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ABSTRACT 
FPGAs, because of their re-programmability, are becoming very 
popular for creating and exchanging VLSI intellectual properties 
(IPs) in the reuse-based design paradigm. Existing watermarking 
and fingerprinting techniques successfully embed identification 
information into FPGA designs to deter IP infringement. 
However, such methods incur timing and/or resource overhead, 
unpredictable at times, which causes performance degradation. In 
this paper, we propose a new FPGA watermarking technique that 
guarantees zero design overhead.  
Our approach consists of two phases. First we design as usual to 
obtain the best, possible, quality IP. Then we map the required 
signature to additional timing constraints on carefully selected 
nets and redo a small portion of the design (e.g. place and route). 
The FPGA configuration bitstream for the resulting watermarked 
design will be significantly different from the original design, 
which provides us with a strong proof of authorship. The 
watermarking technique has zero design overhead because it is 
developed to maintain the performance of the design from the first 
phase. This is demonstrated by applying the proposed technique 
on several real-life FPGA designs, which range in size from a few 
thousand to more than two million gates, on Xilinx devices.  

Categories and Subject Descriptors 
K.5.1 [Legal Aspects of Computing]: Hardware/Software 
Protection; B.7.1 [Integrated Circuits]: Types and Design 
Styles—Gate Arrays; J.6 [Computer-aided Engineering]: 
Computer-aided design; B.m [Miscellaneous] Design 
management. 

General Terms 
Legal Aspects, Design, Security, Performance. 

Keywords 
FPGA, IP protection, zero overhead, configuration bitstream, user 
constraint file, timing analyzer, place and route, performance.  
 

1. INTRODUCTION 
The need for design reuse has been apparent for many years. 
Today, thousands of designers are creating and exchanging 
intellectual properties (IPs) on an increasingly large scale. FPGA 

IPs offer designers flexibility and quick time-to-market and are 
therefore, a promising alternative to full custom ASICs. 
Particularly, with the latest series of devices like Virtex-II and 
Virtex-II Pro [19] from Xilinx [25], FPGAs have started taking a 
significant share of the integrated circuit market [18]. For 
example, some devices in the Virtex-II Pro series have up to four 
embedded IBM Power PCs, making it feasible to use FPGA for 
large scale computing. On the other hand, it becomes impractical 
to design such FPGA devices with millions of gates from scratch. 
Naturally, reuse-based design methods are very useful for FPGA 
designs. Already, companies like Xilinx and Altera are offering 
reusable IPs for use with their tools and devices. Xilinx also 
provides its FPGA Reuse Methodology Manual [21]. 
As design reuse becomes common, design exchange will take 
place between vendors, which requires protection techniques for 
the safe exchange of designs at various levels of abstraction. 
Kahng et al. [4] proposed the first constraint-based watermarking 
technique in which the author’s signature is mapped into a set of 
constraints that can be independently satisfied for a particular 
solution. These additional constraints are embedded as watermark 
into the original design. Kahng et al.’s technique can be used to 
protect designs from the high-level synthesis level to the physical 
level, as well as FPGA designs [8]. They treat the CAD tool as a 
black box and add constraints in either the pre-processing or the 
post-processing stage. Pre-processing is preferred as embedding 
watermark in the post-processing stage will make it vulnerable to 
being removed by reverse engineering. However, the pre-
processing approach introduces additional constraints into the 
design and will lead to, in general, an inferior design.  
A typical FPGA design flow includes a number of stages 
including design entry, synthesis, place and route and finally, 
configuration of the device. Most commercially available CAD 
tools provide user-friendly interface to control individual design 
stages. At each stage, a number of choices are available to the 
designer: optimize design for area or for speed, allow register 
duplication or not, and so on. Our technique leverages this fact 
and embeds watermark at the place and route stage by 
manipulating delays on certain selected nets. What distinguishes 
our approach from Kahng et al’s technique is that we embed 
watermark after designing without watermark first, and, that we 
then repeat a part of the design. In this way, we have better 
control over design overhead and we can make the watermark 
more robust. 
Many FPGA IPs are delivered in the form of configuration files 
[16,17]. The configuration file is a very large bitstream file (in the 
order of tens of megabytes) loaded in the FPGA’s Static-Random-
Access-Memory (SRAM). It defines the functionality of the 
FPGA. A change in even a single design constraint, even at late 
design stages, results in a configuration file that differs from the 
original file by thousands of bits. On the other hand, reverse 
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engineering the bitstream file, i.e., determining a set of design 
constraints to re-generate a given bitstream file, is virtually 
impossible [17]. This feature makes our FPGA watermarking 
technique secure and robust because the IP designer is the only 
one who can reproduce the same bitstream file, from a set of 
design constraints, which has the designer’s signature embedded 
in it. 
The rest of the paper is organized as follows. Section 2 surveys 
related work on VLSI design IP protection. In Section 3, we 
briefly introduce the Xilinx FPGA design platform and use it as 
an example to explain our zero overhead FPGA watermarking 
approach. Section 4 reports the experimental results of applying 
our watermarking technique to several real-world FPGA designs. 
We conclude in Section 5. 

2. RELATED WORK 
We restrict our survey to VLSI design IP protection and 
particularly to the protection of FPGA designs. Other related 
areas include steganography, information hiding, encryption, 
multimedia content protection, software obfuscation, network 
security, privacy protection, and so on. (We refer interested 
readers to [1,3,4,6,13] and their references). 
According to the IP protection white paper released by the Virtual 
Socket Interface Alliance [20], there are three approaches to 
secure an IP: deterrent approaches like patents, copyrights, and 
trade secrets; protection via licensing agreements or encryption; 
detection mechanisms such as physical tagging, digital 
watermarking and fingerprinting. Among them the detection 
mechanism is the one that has attracted a lot of attention in recent 
years. As we have already mentioned in the introduction section, 
Kahng et al. [4] first established the desiderata for constraint-
based watermarking techniques for the protection of VLSI design 
IPs. The protection is achieved by tracing unauthorized reuse and 
by making it as difficult as re-designing the IP from scratch. This 
approach has been applied to various aspects of the VLSI design 
process, from behavioral and logic synthesis to standard cell place 
and route algorithms, to FPGA designs [2,4,5,7,10,11]. There are 
also several studies on IP fingerprinting techniques [1,7,12] and 
methods to recover the embedded signatures [3,6,13].  
To the best of the authors’ knowledge, there are three pieces of 
work reported on FPGA design protection. Lach et al. [8] 
proposed a FPGA watermarking technique by using post-
processing constraints. The essence of their approach is to encode 
the signature bits and embed them into the unused look-up tables 
(LUTs) such that they do not affect the original design and then 
reroute the design around these LUTs. The disadvantage of this 
approach is that the watermark is not embedded as a functional 
part of the design; given enough information, the watermark can 
be removed without affecting the design functionality. Further, it 
is not easy to automate the entire watermarking process.  
The same authors later [7] improved their watermark’s robustness 
by embedding multiple small watermarks, instead of a large 
watermark, all over the design. However, there are two problems 
associated with this approach. First, extra resources will be used, 
which may affect the overall performance and power consumption 
of the design, although no such data was reported in the paper. 
Second, the constraints imposed on the placement of the 
embedded watermark may also contribute to timing overhead. No 
guarantees on such overhead could be provided due to the 

watermark’s pre-processing nature. This is reflected in the paper 
by the rather random timing overhead of up to 11%.  
Another interesting approach is based on encrypting the bitstream 
file. Yip et al. [16] proposed a partial encryption scheme, in 
which the configuration bitstream is partially encrypted and then 
loaded on to a separate RAM built into the FPGA. This requires a 
decryption unit on the FPGA to read and decrypt the encrypted 
bitstream from the above special-purpose RAM, and then load the 
decrypted bitstream into the main configuration RAM. The 
security of this technique relies on the fact that the bitstream file 
is hard to reverse engineer. A similar method of bitstream 
encryption is being supported (though in a slightly different way) 
in some new devices such as the Virtex-II and Virtex-II Pro from 
Xilinx. However, this requires additional hardware on the FPGA, 
and therefore is not generic and the additional decryption unit 
may cause some overhead in terms of power consumption.  

3. WATERMARKING TECHNIQUE 
Due to the increasing complexity of FPGA devices and time-to-
market pressures, designers rarely build the entire design from 
scratch. Large FPGA vendors provide FPGA design tools to 
support their newest devices and facilitate the design process. To 
protect FPGA designs, we leverage some inherent features of the 
design tools to embed watermark in the design. There are two 
advantages of this approach: first, the signature becomes, in a 
way, a functional part of the design and, second, since no 
constraints are added to the design specification, we avoid 
possible overhead as far as area and timing are concerned. In this 
paper, we build our watermarking technique on the Xilinx ISE 5.1 
FPGA design platform. Specifically, we use the Timing Analyzer 
Tool (available internally with the ISE) to select nets from the 
design to add our watermark. Usually, all FPGA development 
tools provide similar interface and so our technique, though we 
worked on the Xilinx ISE 5.1, can be easily applied to other tools 
as well.   

3.1 Basics on Xilinx ISE 5.1 
We first briefly introduce the Xilinx Integrated Software 
Environment (ISE) that we use to illustrate our zero overhead 
watermarking technique. ISE includes various design entry, 
synthesis and implementation tools enabling designers to verify 
and analyze the design at every stage.  

 
Figure 1. Design Flow in Xilinx ISE [25]. 
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Figure 1 depicts a typical FPGA design flow  [25] in ISE 5.1. The 
design can usually be entered in HDL or as a schematic or as an 
FSM. A suitable FPGA is then selected. After syntax checking 
and compilation, the design is ready for synthesis, which can be 
done by the Xilinx synthesis tools, which come as a part of the 
ISE, or by third party tools such as Synplify, which can be 
integrated with the ISE. The synthesized netlist is then sent to the 
Place and Route tools to implement the design on the given 
device. The implementation tools report various statistics about 
the design like resource utilization, timing, area etc. The Timing 
Analyzer lets us verify that the delay along a given path or paths 
meets the specified timing requirements. This can be done once 
the design has been placed and routed. The tool gives timing 
details of all the nets of the design such as those between flip-
flops, RAMs and pins etc.     
Various constraints can be defined and put on the design to meet 
the specified timing or area requirements. Designers can specify 
their constraints in a file called the User Constraints File, which 
can be created and modified via the Constraints Editor (another 
internally integrated tool). Once the design meets all the specs, it 
is ready to be put on the device. The configuration bitstream files 
are then generated (again using internal Xilinx tools in ISE). This 
configuration file can then be loaded into the on-chip RAM of the 
FPGA for configuration of the various switches of the device. 

3.2 Watermarking Approach 
One can control the delay on each net in the design by adding the 
required timing constraint on that net in the user constraints file in 
ISE. This file is integrated with the design during implementation 
and eventually it affects the place and route result. Delays along 
critical paths are usually controlled in order to meet the system 
performance requirement. The timing on other paths is more 
flexible and a slight change will not affect the design’s overall 
performance. 
Consider the nets between flip-flops in synchronous circuits. The 
delay on such nets must be less than the desired system clock 
period. For example, if we need a synchronous design to run at 
100MHz, then the delay on the net cannot be longer than 10 ns. If 
the delay is 7.2 ns, then enforcing it to be 7.1 ns or 7.0 ns in the 
user constraints file will have little impact on the performance of 
the circuit. (We assume, of course, that the design is not very 
tightly constrained already such that a new implementation cannot 
be found and that all the delays on critical paths are constrained 
and will not be affected by the above change on the delay of a 
non-critical net).  
However, different delays on paths will force the place and route 
result to be different. This in turn will require a different set of 
switches on the FPGA to be opened or closed. Therefore, the 
configuration bitstream generated by ISE, which programs these 
switches, will be different. In fact, we will show in Section 4 that 
changing the delay on only one net will affect a significant 
number of configuration bits. This provides us with a rather 
unique bitstream file as a strong proof of authorship.  

Figure 2 outlines the zero overhead watermarking approach. We 
first synthesize and implement the design as usual, without any 
watermark. We then use the timing analyzer provided by ISE to 
obtain the static timing analysis data on all the nets. We can use 
the filter settings to keep only the paths between flip-flops. Next, 
we select a certain number of nets, corresponding to the length of 

the signature bitstream. Then we use our watermark embedding 
scheme to convert each signature bit to a constraint on the delay 
of one of the selected nets. This step can be done by ISE’s Timing 
Constraints Editor. We will show an example watermark-
embedding scheme below. Finally, we replace the timing 
constraints on the selected nets in the user constraint file by these 
modified delays and redo the place and route phase of the design.  

A simple watermark-embedding scheme can be defined as 
follows: replacing the last digit of the delay by the watermark bit. 
That is, truncating the digit to embed a bit ‘0’ and replacing it by 
‘1’ to embed a bit ‘1’. We now show how to embed the letter ‘M’, 
01001101 in ASCII with the most significant bit as the parity bit, 
into a RISC core implemented on an FPGA. Table 1 lists the eight 
selected nets and their original delays from the timing report. The 
last column shows the new delays we will use to implement the 
watermarked RISC core.  

The chance for the watermarked design to fail in implementation 
is extremely low due to the following reasons. First, it is 
recommended for an FPGA design to use 75-80% of the 
resources; second, we select the nets off critical paths and we only 

 

Table 1. Example of modifying timing constraints corresponding 
to signature. 

Source FF 
name 

Destination FF 
name 

Original 
Delay (ns) 

Watermark 
Bit 

Constraint 
Delay (ns) 

inst_reg_0 aluinp1_reg_3 17.758 0 17.750 

inst_reg_6 aluinp1_reg_3 17.755 1 17.751 

inst_reg_1 aluinp1_reg_3 17.733 0 17.730 

inst_reg_3 aluinp1_reg_3 17.651 0 17.650 

inst_reg_6 aluinp1_reg_1 17.374 1 17.371 

inst_reg_1 aluinp1_reg_1 17.352 1 17.351 

inst_reg_5 aluinp1_reg_3 17.312 0 17.310 

inst_reg_0 aluinp1_reg_5 17.066 1 17.061 

 

  Synthesize   Design    
Place&Route  
Design   
  
Extract delay  
information  
on nets   

Read in  n  bit  
Signature   

Read in  
Design   
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Meets timing  
requirement?   No 
Yes 

Delay constra ints  
are generated by  
the given signature   

Re - select nets  
or reduce  
signature size   

Generate  
bitstream file    

Figure 2. Watermarking Process. 
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reduce the delay by less than a hundredth of a nanosecond (in the 
worst case, truncating a ‘9’ in the last digit). These indicate that 
we will not require an FPGA device of larger size to implement 
the watermarked design. And the timing requirement is 
automatically satisfied from the way we embed watermark. 
Therefore, our approach has zero overhead. 
Although we have mentioned that the change of a single 
constraint may result in a significantly different configuration 
bitstream file, it is still interesting to see how much information 
we can hide into the FPGA design in this way. This is also 
important for FPGA fingerprinting when we need to embed 
distinct signatures into the same design to create IPs with 
identical functionality but different implementations. Note that in 
our approach one selected net can hold one bit information from 
the signature file. Most real world synchronous designs have a 
large number of flip-flops and so one can easily embed 
watermarks of several kilobits into the design by our method. 
Finally, we mention that the signature generation process can 
make use of some sophisticated encryption systems. Designers 
can encrypt their company’s name or other identification 
information using standard encryption systems (such as MD5). 
The encrypted binary bits are then embedded as signature into 
FPGA designs using the method explained above. This makes the 
watermark more secure like in other IP protection methods [4,7]. 

3.3 Analysis of the Approach 
Our method requires no extra hardware and thus can be easily 
implemented on existing devices. The large number of nets in the 
design provides us with sufficient room to embed long 
watermarks. Also, it can be applied to existing synthesized 
designs as well, as we embed the watermark at the post synthesis 
stage. The design only needs to be re-implemented, which cannot 
be avoided anyway. 
The proof of authorship in our method relies on the uniqueness of 
configuration bitstream files for a given set of constraints. Given 
different timing constraints, the CAD tool will always generate a 
different bitstream file. From the information available in the 
documentation provided by Xilinx on its website [25] and also 
from our discussion with their engineers [17], it is believed that 
the probability of generating the same bitstream file with two 
different sets of timing constraints is virtually zero. Furthermore, 
since the bitstream file is usually large in size (up to a few 
megabytes), and since its specifications are not known, trying to 
reverse engineer the design by inspecting the bitstream file will be 
extremely time consuming and infeasible. Statistics have shown 
that the first 80% of the configuration information can be 
determined relatively easily by inspection, but the next 16% is 
much more difficult [7]. 
The overhead in our technique in terms of timing and resource 
utilization will be zero. Since we only play with the net delays, 
the technique does not use any extra resources and therefore has 
virtually no impact on the power consumption or resource 
utilization of the design. So, independent of the signature size, the 
resource utilization of the FPGA will remain unchanged. Also, the 
nets used to embed the watermark are selected in such a way that 
none of them is a part of the critical path. To make sure that the 
design meets its performance requirements, suitable constraints 
can be put on the nets, which lie on the critical path. In this way 
we can ensure that changes caused in the design as a result of 

watermarking will not affect the critical path. The only possible 
overhead is the amount of extra time the tool may take to place 
and route the watermarked design because of the timing 
constraints enforced on certain nets. However, this, generally, 
does not take much time unless the resource utilization percentage 
for the design is extremely high (above 80-85 %), which is 
generally not recommended for FPGAs.  
The proposed technique is generic in the sense that it can be 
easily integrated with the CAD tool and the whole process of 
embedding a watermark, we believe, can be fully automated. 

4. EXPERIMENTAL RESULTS 
We applied our technique to several real-world FPGA designs: a 
Data Acquisition Path (DAP) [22], a RISC core [24], a Video 
Encoder [24] and an Address Generator [23]. We implemented 
these designs on the Xilinx Virtex-II family of devices. We chose 
for each design, a suitable device according to its size. The Data 
Acquisition Path is the largest one with more than two million 
gates and was implemented on XC2V3000. The Video Encoder is 

 
Figure 5. Routed DAP design with 16-bit signature. 

 
Figure 4. Routed original DAP design. 
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of moderate size (50 thousand gates) and was therefore 
implemented on the relatively smaller XC2V500. The RISC core 
and Address Generator were implemented on the small XC2V80 
due to their small sizes (five thousand and two thousand gates 
respectively). For all our work, we used the Xilinx ISE 5.1 
We implemented these designs following the normal FPGA 
design flow in Xilinx ISE and generated the bitstream 
configuration files. We applied our watermarking technique and 
re-implemented the design to generate the watermarked bitstream 
file. We then computed, for each design, the Hamming distance 
between the bitstream files generated with and without 
watermark.  To measure the impact of the watermarking 
constraints on the bitstream file, we first embedded a one bit 
watermark in the DAP design. We did this ten times and each 
time we added the constraint on a different net. We observed, on 
an average, a 0.7% difference in the bitstreams. This design was 
implemented on the large XC2V3000 FPGA, whose bitstream 
contains more than 10 million bits. Thus a 0.7% difference 
resulted in more than 70,000 bits being changed due to the 
introduction of a constraint on a single net. If we embed 16 bits, 
the difference becomes 1.13%, that is, 119,512 bits. This 
noticeable difference in the bitstream is sufficient to prove 
authorship. Furthermore, it is virtually impossible to distinguish 
between bits coming from the watermark or those coming from 
the original design. This makes the task of reverse engineering 
very difficult. 
Figures 4 and 5 show the fully routed DAP design, before and 
after watermarking. As can be observed, just by looking at the 
implementation of the design, it is not possible to conclude that 
the design is watermarked or where in the design is the signature 
embedded. 

To demonstrate that our technique has zero overhead, we embed a 
16-bit signature ‘0100110101000100’ (ASCII code of ‘MD’ in 
binary) in the four selected designs. We refer to the Place & 
Route Report and the Timing Analysis results from the tool to 
report the results.  Table 2 reports the statistics for resource 
utilization, frequency requirements and bitstream differences. We 
can see that there is no overhead on resource utilization, as 
expected. The overhead in timing is also zero, because both 
before and after watermarking, the delays between flip-flops are 
less than the clock period, that is, they satisfy the system 

frequency requirement. Our results show that the watermarked 
design provides the same quality as the un-watermarked design to 
the customer. As the only cost of our technique, the designers 
need extra time to re-implement, i.e., re-place and re-route the 
design. We report in Table 3 the amount of CPU time required to 
place and route the watermarked design. As we can see, there are 
increases in total implementation times ranging from 10 to 46 
seconds (which includes increases in placement times from 4 to 
14 seconds and increases in routing times from 6 to 32 seconds) 
depending on the design size. These increases are due to the extra 
effort that may be required on part of the place and route tool to 
meet the constraints on the selected nets. However, this is not 
really an overhead from the point of view of the end user of the 
design as the design is still able to run at its required frequency, 
utilizing the same number of resources. Another aspect of our 
technique is that it uses information, which has already been 
generated by the tool. Thus, integrating our technique with the 
tool will not be very difficult, as no new information needs to be 
extracted from the design. 

 

5. CONCLUSIONS 
In this paper we propose a new watermarking technique to protect 
FPGA designs. The main feature of this technique is that, unlike 
existing techniques, it will not introduce any area or timing 
overhead. We achieve this by designing without any watermark 
and then re-implementing the design to embed the watermark. 
This new watermarking method has two advantages. First, 
watermark becomes an inherent part of the design after re-
implementation and is thus resilient and robust. Second, our 
approach is developed in such a way that it maintains the original 
design quality even after embedding the watermark.  
We demonstrate these on several real-world FPGA designs on the 
Xilinx development platform, while our approach can be easily 
used with other FPGA development tools. We embed the 
watermark in the place and route phase of the design cycle but it 
is also possible to watermark at other design stages or even across 
multiple stages.  We are currently working on extending our 
technique to FPGA fingerprinting and the protection of ASIC 
designs.  
 

Table 2. Validation of zero overhead and strength of 
watermark on benchmark FPGA designs. 

FPGA Designs Original Watermarked Overhead Bitstrem 
Difference 

Resources 1083 1083 0% DAP 
(2,503,260 

gates) 
fmax required: 

40MHz √ √ 0% 
1.13% 

Resources 1522 1522 0% VIDEO 
(56,253 
gates) 

fmax required: 
35MHz √ √ 0% 

2.15% 

Resources 746 746 0% RISC 
(6,894 
gates) 

fmax required: 
50MHz √ √ 0% 

5.47% 

Resources 285 285 0% AddrGen 
(2,862 
gates) 

fmax required: 
40MHz √ √ 0% 

1.83% 

 

Table 3. CPU time for place and route(in seconds). 

CPU Time (second) FPGA Designs 
Placement Routing Total 

Original 51 78 129 
Watermarked 65 110 175 DAP  

Extra 14 32 46 
Original 9 14 23 

Watermarked 16 24 40 VIDEO  
Extra 7 10 17 

Original 3 5 8 
Watermarked 7 10 17 RISC  

Extra 4 5 9 
Original 2 2 4 

Watermarked 6 8 14 
Address 

Generator 
Extra 4 6 10 
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