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Abstract 

This paper discusses scalability and outlines a specific approach to measuring the scal:ibility of parallel 
computer systems. The relationship between scalability and speedup is described. It is shown that a parallel 
system is scalable for a given algorithm if and only if its speedup is unbounded. A technique is proposed that 
can be used to help determine whether a candidate model is correct, that is, whether it adequately 
approximates the system’s scalability. Experimental results illustrate this technique for both a poorly scalable 
and a very scalable system. 
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1. Introduction 

Inherent in the notion of a parallel computer system is that the number of processors making up the system can be 
chosen arbitrarily. This extra degree of freedom complicates the evaluation of a parallel system’s performance. Measuring 
the performance of a particular number of processors provides a partial understanding; however, a full evaluation of the 
system requires an understanding of how performance changes as the configuration size is increased. 

The scalability of a parallel computer system relates the system’s performance to its size. A system is scalable if an 
increase in the system’s size produces an analogous increase in its processing power (11. In order to measure a system’s 
scalability a more precise definition is needed. The main goal of this paper is to develop such a definition. 

Scalability is considered an important attribute of parallel systems (21, and has been adopted as a design goal for several 
systems II, 3-51. Verifying that this design goal has been achieved is an important problem which has received Iittie atten- 
tion in the literature. In part, this involves measuring how a system scales. Such measurements have recently been 
reported for two parallel systems [6,7]. 
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In this paper we develop a theoretical framework for measuring and modeling the scalability of a parallel system. We 
assume that information about the system can be used to suggest a “candidate model” of scalability. Measurements are 
then taken to either help support or refute the correctness of the candidate model. Of course, scalability measurements 
by themselves cannot be used to prove that a candidate model is correct since scalability is a property of an infinite col- 
lection of configurations, and measurements can only be made on a finite subset of this collection. This problem is dis- 
cussed further in sections 4 and 5 of this paper. 

Various aspects of scalability have been defined and studied in recent papers. Deshpande and Jenevein have introduced 
the notions of resource scalability and application scalability [8]. R esource scalability deals with the dependence of various 
architectural properties and their associated costs on the size of the parallel system. For example, the growth rate of the 
diameter of the network, used to connect a P-processor system, as P is increased, helps determine the resource scalability 
of the system. Application scalability deals with how well a particular application utilizes a parallel system as the size of 
the system is increased. Ma and Shea [9] have introduced the notion of downward scalability, which deals with how the 
performance of an application, which uses a fixed portion of the parallel system’s resources, is affected by increasing the 
system’s size. 

In section 2 of this paper we propose a definition of scalability and illustrate this definition with two simple examples. 
The relationship between scalability and speedup is described in section 3. We show that a parallel system is scalable, as 
defined in this paper, if and only if one can obtain an arbitrarily large speedup by choosing a large enough configuration 
size for the system. Section 4 describes a technique which can be used to help determine whether a candidate model of 
scalability is correct. Section 5 contains an example of how this technique can be applied. 

2. Scalability 

In this section we give a definition of scalability that is precise enough to allow the scalability of a parallel computer sys- 
tem to be measured. This definition is algorithm dependent and corresponds to application scalability as defined by 
Deshpande and Jenevein [S], 

Consider a parallel algorithm which is used to solve a problem on a P-processor system. We require that the amount of 
work done by the algorithm, denoted W, is an increasing function of P. To see why this is necessary, suppose that the 
work done by the parallel algorithm is fixed. Since there is only a fixed amount of work that can be done in parallel, 
increasing the system size beyond some maximum number of processors will not increase the system’s processing power. 
Note, this argument assumes that the system’s processing power is measured using a single algorithm. 

The dependence of the algorithm’s work on P can be determined by a theoretical analysis of the algorithm. In many 
instances, the amount of work done by an algorithm depends on a single parameter, say n. In some cases n gives the 
input size, while in other cases TZ may define the accuracy of the solution obtained by the parallel algorithm. For a par- 
ticular value of 12, the algorithm’s “intrinsic parallelism” determines the maximum size of the parallel system that can 
effectively be used to solve the problem. The following parallel algorithm for multiplying two 12 by n matrices provides a 
simple example: 

PARDOI=l,n 
PARDO J = 1, n 

C[I, J] = 0 
DOK=l,n 

c[I, J] = C[I, J] + A[I, K] * B[K, J] 
ENDDO 

Eh’DPARDO 
ENDPARDO 

This algorithm makes use of at most n2 processors, so to make effective use of a P-processor system we choose 
n oc [P’l”l. 

Our definition of scalability requires that the algorithm make effective use of the P-processor system for every P 2 1. 
This implies that W is chosen to be an increasing function of P, and each processor in the system has a share of the 
work. 
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The work done by the algorithm can be expressed as W = W(P) = W,(P) + W,(P), where W,(P) is the serial part of 
the work, and w,(P) is the parallel part. We assume that the time needed to run the parallel algorithm on a single pro- 
cessor system is proportional to the amount of work. In this paper, “run an algorithm” means execute a program 
corresponding to the algorithm. Thus, the time needed to run the parallel algorithm on a single processor system is given 
by 

seq2lential ~2112 time = C * [ Wb(P) + W,(P)] 

where C is a positive constant. The ideal run time of the algorithm on a P-processor system is defined by 

ideal run time = C + [ W8(P) + W,(P)/P] 

This is the idea1 run time of the parallel algorithm for the chosen dependence of w on P. Note, the exact dependence of 
work on system size is not very important. What is important is that a particular choice is made. This choice deter- 
mines the corresponding idea1 run time curve. By measuring how the actual run time curve compares to the ideal curve 
we can determine how well the system scales. 

We now introduce the concept of an overhead function 

Definition 1: Assume that a parallel algorithm makes effective use of a P-processor parallel system. A parallel com- 
puter system scales urith overhead Q(P) for the parallel algorithm if the actual run time, T, on a P-processor system, 
satisfies 

T < C * [W,(P) + W,(P) / P] * Q(P), P21 (1) 

A function a(P) which satisfies (1) is called an overhead function 

The smallest overhead function which satisfies (1) will be referred to as the system’s overhead function for the given algo- 
rithm and is defined by 

‘ps(p) = c * [W,(P) +’ W*(P) / P] 

For this overhead function, we refer to the right side of (1) as the correct model of scalability. We attempt to understand 
the system’s scalability by producing an overhead function, ref,erred to as a “candidate overhead function”, which 
approximates the system’s overhead function. In this case we will refer to the right side of (1) as a candidate model of scu- 
lability. 

Rewriting (1) as follows 

suggests that the overhead function represents an increase in the amount of parallel and serial work which must be per- 
formed to run the algorithm. This increase is due to the system overhead needed to run the parallel algorithm. For an 
ideal system, the overhead function is constant and we say such a system is ideally scalable for the algorithm. For a more 
realistic system, the overhead will grow as P is increased. The rate of increase of the overhead function’determines how 
well the system scales; the slower the increase, the better it scales. 

There is always some benefit to using a P-processor system if the actual run time is less than the sequential run time, 
that is 

(2) 

Let a(P) be the proportion of serial work making up the parallel algorithm, that is 
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then (2) can be written as 

(3) 

The benefit increases if, as P increases, the right side of (2) increases faster than the left side. This observation motivates 
our definition of scalability. 

Definition 2: A parallel system is scalable for a parallel algorithm if the system scales with an overhead a(P) which 
satisfies 

a(P) * [B(P) + (1 - cY(P)) / P] --+ 0 as P + +co (4) 

In order for a system to be scalable for a parallel algorithm, the proportion of serial work must go to zero fast enough, 
i.e., (P(P) * a(P) --t 0 as P ---, +oo, and the overhead function cannot increase too fast, i.e., a(P) / P + 0 as 
P ---* co. We give two simple examples to illustrate this definition. 

First, consider the parallel algorithm for matrix multiplication, given at the start of this section. In this case, 
n cc [P’/T and the theoretical run time is given by C * [W,(P) / P], where W,(P) oc [P’lq. The serial portion of 
this parallel algorithm is zero, since the program corresponds exactly to the pseudo-code description of the matrix multi- 
plication algorithm. Thus, a(P) = 0, and a parallel system is scalable for this parallel algorithm if a(P) / P -+ 0 as 
P++oo. 

A second example is provided by the usual parallel algorithm for computing the Fkst Fourier Transform [lo] of a n ele- 
ment vector. 

DO stage = 1, log(n) 
PARDOI=l,n 

- do a “butterfly” transform 
ENDPARDO 

ENDDO 

For this parallel algorithm we make effective use of a P-processor system if we chose n oc P. In this case the ideal run 
time is given by C * [W#(P) + Wp(P) / P], w h ere, W,(P) K log(P) and W,(P) oc P * log(P). It is easy to verify 
that a parallel system is scalable for this paral.l$ algorithm if Q(P) / P -+ 0 as P -+ +co. 

For the tw’o examples given in this section, the system is scalable if @(P)/P + 0 as P --c +co. How well the system 
scales is governed by how fast @(P)/P g oes to zero as P is increased. Thus, a system with overhead G(P) = log(P) 
scales better than a system with overhead Q(P) = P1j2. 

3. Speedup 

One important measure of the performance of a paralle1 algorithm is given by the speedup, denoted by s(P), and defined 
by 

s(P) = sequential run time / parallel run time 

The “parallel run time” is the time needed to run the parallel algorithm on a P-processor system. The “sequential run 
time” is usually taken to be ihe time of the best sequential algorithm which solves the problem on a single processor sys- 
tem. In this paper we will take the “sequentia,l run time” to mean the time taken by the parallel algorithm on a single 
processor system. This form of speedup is sometimes referred to as “rough speedup” [ll]. Examples of how speedup is 
used to measure performance and further references to the literature dealing with this topic can be found’in two recent 
papers [ 12,131. 

In this section we show that a parallel system is scalable for a parallel algorithm if and only if an arbitrarily large 
speedup can be obtained by choosing a large enough system. This result makes precise the intuitive notion that for a 
scalable system one can obtain an increase in the processing power of the system by increasing the system’s size. 



Arguments have been made that Amdahl’s law [I], given by 

s(p) L a(P) + (1: et(P)) / P - 
< ww 

restricts the maximum possible speedup for a given parallel algorithm. The restriction on performance imposed by this 
law has recently been reexamined by Gustafson, et. al. [14,15]. They argue that the work done by a parallel algorithm 
should be increased as the size of the system is increased, and thus the resulting “scaled speedup” can be arbitrarily 
large. We also have adopted this approach. 

The relationship between scalability and speedup is given by the following result. 

Theorem 1: Assume that a parallel algorithm makes effective use of a P-processor system. The system is scalable for 
the parallel algorithm if and only if its speedup is unbounded, i.e., e(P) + +OO as P -+ +OO. 

Proof: First, we show that scalability implies unbounded speedup. The time needed to run the parallel algorithm on 
one processor is given by 

sequential run time - C * [W#(P) + W,(P)] 

Since the system is scalable for the parallel algorithm, we have 

parallel run time < C * [W,(P) + W,(P) / P] * a(P) 

Thus 

c * W(P) + qml 
s(p) > c * [W,(P) + W,(P) / P] * a(P) (5) 

= [@) + (1 - &, / q * Q(P) 

Since, by Definition 2, we have 

[a(P) + (1 - Q(P)) / P] * a(P) -b 0 as P + +oo 

we conclude that s(P) + +oo as P + +co 

We now show that unbounded speedup implies scalability. By definition of the system’s overhead function, the sys- 
tem scales with overhead @s(P) and we have 

parallel run time = C * [W,(P) + W,(P) / P] *@s(P) 

Thus 

c * WV) + w,(P)1 
s(P) = c * [We + W,(P) / P] * Q(P) 

= [a(P) + (1 - c&q) / P] * Q,(P) 

Since we are assuming s(P) -P +co as P ---+ +OO, we have 

[Q(P) + (1 - a(P)) / P] * @s(P) --t 0 as P -+ +m 

Thus, we have exhibited an overhead function which satisfies the definition of scalability. 
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Knowing that a paraHe1 system is scalable for a parallel algorithm has very important implications. By making the sys- 
tem large enough, and appropriately increasing the size of the problem, we can obtain any desired speedup. 

4. Determining the Correct Model 

Determining the correct scalability model for a given parallel computer system and a particular parallel algorithm is a 
complex problem. In most instances, an understanding of how the system executes the algorithm will suggest a candidate 
for the correct model. For example, if the system is message-based, a count of the number of messages needed to execute 
the problem will suggest an overhead function, Of course, such an approach will not always yield the correct model since 
the performance of the system does not only depend on the number of messages being sent. In fact, a variety of factors 
play a role in determining the scalability of a parallel computer system. These include: the connectivity of the processors, 
how the communication system is used, the distribution of operating system work across the processors, memory conten- 
tion [16], and task synchronization [16,17]. W e will assume henceforth that an educated guess has been made to obtain a 
candidate for the correct model of scalability. 

To determine whether a candidate model is an adequate approximation to the correct model, one must try to fit run time 
versus configuration size data with the candidate model. In some cases, it is obvious that the model does not fit the data. 
Then, one must revise the candidate model. This revision will probably require a better understanding of how the system 
executes the program, since the analysis for the candidate model must not have considered some aspects of the parallel 
computer system and algorithm. 

In many cases, deciding whether the candidate model fits the data is not so straightforward. There are at least three rea- 
sons for this. First, experimental data is noisy. Second, any candidate model is, at best, an approximation to the correct 
model. Most candidate models are many-times differentiable, increasing functions of the number of processors. However, 
it is very unlikely that a graph for the correct model is differentiable and it may not even be increasing. Thus the best 
we can hope for is to obtain a “good” approximation to the correct model of scalability. Third, a good approximation 
may involve one or more extra terms not appearing in the candidate model. The constants appearing in these terms may 
be relatively small, and thus the missing terms do not dominate for small configurations of the parallel system. Of these 
three problems, the third is the most serious, 

The first problem can be reduced to an acceptable level by repeating the measurement of each data point and averaging 
the resulting values. We believe that the second problem is not serious in practice. Essentially, we are assuming that the 
run times do not behave erratically as the number of processors is increased. The third problem would not be serious if 
one could configure arbitrarily large parallel systems, If this were possible, one could perform a sequence of experiments 
using increasingly large systems to determine statistically whether the candidate model is a suitable approximation to the 
correct model. Unfortunately, in most instances the hardware resources are limited to some fixed number of processors, 
denoted by P,,,. Thus, we must decide whether a candidate model is a suitable approximation to the correct model of 
scalability, using only data for configurations having at most P max processors, In the following text, we suggest one 
approach that can be used to deal with the third problem. 

For a message-based parallel system, the execution time of a program depends, in part, on the number of messages 
needed by the operating system to execute the program, Thus, the growth in the number of messages with configuration 
size partially determines the correct model of scalability for the system. It may be that the candidate model has not ade- 
quately accounted for the growth in the number of messages with configuration size. For example, we might adopt a can- 
didate model of scalability with overhead function 

+(I=) = a,+ b, log(P) 

whereas in reality, the correct model of scalability may correspond to the following overhead function 

(6) 

Q(P) = a2+ b2 log(P)+ c2 P 

where the constant c2 is quite small. The constant term represents that portion of the execution time which does not 
depend on the configuration size, and should not depend strongly on the number of messages processed. For example, 
going from one to two processors increases the number of messages sent, but does not change the constant term. Neither 
should it depend strongly on the average time to send and process a message, denoted by Tavp. The constants appearing 
in the remaining terms are expected to depend strongly on TaVp, For example, if ToVp were to approach zero, we would 
expect these constants to approach zero. If messages are processed instantly, the overhead of executing tasks on the pre 
cessors making up the system would be zero, independent of the number of processors used. Note, this argument is only 
valid if the system and problem are such that resource contention does not occur. Thus, if we increase the value of Tauo 
we would expect both bz and cs to increase. As Tave becomes sufficiently large, the cs P term should dominate the 
b2 log(P) term for P approaching P,,,. 
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Now, consider the candidate model corresponding to the overhead function (6). By appropriately slowing down the mes- 
sage passing system we can obtain run time versus configuration size data for a sequence of values of TorB, ,say 
Lg=wz, * * * ,tk. For each value of T,,, , we divide the actual run times by the corresponding ideal run times and 
obtain a least squares fit, which yields values for al and b,. Thus, we obtain a sequence of values for a1 and bi. If the 
candidate model is not a suitable approximation to the correct model, we expect that this sequence of values will not be 
consistent, i.e., the values for al will not be constant as T,,,, is increased. 

6. Experimental Results 

Using the approach outlined in the previous section, we ran a test program, called ising, on a prototype parallel computer 
system developed at Myrias Research Corporation (see [5] for a general description of the prototype system). This test 
program is a simplified version of code used to solve the Ising Model in statistical physics [18]. The ising program is com- 
pletely parallelizable, and the amount of work contained in this program was chosen to be directly proportional to the 
number of processors used to run the program. 

The test program ising is based on the following algorithm: 

PARDO sample - 1, n 
for each lattice point (x,y,z) 

- perform spin-flip on (x,y,z) 
- cumulate change in magnetism 

ENDPARDO 

We ran the program on configurations from 2 to 256 processors, using a preliminary version of the Myrias control 
mechanism. This control mechanism suffered from several problems. In particular, certain control messages were used 
excessively, and there were “hot spots”, that is, concentrations of operating system work on certain processors. We will 
refer to this preliminary control mechanism as PCM (Preliminary Control Mechanism). 

The message system was degraded by placing a busy loop in the routine used to send messages. By varying the 
loop-count, we could control the severity of the degradation. Figure 1 gives run time versus configuration size data for 
four values of loop~count. 

550 
I 

loop-count = bOO0 

450 
loop-count = 1000 

350 - 

250 - loop,count = 2000 

150 - 
- loop~ount = 0 

50 I t 1 I 1 

0 2 4 6 8 10 

logz(P) 

Figure 1: Execution times for the test program ising 
using the PCM. 
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Clearly, the candidate model corresponding to the overhead function (6) does not fit the data of Figure 1 for 
loop-count > 0. Note, however, that this model does fit the data points for loop-count = 0 reasonably well. The sca- 
lability problems are only apparent when the message-passing system is degraded. If one actually tries to fit all four col- 
lections of data points using (6) we obtain the results given in Table 1. Note, it is not necessary to divide the actual run 
times by the corresponding ideal run times since ising is completely parallelizable and the ideal run time is constant. 
Clearly, the aI values are not constant, refuting the model. 

loop-count 0 2000 4000 6000 
a, 65.9 36.1 -6.3 -44.7 
b, 1 4.6 17.9 35.8 52.4 

Table 1. Constants for the candidate model (6) 
using the data of Figure 1. 

We next ran ising on the Myrias prototype system using the current version of the Myrias control mechanism, which we 
will refer to as MCM (Myrias Control Mechanism) (191. This version does not make excessive use of control messages and 
has a fairly uniform distribution of control mechanism work. A simple message-counting argument suggests that the can- 
didate model corresponding to the overhead function (6) is an adequate approximation to the correct model. To test this 
we again obtained run time versus work data for four values of loop-count (see Figure 2). These results are quite good, 
and a least squares fit using (6) yield the results of Figure 3. Table 2 gives the values for al and br which were obtained. 

70 I I 1 1 I 
0 2 4 6 8 IO 

log,(P) 

Figure 2: Execution times for the test program ising 
using the MCM. 

loop-count = 6000 

loop-count = 4000 

100pr0unt = ‘000 

loop~ount = 0 

70 1 I I I I I 

0 2 4 6 8 10 

log,(P 1 

Figure 3: Data from Figure 1 fitted using model (6) 
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loop-count 0 2000 4000 6000 
a, 78.1 75.5 75.9 74.8 
b, 1.2 4.3 7.4 10.6 

Table 2. Constants for the candidate model (6) 
using the data of Figure 2. 

In Table 2, ar is essentially constant and the values of b, are linearly related to loop-count (see Figure 4). 

15 r 

I I I I I 

0 2000 4000 6000 

loop-count 

Figure 4: Least squares fit of the b, values of Table 2 

The results presented in this section provide further evidence of the scalability of the Myrias Reseaach Corporation proto- 
type parallel computer system. Additional scalability results for this system are given in [6]. 

6. Concluding Remarks 

We emphasize that scalability, as defined in this paper, is an asymptotic property of parallel systems. This implicitly 
assumes that there is no upper bound on the size of a parallel system. In reality, various physical considerations, such as 
the finiteness of the speed of light, do limit the size of parallel systems. We ignore these physical limitations, since 
current systems would have to be greatly increased in size before these constraints limit performance. 

From a more practical point of view, what is really important is how well the system scales, i.e., how slowly the overhead 
function increases as P increases for all values of P. This determines, as can be seen from inequality (5) the size of the 
speedup for each P 2 1. The smaller the value of the overhead function, the larger the value of the speedup. 

The approach described in section 4 of this paper is a very simple technique for checking the validity of a candidate 
model for scalability. We emphasize, however, that this approach cannot be used to verify that the candidate model is 
indeed an adequate approximation to the correct model. There are only two ways of verifying a model of scalability. 
First, develop a theoretical model which correctly takes into account those aspects of the parallel system that affect sca- 
lability, and deduce from this model that the system scales according to a particular model; this is a formidable task. 
Second, undertake a statistical analysis using a sequence of experiments with increasingly large configurations; but this 
may not be practical due to hardware limitations. If neither of these two approaches can be taken, one can develop tech- 
niques, such as the technique described in this paper, which can be used to help determine a system’s scalability. 
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