
Refined Fortran: An Update

David Klappholz
Xiangyun Kong

Apostolos D. Kallis

Department of Electrical Engineerlng and Computer Science
Stevens Institute of Technology

Castle Point Station
Hohoken, NJ 07030

201-420-5509
klapphol@cse.ogc.edu

Abstract
Refined Languages (Refined Fortran, Refmed C, etc.) are
extensions of their parent languages in which it is possible to
express parallelism, but impossible to create races or
deadlocks. Where strictly deterministic behavior is desired,
multiple executions of a Refined Fortran program with the same
input data can be guaranteed to either compute the same results
or terminate with the same run-time errors regardless of
differences in scheduling. Where asynchronous behavior is
desired, freedom from races can be guaranteed. The Refined
Languages approach achieves its goal by extending sequential
imperative programming languages with data- (rather than
control-) oriented constructs, and by viewing the expression of
parallelism in data- (rather than control-) oriented terms.
Earlier versions of Refined Fortran are discussed in [l]-[2]; the
present work supersedes and extends work reported in these
earlier publications.

1. Motivation
If automatic parallelism detection were always able to
recognize opportunities for safe parallel execution, then
parallel algorithms could be coded in sequential languages; no
parallelism-oriented language constructs would be necessary.

The major reason that no parallelism detector finds all safe
parallelism is the tin-resolvability of some of the aliases
created through the use of array subscripting and pointer
dereferencing. Neither traditional flow analysis 131, nor array
subscript analysis [4]-[6], nor pointer analysis [7] resolves all
relevant aliases, so parallelism-oriented language extensions
are required.

2. The Refined Language Approach
In a Refined Language the programmer specifies potential
parallel execution of code segments Cl, C2 , . . . , Zr, by writing

them in such way as to indicate that there are no read/write,
write/read, or write/write dependences between any two of
Cl’ c2 , . . . I 2,.

The Refined Language extensions are nothing more than
constructs which enable the programmer to provide the
necessary alias-resolution information to a parallelizing

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. TO copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-341-8/89/001 l/O607 $1.50

compiler in cases in which it is impossible to do so in the
parent language. They are used when code contains references
which the programmer thinks will never be aliases for one
another, but which automatic parallelism detection techniques
would be unable to resolve.

The Refined Language compiler does not, however, take
the programmer’s word for anything. Before it considers
generating parallel code, the compiler verifies that if the
relevant references were never aliases for one another, then
parallel execution would indeed be safe. If so, and if it decides
that parallel execution is cost effective, it generates parallel
code containing run-time checks which result in fatal errors if,
in fact, those references turn out to be aliases for one another.

In order to recognize the potential parallelism intended by
the programmer, a Refined Language compiler performs the
same code analysis as does a parallelism detector. In the case of
Refined Language compiling, though, we refer to this analysis
as paraIIeIism recognition rather than parallelism detection.

The Refined Language programmer specifies potential
parallel execution because the Refined Language compiler’s
back end performs cost/benefit analysis to determine which of
the parallelism specified by the programmer is cost effective,
and will, therefore, be exploited.

The major Refined Language constructs for writing
synchronous, deterministic parallel code are the PARTITION
statement and the DISTINCT statement. The bulk of our
presentation of Refined Fortran will consist of a discussion of
these two statements. Quite recently, Refined Languages have
been extended to allow the writing of asynchronous parallel
code through the use of the atom statement which is very
briefly presented in [8].

Since Refined Fortran is still in the development stage,
specific details, especially questions of syntax, can be
expected to change. When the 8X standard is finalized, Refined
Fortran constructs for dealing with pointers will be introduced.
In the meantime, the Refined Language approach to dealing
with pointers may be found in [8].

3. The PARTITION Statement
3.1 Fixed Number of Partition Elements

Consider the Fortran code for quicksort shown in Figure 3-
1. The two recursive calls to QUICKSORT may safely be
executed in parallel with one another, but no parallelism
detector that we know of will determine that this is the case.
Inter-procedural subscript analysis gives false positives which
indicate that no parallelism is possible.

In Refined Fortran QUICKSORT might be written as in
Figure 3-2. Since each of the two recursive calls to
QUICKSORT writes elements of the array A. the programmer

607

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76263.76332&domain=pdf&date_stamp=1989-08-01

SUBROUTINE QUICKSORT(A, LOW, HIGH)
INTEGER A(1)
IhTEGER LOW
INTEGER HIGH
INTEGER TEMP
INTEGER PIVOT
INTEGER I
INTEGER J
PIVOT = A((LOW+HIGH)/2)
3 = HIGH
I=LOW
IF (PIVOT .LT. A(J)) THEN

J=J-1
GOT010

ENDIF
IF (A(I) .LT. PIVOT) THEN

I=I+l
GOT020

ENDIF
IF (I .LE. J) THEN

TEMP = A(1)
A(I) = A(J)
A(J) = TEMP
J=J-1
I=I+l

ENDIF
IF (I .LT. J) GO TO 10
IF (J .GT. LOW) THEN

CALL QUICKSORT(AL0W.J)
ENDIF
IF (HIGH .GT. I) THEN

CALL QUICKSORT(A,I,HIGH)
ENDIF
RETURN

END

10

20

yUlCKSUI-r

Figure 3-l

indicates that these are intended to be non-overlapping
subarrays of A. This is accomplished through

*the use of the PARTITION statement, which
dynamically gives new names LOWER and
UPPER to non-overlapping subarrays of array
A.

*rewriting the two recursive calls to QUICKSORT
so that they reference LOWER, and UPPER
respectiveIy

The effect of

PARTITION A(K) (LOWER(K .LE. J), UPPER& .GE. I))

is to:

*rename as LOWER the set of elements, A(K). of
array A for which the predicate K <= J is true

*rename as UPPER the set of elements, A(K), of
array A for which the predicate K <= J is
false and the predicate K ~1 is true

In a PARTITION statement. each predicate entails the
conjunction of the negations of all previous predicates; the
partition elements (sub-data-structures) defined by these
predicates are, therefore, guaranteed to be non-overlapping; the
compiler need perform no work to verify this.

Note that, in the code of Figure 3-2, a reference to
LOWER(l) or UPPER(l) is a reference to A(l) -- legal if A(I) is

within the defined bounds of LOWE’R or UPPER respectively,
and illegal otherwise. In general, a partition element name is
simply an access-restricted alias for* the partitioned data
structure, and can be used anywhere that a reference to the data
structure is valid.

If the PARTITZON statement were simply a programmer’s
assertion which the compiIer were required to trust, then
freedom from races would in no way be assured. In a Refined
Language this is emphatically not the case; a PARTITION
statement, in addition to specifying dynamic renaming of data,
contains the information which the compiler needs to insert
run-time checks to guarantee that access violations, should
they occur, are flagged as fatal run- time errors.

In the case of QUICKSORT. the PARTITION statement
indicates that the following run-time checks are necessary:

*each reference to an element of LOWER, say to
LOWER(K), must be preceded by a test for
Kc=J

*each reference to an element of UPPER, say to
UPPER(K), must be preceded by a test for
-T (K<=J)rr (KLZ)

A failed check results in a fatal run-time error rather than a
race. The text of the error message indicates exactly where a
race could have occurred. As QVICKSORT is called recursively,
the amount of required checking grows logarithmically. It is,
however, quite simple to optimize these checks to at most a

608

10

20

SUBROUTINE QUICKSORT(A, LOW. HIGH)
INTEGER A(1)
INTEGER LOW
INTEGER HIGH
INTEGER TEMF
INTEGER PIVOT
INTEGER I
INTEGER J
PARTITION ELEMENTS(LOWER, UPPER)
yt”,G& A((LOW+HIGH)/‘L)

I=LOW
IF (PIVOT .LT. A(J)) THEN

J=J-1
GOT020

ENDIF
IF (A(I) .LT. PIVOT) THEN

I=I+ 1
GOT020

ENDIF
IF (I .LE. J) THEN

TEMP = A(1)
A(I) = A(J)
A(J) = TEMP
J=J- 1
I=I+l

ENDIF
IF (I .LT. J) GO TO 10
PARTITION A(K) (LOWER(K .LE. J), UPPER(K .GE. I))
IF (J .GT. LOW) THEN

CALL QUICKSORT(LOWER,LOW,J)
ENDIF
IF (HIGH .GT. I) THEN

CALLQUICKSORT(UPPER.I,HIGH)
ENDIF
RETURN

END

Parallel Quicksort in Refined Fortran
Figure 3-2

SUBROUTINE GJRED(A,M,N,K)
REAL A(M.N)
DOlOI=l,M

IF (1.EQ.K) GOT0 10
DO201= l.N

A(J,J) = A(1.J) - A(I.J)*(A(K,J)/A(K,K))
20 coNrINuE
10 CONTINUE

END

Figure 3-3
Inner Loops of Gauss Jordan EIimination

single upper and lower bound check with no loss of
determinacy .

Consider, as a second example, the code of Figure 3-3,
which constitutes the inner loops of Gauss-Jordan elimination.
The iterations of both the DO 10 and the DO 20 loop may
safely be executed in parallel with one another. A parallelism
detector would, however, have a relatively hard time detecting
that this is the case since the GCD and Bancrjee tests[4], [6]
result in false depcndences for both loops.

Most parallelism detectors use the GCD and Banerjee tests
only to determine whether there is a dependence; they don’t do
the additional, time-intensive, work of computing the
solutions of the dependence equations. Doing this extra work
would reveal that the only dependence is in the case of I = K,
knowing this, however, is still insufficient. A parallelism
detector would still have to recognize that the earlier statement
IF (I.EQ. K) GOT0 10 rules out the case of I = K as an actual
dependence by eliminating the iteration for I = K.

A Refined Fortran version of the same parallel algorithm
is shown in Figure 3-4.

609

SUBROUTINE GJRED(A,M,N.K)
PARTITION ELEMENTS(PIVROW, REST)
REAL A(M,N)
PARTITION A(I,J)(REST(I.NE.K), PIVROW)
DOlOI=l,M

IP (1.EQ.K) GOT0 10
DO20J=l,N

REST(I,J) = REST(I,J) -
REST(I,J)*(PIVROW(K,J)/PIVROW(K,K))

20 CONTINUE
10 coNTmuE

END

Refined Fortran Version of Gauss Jordan Elimination
Figure 3-4

S=l
DO 10 I = 1, LG(N)

s = 2*s
DO 20 J = 1, N/S

X(J*S) = X(J*S) + X(J*S - (S/2))
20 CON-I-lNuE
10 CONTINUE

Summing the Elements of an Array
Figure 3-5

PARTITION ELEMENTS(SEGMENT[])

S=l
DO 10 I = 1, LG(N)

s = 2*s
PARTITION X(K) SEGMENT[J]

((J - l)*S .LT. K .AND. K .LE. J*S), J = 1, N/S)
DO 20 J = 1, N/S

SEGMENT[J](J*S) = SEGMENT[J](J*S)
+ SEGMENT[J](J*S- (S/2))

20 CONTINUE
10 CONTINUE

Refined Fortran Code
for Summing the Elements of an Array

Figure 3-6

The programmer, “knowing” that there will not be a K-th
iteration of the DO 10 loop, tells the compiler as much in the
PARTITION statement by indicating that a reference to
REST(K,JJ would be illegal for any value of J. (Alternatively,
the programmer is telling the compiler that should there be a
K-th iteration, the compiler is to declare a fatal error). The
compiler, seeing that on the (T,J) iteration of the nest of loops:

l REST(I,J) is read
l REST(I,J) is written
l PIVROW is read -- where PIVROW dots

not overlap with REST

recognizes that all iterations of the two loops may be exccutcd
in parallel with one another.

3.2. Variable Number of Partition Elements
In the preceding section we dealt with the partitioning of arrays
into fixed numbers of partition elements. In the present section
we consider the case in which the data partitioning which
justifies an algorithm’s parallel execution involves a run-time-
decided number of partition elements.

Consider the code of Figure 3-5 which sums the elements
of an IV-element one-dimensional array X, leaving the sum in
X(N): This code utilizes the standard log-time parallel
algorithm for solving first-order linear recurrences,
successively dividing the array into halves, quarters, eighths,
etc.; after each division the individual segments may be
proccsscd in prdlcl with one anollier, i.e., the iterations of
the DO 20 loop may bc cxccutcd in parallel with one another.
As of the moment WC arc aware of a number of automatic
vcctorizers/parallclizcrs which do not dctcct the indicated

610

5

20
C
C
C

C

40

::
10

SUBROUTINE GAUSS(A, M, N, IROW)
REAL A(M,N)
REAL X(M)
INTEGER IROW
DOSI=l,M

IROW = I
CONTINUE

DOlOK=l,M
BIG=0
DO20I=K.M

IF (ABS(A(IROW(I),K)).GT.BIG) THEN
BIG = ABS(A(IROW(I),K))
IBIG = I

ENDIF
CONTINUE
*******************t***
swap IRO W(BIG) and IROW

1TEMP = IROW(IBIG)
IROW(IBIG) = IROW
IROW =‘ITEMP . .

PIVOT = A(IROW(K),K)
A(IROW(K),K) = 1.0
DO40J=K+l,N

A(IROW(K),J) = A(IROW(K),J) / PIVOT
CONTINUE
DOSOI=K+l,M

X(1) = A(IROW(I),K)
A(IROW(I),K) = 0.0
DO60J=K+l,N

A(IROW(I),J) = A(IROW(I),J) - X(1) * A(IROW(K),J)
CONTINUE

CONTINUE
CONTINUE

Gaussian Elimination with Partial Pivoting
Figure 4-l

parallelism, and unaware of any automatic vectorizer /
parallelizer which does; the problem is that, without taking
into account the way in which the value of S varies from
iteration to iteration, the GCD and Banerjee tests report non-
existent dependences. While a parallelism detector could
attempt to trace the sets of possible values of all variables
occurring in subscript expressions, possibly through the use of
symbolic execution, it is not clear that the attempt would
succeed sufficiently frequently to justify the apparently
enormous compile-time overhead.

Figure 3-6 shows Refined Fortran code for the parallel
array summation algorithm. On each iteration of the DO 10
loop, array X is partitioned into the number of segments
appropriate to that iteration through the use of an implied-do-
loop style PARTITION statement. Since the J-th iteration of
the DO 20 loop references only SEGMENT[J], the Refined
Fortran compiler recognizes that all iterations may be executed
in parallel with one another.

Note that, unlike the situation in the QUICKSORT code,
the repeated partitioning of array X in the current code is not an
instance of partition refinement. In QUICKSORT the initial
partition is successively refined at each level of the recursion
after the first because a partition element (LOWER or UPPER) is
being partitioned. In the current code it is the entire array X
which is being re-partitioned on each iteration of the DO IO
loop rather than a partition element created on the previous

iteration. In fact, each partitioning of array X is actually a
coarsening of the previous partitioning. Run-time overhead
can be optimized to at most a lower and upper bounds check per
array reference.

4. The DISTINCT Statement
The attribute of memory locations which is of primary interest
where parallelism is concerned is disjointness. If the members
of a collection of memory locations are pairwise disjoint, then
they may be processed in parallel with one another.

If we think in terms of the addresses of those memory
locations rather than in terms of the locations themselves,
then the attribute of primary interest becomes dishctness. If
addresses cx 1’ a23 ... 1 ak are pairwise distinct, then the

memory locations which they refer to are pairwise disjoint.
In a Refined Language the programmer is able to declare a

set of values pairwise distinct within a defined scope. As with
the partitioning of data, the declaration of distinctness is
verifiable through a combination of static and run-time checks.

611

SUBROUTINE GAUSS(A, M, N. IROW)
REAL A(M,N)
REAL X(M)
INTEGER IROW
PARTITION ELEMENTS(PIVROW, REST)
DISTINCT ROW-INDEX(IROW(1) = I, I = l,M)
DOlOK=l,M

BIG=0
DO20I=K,M

IF (ABS(A(IROW(I),K)).GT.BIG) THEN
BIG = ABS(A(IROW(I).K))
IBIG = I

ENDIF
20 CONTINUE

SWAP(IROW(IBIG), IROW(
PIVOT = A(IROW(K),K)
A(IROW(K),K) = 1.0
DO40J=K+l.N

A(IROW(K),J) = A(IROW(K),J) / PIVOT
40 CONTINUE

PARTITION A(I,J)(REST(I.NE.IROW(K)),PIVROW)
DO50I=K+l,M

X(1) = REST(IROW(I),K)
REST(IROW(I),K) = 0.0
DO60J=K+l,N

REST(IROW(I)J) = REST(IROW(I),J)
- X(I) * PIVROW(IROW(K),J)

:i
CONTINUE

CONTINUE
10 CONTINUE

END DISTINCT ROW-INDEX
END

Refined Fortran Code for
Gaussian Elimination with Partial Pivoting

Figure 4-2

SUBROUTINE GAUSS(A, M, N, IROW, JCOL)
REAL A(M,N)
INTEGER IROW
INTEGER JCOL(N)
PARTITION ELEMENTS(PIVROW, REST)
DISTINCT ROW-INDEX(IROW(1) = I, I = l,M)
DISTINCT COL-INDEX(JCOL(J) = J, J = 1, N)

SWAP(IROti(IBIG), IROW(
SWAP(JCOL(JBIG), JCOL(K))
PARTITION A(I,J)(REST(I.NE.IROW(K)),PIVROW)
DOSOI=K+l,M

X(I) = REST(IROW(I),JCOL(K))
REST(IROW(I),JCOL(K)) = 0.0
DO60J=K+l,N

REST(IROW(I),JCOL(J)) = REST(IROW(I),JCOL(J))
- X(I) * PIVROW(lROW(K),JCOL(J))

2:
CONTINUE

CONTINUE
END DISTINCT COL-INDEX
END DISTINCT ROW-INDEX

END

Refined Fortran Code for
Gaussian Elimination with Full Pivoting

Figure 4-3

612

Any of the following may be declared distinct through the
use of a DISTINCT statement:

*the values (contents) of a collection of scalar variables,
e.g.
*DISTINCT

<identifer>(AZ, A2, . . . , Ak,

*the values (contents) of the elements of an array along all
or part of one dimension, e.g.
*DISTINCT

<identifier>(B(Z), I = II, I,), where ZZ . .Z2 is

either part or all of B’s extent
l DISTZNCT

<identifier>(C(Z,J), J = JZ, J2) where JI..J2 is

either all or part of C’s extent along its second
dimension

*the values (contents) of the elements of an array along all
or part of two or more dimensions, e.g.
l DZSTZNCT <identifier>

((D(Z j,K), I = II, 12). K = KI, K2)) where Z1..Z2

is either part or all of D’s extent along its first
dimension, and KZ..K2 is either all or part of D’s

extent along its third dimension

The effect of a DISTINCT statement which declares distinct
the contents of a collection of memory locations
al, a2, . . . , ak is the insertion of code to check that ai # a.

J
for i # j, 1 <= i,j cc= k. A failed check results in a fatal error.

The scope of a DISTINCT statement extends from the
statement itself to the corresponding END DISTINCT
statement. Because declarations of distinctness need not be
properly nested, DISTINCT statements are named in order to
enable matching of DISTINCT declarations with END
DISTINCT declarations.

If, at any point between a DISTINCT statement and the
corresponding END DISTINCT. any ai is written, code is

inserted immmediately after the write to check that ai f aj for i

j, 1 <= j <= k. A failed check results in a fatal error.
If the number of memory locations whose contents are

declared distinct is relatively small, then the checking
overhead is not excessive. If. on the other hand, the number of
memory locations is any greater than “relatively small,” then
the amount of checking required can easily get out of hand,
unless it can be optimized out.

If we step back for a moment to survey what we have been
doing with the PARTITION and DISTINCT constructs, we see
that, at least informally, the appropriate “data structure” for
writing parallel code is the sef: a list of objects containing no
repeated objects. Rather than introduce the set, with its likely
attendent overhead as an actual data structure, we continue to
use Fortran’s’s intrinsic data structures in writing code, and
introduce constructs to inform the compiler of the data’s sef-
like nature; we thus make use of the set as the conceptual data
structure and implement it using (hopefully) efficient intrinsic
data structures.

When, for whatever reasons, the implementation data
structure must be modified, the Refined Language compiler must
be informed, in a verifiable fashion, that it retains its set-like
properties. For this purpose, Refined Fortran contains a small
number of intrinsic functions such as the SWAP function
employed in the following example.

Consider the code of Figure 4-1, which performs Gaussian
elimination with partial pivoting.

On each iteration of the DO 10 loop, that row of A which
has not yet been used as the pivot row, and whose pivot column
element is the largest among all such rows is chosen as the
pivot row. As each pivot row is chosen, it is moved upward in
array A, so that at the end those rows which have been used as
pivot row appear in the order in which they were so used. In the
above code rows are not actually moved. Rather, elements of
ZROW are swapped to reflect the desired movement of rows.

In order to recognize the fact that the DO 40, DO 50 and
DO 60 loops may be parallelized it is necessary to see that the
values of ZROW(l), IROW(. . . , IROW are pairwise
distinct, and that, as a result, memory locations
A(ZROW(I)), A(ZROW(2)), . . . , A(ZROW(M)) are disjoint. The
reason they are is that:

*they are initialized to 1, 2, . . . , M respectively
in the DO 5 loop

*the only write to any element of ZROW is a part
of a swap of two elements of IROW

In the particular case of the code of Figure 4-1, if a
parallelism detector “knew” to look for distinctness of the
elements of IROW, it might determine initial distinctness by
examining the DO S loop. It would be more difficult to
recognize the swap which preserves distinctness.

Figure 4-2 shows Refined Fortran code in which the
programmer has indicated distinctness in a verifiable manner.
The DISTINCT statement indicates to the compiler that the
elements of IROW are intended to be distinct, and initializes
them in such way that the compiler can determine, with very
little effort, that they are initially distinct. The fact that
swapping of elements of IROW is accomplished via a call to
the intrinsic function SWAP enables the compiler to determine
that they remain distinct, and to parallelize the DO 40. DO 50,
and DO 60 loops.

The case of Gaussian elimination with full pivoting, in
which both rows and columns are swapped is shown in Figure
4-3.

The DISTINCT statement, like many conventional
constructs, gives the programmer the power to create
arbitrarily large amounts of overhead. Its intended use is in
cases in which there is little or no overhead. The initialization
of variables within the DISTINCT statement, together with the
introduction of a small number of functions such as SWAP,
makes the desired reduction of overhead -- to zero -- possible in
a large variety of actual codes.

5. Odds and Ends
In a short presentation such as this, many questions are raised
whose answers cannot, due to space limitations, be
immediately answered. In the case of the present discussion of
Refined Fortran, the list includes at least the following items:

*formal specification of the syntax/semantics of Refined
Fortran extensions (but see Appendix A)

*specifics of the optimization of run-time partition-
element membership checking and distinctness
checking

*directives to override the compiler’s decisions as to which
potential parallelism is to be exploited and which not

All of these questions, and many additional ones, have been
considered, and will be answered in subsequent publications.

6. Conclusions
The Refined Language approach makes no claim to simplifying
or automating the process of designing novel parallel
algorithms or that of parallelizing existing sequential

613

algorithms which are not automatically parallelizable. These
remain (sometimes) difficult intellectual tasks, of the same
nature as the by-now-better-understood task of designing and
debugging sequential algorithms/programs.

What it does simplify is the task of debugging and
maintaining parallel code. Moreover. it does so without greatly
complicating the task of the programmer. Conceptual
“partitioning” of data structures is a fundamental aspect of the
design of parallel algorithms. The programmer who has
designed a parallel algorithm or understood someone else’s
design understands this “partitioning” perfectly well, but
neither conventional programming languages nor their
control-parallelism-extended dialects provide the programmer
with a means to tell the compiler about it.

Refined Languages enable the programmer to give the
compiler information, already known to the programmer,
which the compiler can use to determine if parallelization is
actually justified, and to generate debuggable parallel code
when the safety of parallelization is conditional upon factors
determinable only at run time.

In most cases of actual codes, we have been able to reduce
checking, where it is required, to at most an upper bound and a
lower bound check. Even if this amount of checking is
objectionable, though, the Refined Language approach can be
used as a debugging aid. As either a compilation or a run-time
option, checks can be turned off. If an anomaly is perceived on
an execution with a particular data set, checks can be turned
back on, and the code rerun.

The annotation provided by the programmer through the
use of Refined Language constructs can be just as useful to the
reader as to the compiler. Writing a parallel algorithm in a
Refined Language can render the algorithm far more
understandable to the human reader than would be a control-
parallelism extended representation; the former contains
explicit justification of the intended parallel execution.

References
[l] D. Klappholz, H. G. Dietz, K. Stein, H. C. Park, and X.

Kong, “Refined Languages: An Evolutionary Approach to
the Use of Sequential Languages for Programming
Parallel(MIMD) Machines,” in Parallel Processing: State
of The Art Report, Pergamon-Infotech, Maidenhead,
Berkshire, U.K., 1987, pp. 59-70

[2] Henry Dietz, and David Klappholz, “Refined FORTRAN:
Another Sequential Language for Parallel Programming,”
in Proc. Int’l Conference on Parallel Processing, August,
1986

[3] Aho, A., Sethi, R., and Ullman, J., Compilers: Principles,
Techniques and Tools, Addison-Wesley, 1986

[4] Wolfe, Michael, Optimizing Supercompilers for
Supercomputers, Pitman/MIT Press, 1989

[S] Allen, J.R., Dependence Analysis for Subscripted Variables
and its Application to Program Transformations, Ph.D.
Thesis. Rice University, April, 1983

[6] Banerjee, Utpal, Dependence Analysis for Supercomputing,
Kluwer Academic Publishers, 1988

[7] Horwitz, S., P. Pfeiffer, and T. Reps, “Dependence Analysis
for Pointer Variables,” in Proc. of the SIGPLAN
Conference on Programming Language Design and
Implementation, 1989.

[8] Klappholz, D., Kallis, A., and Kong, X., “Refined C - An
Update” in Proceedings of the Second Workshop on
Languages and Compilers for Parallel Computing, Urbana,
IL, August 1-3. 1989. MIT Press

Appendix: Partition Statement
A-l. Declaration, Scope, and; Invocation

If data is to be partitioned, the names of the partition
elements must first be declared in a PARTITION ELEMENTS
statement. Names of partition elements may not appear in
COMMON or EQUIVALENCE statements.

Withii a subprogram, a particul.ar name may be used in
only one PARTITION ELEMENTS declaration. The following,
therefore, constitutes a compile-time error:

PARTITION ELEMENTS(X,Y)
PARTITION ELEMENTS(V,Y)

A partition is activated through the execution of a
PARTITION statement, which specifies defining predicates for
a list of partition elements which have previously been
declared in a single PARTITION ELEMENTS statement. A
partition remains in effect until either the end of the scope of
the partition elements’ names or the invocation of a different
partition which utilizes the same set of partition elements.
Thus, in the code of Figure Al the first partition remains in
effect until the second PARTITION statement is executed.

PARTITION ELEMENTS(B.C)

PARTlTIOti A(K)(B(“II). C(Q))
.

STRAIGHTLJNE CODE .

Re-Partitioning of an Array
Figure Al

Multiple partitions of the same data structure involving
different sets of partition elements may be in effect
concurrently. Thus, in the code of Figure A2 after both
PARTITION statements have been executed, B,C,D, and E are
all legal names for parts of A. The Refined Language compiler
understands that B and C are disjoint, that D and E are disjoint,
and that, for example, B and D need not be.

PAR’lTlTON ELEMENTS&C)
PARTITION ELEMENTS(D,E)

I PAR’m-ION AW)(B(q I), CC “12))

I STRAIGHT LINE CODE

PARTITION A(K)(D(n21), E(‘~2~)

I

Multiple Concurrent Partitions of an Arl
Figure A2

‘Y

The same set of partition element names may be used to
partition different data structures. The code of Figure A3 is,
therefore, legal. References to the different A’s and the
different B’s are disambiguatcd by referencing them as X.A, and
Y.A or X.B and Y.B respectively.

614

PARTITION ELEMENTS(A,B)

PARTITION XW(A(yl), Bb12)l
.

STRAIGHTUNEGODE

I PARTITION Y(K)(A(x21), B(7r22)

I I

Partitions of Different Arrays
Using Same Partition Element Names

Figure A3

A data structure may be partitioned differently on different
arms of a conditional. Thus, in the code of Figure A4 whichever
partitioning of A was actually executed will be in effect
immediately following the ENDZF.

PARTITION ELEMENTS(FIRST, LAST)

INTEGER A(50)

IF(X=O) ’
THEN PARTITION A(K)(FIRST(K .LE. 25). LAST)
ELSE PARTITION A(K)(FIRST(K .LE. 40), LAST)

ENDIF

Alternative Partitionings of an Array
on Alternate Arms of a Conditional

Figure A4

If a partition element is referenced, but no partition which
uses it is in effect, the result is a fatal error. The code of Figure
A5 results in a run-time fatal error if the THEN arm of the
conditional is executed, and A has not previously been
partitioned into LOW and HIGH.

PARTITION ELEMENTS(FIRST, LAST)
PARTITION ELEMENTS(LOW, HIGH)

.

INTEGER A(50)

IF & = 0)
THEN PARTITION A(K)(FIRST(K .LE. 25), LAST)
ELSE PARTITION A(K)(LOW(K .LE. 40). HIGH)

ENDIF

STRAIGHTUNEGODE

LOW(M) = 33

Potential Reference to an Inactive Partition
Figure A5

Figure A6 B would consist of A(1) thru A(24). and C would
consist of A(25) thru A(50), while in the code of Figure A7 B
would consist of A(l), and C would consist of A(2) thru A(50).

PARTITION ELEMENTS(B,C)
INTEGER A(50)

J=25 .
PARTITION A(K)(B(K .LT. J), C)

Illustration of Evaluation of Partition Predicate
Figure A6

Illustration of Evaluation of Partition Predicate
Figure A7

PARTITION ELEMENTS(l3,C)
INTEGER A(50)

J=2 ’
PARTITION A(K)(B(K .LT. J), C)

The partition elements into which a data structure is
partitioned need not be contiguous in the original data
structure. Thus, in the code of Figure A8 EVEN consists of the
even-numbered elements of A, and ODD consists of the odd-
numbered elements.

PARTITION ELEMENTS(l3.C)
INTEGER A(50)

PARTITION A(K)(EVEN((K/2)*K = K), ODD)

Non-Contiguous Partition Elements
Figure A8

After an array has been partitioned, members of the
partition elements are referenced in the same way as elements
of the original array. In the QUICKSORT code, for example, a
reference to UPPER(l) is a reference to A(1) -- legal if 1 satisfies
the predicate which defies UPPER, and illegal otherwise.

Partitions are invoked dynamically and can be refined
dynamically, i.e., a partitioned data structure can be further
partitioned. In the QUICKSORT code, for example, the
partition element UPPER defined at one level of recursion is
further partitioned into UPPER and LOWER at the next level of
recursion.

Finally, a Refined Language partition need not be a
partition in the formal sense. Formally, the elements of a
partition must be non-empty, must be pairwise disjoint, and
must exhaust the set which they partition. The elements of a
Refined Language partition need only be pairwise disjoint;
empty partition elements are allowed as is a set of partition
elements which do not exhaust the data structure which they
partition. If a partition element is empty. then any reference to
it results in an error.

A-2. Partition Predicates
The values of variables used in evaluating partitioning
predicates are the values of those variables immediately before
the PARTITION statement is executed. Thus. in the code of

615

