parallel 
array summation algorithm. On each iteration of the DO 10 
loop, array X is partitioned into the number of segments 
appropriate to that iteration through the use of an implied-do- 
loop style PARTITION statement. Since the J-th iteration of 
the DO 20 loop references only SEGMENT[J], the Refined 
Fortran compiler recognizes that all iterations may be executed 
in parallel with one another. 

Note that, unlike the situation in the QUICKSORT code, 
the repeated partitioning of array X in the current code is not an 
instance of partition refinement. In QUICKSORT the initial 
partition is successively refined at each level of the recursion 
after the first because a partition element (LOWER or UPPER) is 
being partitioned. In the current code it is the entire array X 
which is being re-partitioned on each iteration of the DO IO 
loop rather than a partition element created on the previous 

iteration. In fact, each partitioning of array X is actually a 
coarsening of the previous partitioning. Run-time overhead 
can be optimized to at most a lower and upper bounds check per 
array reference. 

4. The DISTINCT Statement 
The attribute of memory locations which is of primary interest 
where parallelism is concerned is disjointness. If the members 
of a collection of memory locations are pairwise disjoint, then 
they may be processed in parallel with one another. 

If we think in terms of the addresses of those memory 
locations rather than in terms of the locations themselves, 
then the attribute of primary interest becomes dishctness. If 
addresses cx 1’ a23 ... 1 ak are pairwise distinct, then the 

memory locations which they refer to are pairwise disjoint. 
In a Refined Language the programmer is able to declare a 

set of values pairwise distinct within a defined scope. As with 
the partitioning of data, the declaration of distinctness is 
verifiable through a combination of static and run-time checks. 
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SUBROUTINE GAUSS( A, M, N. IROW ) 
REAL A(M,N) 
REAL X(M) 
INTEGER IROW 
PARTITION ELEMENTS(PIVROW, REST) 
DISTINCT ROW-INDEX(IROW(1) = I, I = l,M) 
DOlOK=l,M 

BIG=0 
DO20I=K,M 

IF (ABS(A(IROW(I),K)).GT.BIG) THEN 
BIG = ABS(A(IROW(I).K)) 
IBIG = I 

ENDIF 
20 CONTINUE 

SWAP(IROW(IBIG), IROW( 
PIVOT = A(IROW(K),K) 
A(IROW(K),K) = 1.0 
DO40J=K+l.N 

A(IROW(K),J) = A(IROW(K),J) / PIVOT 
40 CONTINUE 

PARTITION A(I,J)(REST(I.NE.IROW(K)),PIVROW) 
DO50I=K+l,M 

X(1) = REST(IROW(I),K) 
REST(IROW(I),K) = 0.0 
DO60J=K+l,N 

REST(IROW(I)J) = REST(IROW(I),J) 
- X(I) * PIVROW(IROW(K),J) 

:i 
CONTINUE 

CONTINUE 
10 CONTINUE 

END DISTINCT ROW-INDEX 
END 

Refined Fortran Code for 
Gaussian Elimination with Partial Pivoting 

Figure 4-2 

SUBROUTINE GAUSS( A, M, N, IROW, JCOL ) 
REAL A(M,N) 
INTEGER IROW 
INTEGER JCOL(N) 
PARTITION ELEMENTS(PIVROW, REST) 
DISTINCT ROW-INDEX(IROW(1) = I, I = l,M) 
DISTINCT COL-INDEX(JCOL(J) = J, J = 1, N) 

SWAP(IROti(IBIG), IROW( 
SWAP(JCOL(JBIG), JCOL(K)) 
PARTITION A(I,J)(REST(I.NE.IROW(K)),PIVROW) 
DOSOI=K+l,M 

X(I) = REST(IROW(I),JCOL(K)) 
REST(IROW(I),JCOL(K)) = 0.0 
DO60J=K+l,N 

REST(IROW(I),JCOL(J)) = REST(IROW(I),JCOL(J)) 
- X(I) * PIVROW(lROW(K),JCOL(J)) 

2: 
CONTINUE 

CONTINUE 
END DISTINCT COL-INDEX 
END DISTINCT ROW-INDEX 

END 

Refined Fortran Code for 
Gaussian Elimination with Full Pivoting 

Figure 4-3 
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Any of the following may be declared distinct through the 
use of a DISTINCT statement: 

*the values (contents) of a collection of scalar variables, 
e.g. 
*DISTINCT 

<identifer>(AZ, A2, . . . , Ak, 

*the values (contents) of the elements of an array along all 
or part of one dimension, e.g. 
*DISTINCT 

<identifier>(B(Z), I = II, I,), where ZZ . .Z2 is 

either part or all of B’s extent 
l DISTZNCT 

<identifier>(C(Z,J), J = JZ, J2) where JI..J2 is 

either all or part of C’s extent along its second 
dimension 

*the values (contents) of the elements of an array along all 
or part of two or more dimensions, e.g. 
l DZSTZNCT <identifier> 

((D(Z j,K), I = II, 12). K = KI, K2)) where Z1..Z2 

is either part or all of D’s extent along its first 
dimension, and KZ..K2 is either all or part of D’s 

extent along its third dimension 

The effect of a DISTINCT statement which declares distinct 
the contents of a collection of memory locations 
al, a2, . . . , ak is the insertion of code to check that ai # a. 

J 
for i # j, 1 <= i,j cc= k. A failed check results in a fatal error. 

The scope of a DISTINCT statement extends from the 
statement itself to the corresponding END DISTINCT 
statement. Because declarations of distinctness need not be 
properly nested, DISTINCT statements are named in order to 
enable matching of DISTINCT declarations with END 
DISTINCT declarations. 

If, at any point between a DISTINCT statement and the 
corresponding END DISTINCT. any ai is written, code is 

inserted immmediately after the write to check that ai f aj for i 

# j, 1 <= j <= k. A failed check results in a fatal error. 
If the number of memory locations whose contents are 

declared distinct is relatively small, then the checking 
overhead is not excessive. If. on the other hand, the number of 
memory locations is any greater than “relatively small,” then 
the amount of checking required can easily get out of hand, 
unless it can be optimized out. 

If we step back for a moment to survey what we have been 
doing with the PARTITION and DISTINCT constructs, we see 
that, at least informally, the appropriate “data structure” for 
writing parallel code is the sef: a list of objects containing no 
repeated objects. Rather than introduce the set, with its likely 
attendent overhead as an actual data structure, we continue to 
use Fortran’s’s intrinsic data structures in writing code, and 
introduce constructs to inform the compiler of the data’s sef- 
like nature; we thus make use of the set as the conceptual data 
structure and implement it using (hopefully) efficient intrinsic 
data structures. 

When, for whatever reasons, the implementation data 
structure must be modified, the Refined Language compiler must 
be informed, in a verifiable fashion, that it retains its set-like 
properties. For this purpose, Refined Fortran contains a small 
number of intrinsic functions such as the SWAP function 
employed in the following example. 

Consider the code of Figure 4-1, which performs Gaussian 
elimination with partial pivoting. 

On each iteration of the DO 10 loop, that row of A which 
has not yet been used as the pivot row, and whose pivot column 
element is the largest among all such rows is chosen as the 
pivot row. As each pivot row is chosen, it is moved upward in 
array A, so that at the end those rows which have been used as 
pivot row appear in the order in which they were so used. In the 
above code rows are not actually moved. Rather, elements of 
ZROW are swapped to reflect the desired movement of rows. 

In order to recognize the fact that the DO 40, DO 50 and 
DO 60 loops may be parallelized it is necessary to see that the 
values of ZROW(l), IROW( . . . , IROW are pairwise 
distinct, and that, as a result, memory locations 
A(ZROW(I)), A(ZROW(2)), . . . , A(ZROW(M)) are disjoint. The 
reason they are is that: 

*they are initialized to 1, 2, . . . , M respectively 
in the DO 5 loop 

*the only write to any element of ZROW is a part 
of a swap of two elements of IROW 

In the particular case of the code of Figure 4-1, if a 
parallelism detector “knew” to look for distinctness of the 
elements of IROW, it might determine initial distinctness by 
examining the DO S loop. It would be more difficult to 
recognize the swap which preserves distinctness. 

Figure 4-2 shows Refined Fortran code in which the 
programmer has indicated distinctness in a verifiable manner. 
The DISTINCT statement indicates to the compiler that the 
elements of IROW are intended to be distinct, and initializes 
them in such way that the compiler can determine, with very 
little effort, that they are initially distinct. The fact that 
swapping of elements of IROW is accomplished via a call to 
the intrinsic function SWAP enables the compiler to determine 
that they remain distinct, and to parallelize the DO 40. DO 50, 
and DO 60 loops. 

The case of Gaussian elimination with full pivoting, in 
which both rows and columns are swapped is shown in Figure 
4-3. 

The DISTINCT statement, like many conventional 
constructs, gives the programmer the power to create 
arbitrarily large amounts of overhead. Its intended use is in 
cases in which there is little or no overhead. The initialization 
of variables within the DISTINCT statement, together with the 
introduction of a small number of functions such as SWAP, 
makes the desired reduction of overhead -- to zero -- possible in 
a large variety of actual codes. 

5. Odds and Ends 
In a short presentation such as this, many questions are raised 
whose answers cannot, due to space limitations, be 
immediately answered. In the case of the present discussion of 
Refined Fortran, the list includes at least the following items: 

*formal specification of the syntax/semantics of Refined 
Fortran extensions (but see Appendix A) 

*specifics of the optimization of run-time partition- 
element membership checking and distinctness 
checking 

*directives to override the compiler’s decisions as to which 
potential parallelism is to be exploited and which not 

All of these questions, and many additional ones, have been 
considered, and will be answered in subsequent publications. 

6. Conclusions 
The Refined Language approach makes no claim to simplifying 
or automating the process of designing novel parallel 
algorithms or that of parallelizing existing sequential 
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algorithms which are not automatically parallelizable. These 
remain (sometimes) difficult intellectual tasks, of the same 
nature as the by-now-better-understood task of designing and 
debugging sequential algorithms/programs. 

What it does simplify is the task of debugging and 
maintaining parallel code. Moreover. it does so without greatly 
complicating the task of the programmer. Conceptual 
“partitioning” of data structures is a fundamental aspect of the 
design of parallel algorithms. The programmer who has 
designed a parallel algorithm or understood someone else’s 
design understands this “partitioning” perfectly well, but 
neither conventional programming languages nor their 
control-parallelism-extended dialects provide the programmer 
with a means to tell the compiler about it. 

Refined Languages enable the programmer to give the 
compiler information, already known to the programmer, 
which the compiler can use to determine if parallelization is 
actually justified, and to generate debuggable parallel code 
when the safety of parallelization is conditional upon factors 
determinable only at run time. 

In most cases of actual codes, we have been able to reduce 
checking, where it is required, to at most an upper bound and a 
lower bound check. Even if this amount of checking is 
objectionable, though, the Refined Language approach can be 
used as a debugging aid. As either a compilation or a run-time 
option, checks can be turned off. If an anomaly is perceived on 
an execution with a particular data set, checks can be turned 
back on, and the code rerun. 

The annotation provided by the programmer through the 
use of Refined Language constructs can be just as useful to the 
reader as to the compiler. Writing a parallel algorithm in a 
Refined Language can render the algorithm far more 
understandable to the human reader than would be a control- 
parallelism extended representation; the former contains 
explicit justification of the intended parallel execution. 
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Appendix: Partition Statement 
A-l. Declaration, Scope, and; Invocation 

If data is to be partitioned, the names of the partition 
elements must first be declared in a PARTITION ELEMENTS 
statement. Names of partition elements may not appear in 
COMMON or EQUIVALENCE statements. 

Withii a subprogram, a particul.ar name may be used in 
only one PARTITION ELEMENTS declaration. The following, 
therefore, constitutes a compile-time error: 

PARTITION ELEMENTS(X,Y) 
PARTITION ELEMENTS(V,Y) 

A partition is activated through the execution of a 
PARTITION statement, which specifies defining predicates for 
a list of partition elements which have previously been 
declared in a single PARTITION ELEMENTS statement. A 
partition remains in effect until either the end of the scope of 
the partition elements’ names or the invocation of a different 
partition which utilizes the same set of partition elements. 
Thus, in the code of Figure Al the first partition remains in 
effect until the second PARTITION statement is executed. 

PARTITION ELEMENTS(B.C) 

PARTlTIOti A(K)(B( “II). C( Q)) 
. 

STRAIGHTLJNE CODE . 

Re-Partitioning of an Array 
Figure Al 

Multiple partitions of the same data structure involving 
different sets of partition elements may be in effect 
concurrently. Thus, in the code of Figure A2 after both 
PARTITION statements have been executed, B,C,D, and E are 
all legal names for parts of A. The Refined Language compiler 
understands that B and C are disjoint, that D and E are disjoint, 
and that, for example, B and D need not be. 

PAR’lTlTON ELEMENTS&C) 
PARTITION ELEMENTS(D,E) 

I PAR’m-ION AW)(B( q I), CC “12)) 

I STRAIGHT LINE CODE 

PARTITION A(K)(D( n21), E( ‘~2~) 

I 

Multiple Concurrent Partitions of an Arl 
Figure A2 

‘Y 

The same set of partition element names may be used to 
partition different data structures. The code of Figure A3 is, 
therefore, legal. References to the different A’s and the 
different B’s are disambiguatcd by referencing them as X.A, and 
Y.A or X.B and Y.B respectively. 
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PARTITION ELEMENTS(A,B) 

PARTITION XW(A( yl), Bb12)l 
. 

STRAIGHTUNEGODE 

I PARTITION Y(K)(A( x21 ), B( 7r22) 

I I 

Partitions of Different Arrays 
Using Same Partition Element Names 

Figure A3 

A data structure may be partitioned differently on different 
arms of a conditional. Thus, in the code of Figure A4 whichever 
partitioning of A was actually executed will be in effect 
immediately following the ENDZF. 

PARTITION ELEMENTS(FIRST, LAST) 

INTEGER A(50) 

IF(X=O) ’ 
THEN PARTITION A(K)(FIRST(K .LE. 25). LAST) 
ELSE PARTITION A(K)(FIRST(K .LE. 40), LAST) 

ENDIF 

Alternative Partitionings of an Array 
on Alternate Arms of a Conditional 

Figure A4 

If a partition element is referenced, but no partition which 
uses it is in effect, the result is a fatal error. The code of Figure 
A5 results in a run-time fatal error if the THEN arm of the 
conditional is executed, and A has not previously been 
partitioned into LOW and HIGH. 

PARTITION ELEMENTS(FIRST, LAST) 
PARTITION ELEMENTS(LOW, HIGH) 

. 

INTEGER A(50) 

IF & = 0) 
THEN PARTITION A(K)(FIRST(K .LE. 25), LAST) 
ELSE PARTITION A(K)(LOW(K .LE. 40). HIGH) 

ENDIF 

STRAIGHTUNEGODE 

LOW(M) = 33 

Potential Reference to an Inactive Partition 
Figure A5 

Figure A6 B would consist of A(1) thru A(24). and C would 
consist of A(25) thru A(50), while in the code of Figure A7 B 
would consist of A(l), and C would consist of A(2) thru A(50). 

PARTITION ELEMENTS(B,C) 
INTEGER A(50) 

J=25 . 
PARTITION A(K)(B(K .LT. J), C) 

Illustration of Evaluation of Partition Predicate 
Figure A6 

Illustration of Evaluation of Partition Predicate 
Figure A7 

PARTITION ELEMENTS(l3,C) 
INTEGER A(50) 

J=2 ’ 
PARTITION A(K)(B(K .LT. J), C) 

The partition elements into which a data structure is 
partitioned need not be contiguous in the original data 
structure. Thus, in the code of Figure A8 EVEN consists of the 
even-numbered elements of A, and ODD consists of the odd- 
numbered elements. 

PARTITION ELEMENTS(l3.C) 
INTEGER A(50) 

PARTITION A(K)(EVEN((K/2)*K = K), ODD) 

Non-Contiguous Partition Elements 
Figure A8 

After an array has been partitioned, members of the 
partition elements are referenced in the same way as elements 
of the original array. In the QUICKSORT code, for example, a 
reference to UPPER(l) is a reference to A(1) -- legal if 1 satisfies 
the predicate which defies UPPER, and illegal otherwise. 

Partitions are invoked dynamically and can be refined 
dynamically, i.e., a partitioned data structure can be further 
partitioned. In the QUICKSORT code, for example, the 
partition element UPPER defined at one level of recursion is 
further partitioned into UPPER and LOWER at the next level of 
recursion. 

Finally, a Refined Language partition need not be a 
partition in the formal sense. Formally, the elements of a 
partition must be non-empty, must be pairwise disjoint, and 
must exhaust the set which they partition. The elements of a 
Refined Language partition need only be pairwise disjoint; 
empty partition elements are allowed as is a set of partition 
elements which do not exhaust the data structure which they 
partition. If a partition element is empty. then any reference to 
it results in an error. 

A-2. Partition Predicates 
The values of variables used in evaluating partitioning 
predicates are the values of those variables immediately before 
the PARTITION statement is executed. Thus. in the code of 
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