
Zero Overhead Watermarking Technique for FPGA Designs
Adarsh K. Jain, Lin Yuan, Pushkin R. Pari and Gang Qu

Department of Electrical and Computer Engineering, University of Maryland, College Park

{adarsh,yuanl,pushkin,gangqu}@eng.umd.edu

ABSTRACT
FPGAs, because of their re-programmability, are becoming very
popular for creating and exchanging VLSI intellectual properties
(IPs) in the reuse-based design paradigm. Existing watermarking
and fingerprinting techniques successfully embed identification
information into FPGA designs to deter IP infringement.
However, such methods incur timing and/or resource overhead,
unpredictable at times, which causes performance degradation. In
this paper, we propose a new FPGA watermarking technique that
guarantees zero design overhead.
Our approach consists of two phases. First we design as usual to
obtain the best, possible, quality IP. Then we map the required
signature to additional timing constraints on carefully selected
nets and redo a small portion of the design (e.g. place and route).
The FPGA configuration bitstream for the resulting watermarked
design will be significantly different from the original design,
which provides us with a strong proof of authorship. The
watermarking technique has zero design overhead because it is
developed to maintain the performance of the design from the first
phase. This is demonstrated by applying the proposed technique
on several real-life FPGA designs, which range in size from a few
thousand to more than two million gates, on Xilinx devices.

Categories and Subject Descriptors
K.5.1 [Legal Aspects of Computing]: Hardware/Software
Protection; B.7.1 [Integrated Circuits]: Types and Design
Styles—Gate Arrays; J.6 [Computer-aided Engineering]:
Computer-aided design; B.m [Miscellaneous] Design
management.

General Terms
Legal Aspects, Design, Security, Performance.

Keywords
FPGA, IP protection, zero overhead, configuration bitstream, user
constraint file, timing analyzer, place and route, performance.

1. INTRODUCTION
The need for design reuse has been apparent for many years.
Today, thousands of designers are creating and exchanging
intellectual properties (IPs) on an increasingly large scale. FPGA

IPs offer designers flexibility and quick time-to-market and are
therefore, a promising alternative to full custom ASICs.
Particularly, with the latest series of devices like Virtex-II and
Virtex-II Pro [19] from Xilinx [25], FPGAs have started taking a
significant share of the integrated circuit market [18]. For
example, some devices in the Virtex-II Pro series have up to four
embedded IBM Power PCs, making it feasible to use FPGA for
large scale computing. On the other hand, it becomes impractical
to design such FPGA devices with millions of gates from scratch.
Naturally, reuse-based design methods are very useful for FPGA
designs. Already, companies like Xilinx and Altera are offering
reusable IPs for use with their tools and devices. Xilinx also
provides its FPGA Reuse Methodology Manual [21].
As design reuse becomes common, design exchange will take
place between vendors, which requires protection techniques for
the safe exchange of designs at various levels of abstraction.
Kahng et al. [4] proposed the first constraint-based watermarking
technique in which the author’s signature is mapped into a set of
constraints that can be independently satisfied for a particular
solution. These additional constraints are embedded as watermark
into the original design. Kahng et al.’s technique can be used to
protect designs from the high-level synthesis level to the physical
level, as well as FPGA designs [8]. They treat the CAD tool as a
black box and add constraints in either the pre-processing or the
post-processing stage. Pre-processing is preferred as embedding
watermark in the post-processing stage will make it vulnerable to
being removed by reverse engineering. However, the pre-
processing approach introduces additional constraints into the
design and will lead to, in general, an inferior design.
A typical FPGA design flow includes a number of stages
including design entry, synthesis, place and route and finally,
configuration of the device. Most commercially available CAD
tools provide user-friendly interface to control individual design
stages. At each stage, a number of choices are available to the
designer: optimize design for area or for speed, allow register
duplication or not, and so on. Our technique leverages this fact
and embeds watermark at the place and route stage by
manipulating delays on certain selected nets. What distinguishes
our approach from Kahng et al’s technique is that we embed
watermark after designing without watermark first, and, that we
then repeat a part of the design. In this way, we have better
control over design overhead and we can make the watermark
more robust.
Many FPGA IPs are delivered in the form of configuration files
[16,17]. The configuration file is a very large bitstream file (in the
order of tens of megabytes) loaded in the FPGA’s Static-Random-
Access-Memory (SRAM). It defines the functionality of the
FPGA. A change in even a single design constraint, even at late
design stages, results in a configuration file that differs from the
original file by thousands of bits. On the other hand, reverse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI’03, April 28-29, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-677-3/03/0004…$5.00.

147

engineering the bitstream file, i.e., determining a set of design
constraints to re-generate a given bitstream file, is virtually
impossible [17]. This feature makes our FPGA watermarking
technique secure and robust because the IP designer is the only
one who can reproduce the same bitstream file, from a set of
design constraints, which has the designer’s signature embedded
in it.
The rest of the paper is organized as follows. Section 2 surveys
related work on VLSI design IP protection. In Section 3, we
briefly introduce the Xilinx FPGA design platform and use it as
an example to explain our zero overhead FPGA watermarking
approach. Section 4 reports the experimental results of applying
our watermarking technique to several real-world FPGA designs.
We conclude in Section 5.

2. RELATED WORK
We restrict our survey to VLSI design IP protection and
particularly to the protection of FPGA designs. Other related
areas include steganography, information hiding, encryption,
multimedia content protection, software obfuscation, network
security, privacy protection, and so on. (We refer interested
readers to [1,3,4,6,13] and their references).
According to the IP protection white paper released by the Virtual
Socket Interface Alliance [20], there are three approaches to
secure an IP: deterrent approaches like patents, copyrights, and
trade secrets; protection via licensing agreements or encryption;
detection mechanisms such as physical tagging, digital
watermarking and fingerprinting. Among them the detection
mechanism is the one that has attracted a lot of attention in recent
years. As we have already mentioned in the introduction section,
Kahng et al. [4] first established the desiderata for constraint-
based watermarking techniques for the protection of VLSI design
IPs. The protection is achieved by tracing unauthorized reuse and
by making it as difficult as re-designing the IP from scratch. This
approach has been applied to various aspects of the VLSI design
process, from behavioral and logic synthesis to standard cell place
and route algorithms, to FPGA designs [2,4,5,7,10,11]. There are
also several studies on IP fingerprinting techniques [1,7,12] and
methods to recover the embedded signatures [3,6,13].
To the best of the authors’ knowledge, there are three pieces of
work reported on FPGA design protection. Lach et al. [8]
proposed a FPGA watermarking technique by using post-
processing constraints. The essence of their approach is to encode
the signature bits and embed them into the unused look-up tables
(LUTs) such that they do not affect the original design and then
reroute the design around these LUTs. The disadvantage of this
approach is that the watermark is not embedded as a functional
part of the design; given enough information, the watermark can
be removed without affecting the design functionality. Further, it
is not easy to automate the entire watermarking process.
The same authors later [7] improved their watermark’s robustness
by embedding multiple small watermarks, instead of a large
watermark, all over the design. However, there are two problems
associated with this approach. First, extra resources will be used,
which may affect the overall performance and power consumption
of the design, although no such data was reported in the paper.
Second, the constraints imposed on the placement of the
embedded watermark may also contribute to timing overhead. No
guarantees on such overhead could be provided due to the

watermark’s pre-processing nature. This is reflected in the paper
by the rather random timing overhead of up to 11%.
Another interesting approach is based on encrypting the bitstream
file. Yip et al. [16] proposed a partial encryption scheme, in
which the configuration bitstream is partially encrypted and then
loaded on to a separate RAM built into the FPGA. This requires a
decryption unit on the FPGA to read and decrypt the encrypted
bitstream from the above special-purpose RAM, and then load the
decrypted bitstream into the main configuration RAM. The
security of this technique relies on the fact that the bitstream file
is hard to reverse engineer. A similar method of bitstream
encryption is being supported (though in a slightly different way)
in some new devices such as the Virtex-II and Virtex-II Pro from
Xilinx. However, this requires additional hardware on the FPGA,
and therefore is not generic and the additional decryption unit
may cause some overhead in terms of power consumption.

3. WATERMARKING TECHNIQUE
Due to the increasing complexity of FPGA devices and time-to-
market pressures, designers rarely build the entire design from
scratch. Large FPGA vendors provide FPGA design tools to
support their newest devices and facilitate the design process. To
protect FPGA designs, we leverage some inherent features of the
design tools to embed watermark in the design. There are two
advantages of this approach: first, the signature becomes, in a
way, a functional part of the design and, second, since no
constraints are added to the design specification, we avoid
possible overhead as far as area and timing are concerned. In this
paper, we build our watermarking technique on the Xilinx ISE 5.1
FPGA design platform. Specifically, we use the Timing Analyzer
Tool (available internally with the ISE) to select nets from the
design to add our watermark. Usually, all FPGA development
tools provide similar interface and so our technique, though we
worked on the Xilinx ISE 5.1, can be easily applied to other tools
as well.

3.1 Basics on Xilinx ISE 5.1
We first briefly introduce the Xilinx Integrated Software
Environment (ISE) that we use to illustrate our zero overhead
watermarking technique. ISE includes various design entry,
synthesis and implementation tools enabling designers to verify
and analyze the design at every stage.

Figure 1. Design Flow in Xilinx ISE [25].

148

Figure 1 depicts a typical FPGA design flow [25] in ISE 5.1. The
design can usually be entered in HDL or as a schematic or as an
FSM. A suitable FPGA is then selected. After syntax checking
and compilation, the design is ready for synthesis, which can be
done by the Xilinx synthesis tools, which come as a part of the
ISE, or by third party tools such as Synplify, which can be
integrated with the ISE. The synthesized netlist is then sent to the
Place and Route tools to implement the design on the given
device. The implementation tools report various statistics about
the design like resource utilization, timing, area etc. The Timing
Analyzer lets us verify that the delay along a given path or paths
meets the specified timing requirements. This can be done once
the design has been placed and routed. The tool gives timing
details of all the nets of the design such as those between flip-
flops, RAMs and pins etc.
Various constraints can be defined and put on the design to meet
the specified timing or area requirements. Designers can specify
their constraints in a file called the User Constraints File, which
can be created and modified via the Constraints Editor (another
internally integrated tool). Once the design meets all the specs, it
is ready to be put on the device. The configuration bitstream files
are then generated (again using internal Xilinx tools in ISE). This
configuration file can then be loaded into the on-chip RAM of the
FPGA for configuration of the various switches of the device.

3.2 Watermarking Approach
One can control the delay on each net in the design by adding the
required timing constraint on that net in the user constraints file in
ISE. This file is integrated with the design during implementation
and eventually it affects the place and route result. Delays along
critical paths are usually controlled in order to meet the system
performance requirement. The timing on other paths is more
flexible and a slight change will not affect the design’s overall
performance.
Consider the nets between flip-flops in synchronous circuits. The
delay on such nets must be less than the desired system clock
period. For example, if we need a synchronous design to run at
100MHz, then the delay on the net cannot be longer than 10 ns. If
the delay is 7.2 ns, then enforcing it to be 7.1 ns or 7.0 ns in the
user constraints file will have little impact on the performance of
the circuit. (We assume, of course, that the design is not very
tightly constrained already such that a new implementation cannot
be found and that all the delays on critical paths are constrained
and will not be affected by the above change on the delay of a
non-critical net).
However, different delays on paths will force the place and route
result to be different. This in turn will require a different set of
switches on the FPGA to be opened or closed. Therefore, the
configuration bitstream generated by ISE, which programs these
switches, will be different. In fact, we will show in Section 4 that
changing the delay on only one net will affect a significant
number of configuration bits. This provides us with a rather
unique bitstream file as a strong proof of authorship.

Figure 2 outlines the zero overhead watermarking approach. We
first synthesize and implement the design as usual, without any
watermark. We then use the timing analyzer provided by ISE to
obtain the static timing analysis data on all the nets. We can use
the filter settings to keep only the paths between flip-flops. Next,
we select a certain number of nets, corresponding to the length of

the signature bitstream. Then we use our watermark embedding
scheme to convert each signature bit to a constraint on the delay
of one of the selected nets. This step can be done by ISE’s Timing
Constraints Editor. We will show an example watermark-
embedding scheme below. Finally, we replace the timing
constraints on the selected nets in the user constraint file by these
modified delays and redo the place and route phase of the design.

A simple watermark-embedding scheme can be defined as
follows: replacing the last digit of the delay by the watermark bit.
That is, truncating the digit to embed a bit ‘0’ and replacing it by
‘1’ to embed a bit ‘1’. We now show how to embed the letter ‘M’,
01001101 in ASCII with the most significant bit as the parity bit,
into a RISC core implemented on an FPGA. Table 1 lists the eight
selected nets and their original delays from the timing report. The
last column shows the new delays we will use to implement the
watermarked RISC core.

The chance for the watermarked design to fail in implementation
is extremely low due to the following reasons. First, it is
recommended for an FPGA design to use 75-80% of the
resources; second, we select the nets off critical paths and we only

Table 1. Example of modifying timing constraints corresponding
to signature.

Source FF
name

Destination FF
name

Original
Delay (ns)

Watermark
Bit

Constraint
Delay (ns)

inst_reg_0 aluinp1_reg_3 17.758 0 17.750

inst_reg_6 aluinp1_reg_3 17.755 1 17.751

inst_reg_1 aluinp1_reg_3 17.733 0 17.730

inst_reg_3 aluinp1_reg_3 17.651 0 17.650

inst_reg_6 aluinp1_reg_1 17.374 1 17.371

inst_reg_1 aluinp1_reg_1 17.352 1 17.351

inst_reg_5 aluinp1_reg_3 17.312 0 17.310

inst_reg_0 aluinp1_reg_5 17.066 1 17.061

 Synthesize Design
Place&Route
Design

Extract delay
information
on nets

Read in n bit
Signature

Read in
Design

Modify delay
constraints on
n selected nets

Place&Route Design

Meets timing
requirement? No
Yes

Delay constra ints
are generated by
the given signature

Re - select nets
or reduce
signature size

Generate
bitstream file

Figure 2. Watermarking Process.

149

reduce the delay by less than a hundredth of a nanosecond (in the
worst case, truncating a ‘9’ in the last digit). These indicate that
we will not require an FPGA device of larger size to implement
the watermarked design. And the timing requirement is
automatically satisfied from the way we embed watermark.
Therefore, our approach has zero overhead.
Although we have mentioned that the change of a single
constraint may result in a significantly different configuration
bitstream file, it is still interesting to see how much information
we can hide into the FPGA design in this way. This is also
important for FPGA fingerprinting when we need to embed
distinct signatures into the same design to create IPs with
identical functionality but different implementations. Note that in
our approach one selected net can hold one bit information from
the signature file. Most real world synchronous designs have a
large number of flip-flops and so one can easily embed
watermarks of several kilobits into the design by our method.
Finally, we mention that the signature generation process can
make use of some sophisticated encryption systems. Designers
can encrypt their company’s name or other identification
information using standard encryption systems (such as MD5).
The encrypted binary bits are then embedded as signature into
FPGA designs using the method explained above. This makes the
watermark more secure like in other IP protection methods [4,7].

3.3 Analysis of the Approach
Our method requires no extra hardware and thus can be easily
implemented on existing devices. The large number of nets in the
design provides us with sufficient room to embed long
watermarks. Also, it can be applied to existing synthesized
designs as well, as we embed the watermark at the post synthesis
stage. The design only needs to be re-implemented, which cannot
be avoided anyway.
The proof of authorship in our method relies on the uniqueness of
configuration bitstream files for a given set of constraints. Given
different timing constraints, the CAD tool will always generate a
different bitstream file. From the information available in the
documentation provided by Xilinx on its website [25] and also
from our discussion with their engineers [17], it is believed that
the probability of generating the same bitstream file with two
different sets of timing constraints is virtually zero. Furthermore,
since the bitstream file is usually large in size (up to a few
megabytes), and since its specifications are not known, trying to
reverse engineer the design by inspecting the bitstream file will be
extremely time consuming and infeasible. Statistics have shown
that the first 80% of the configuration information can be
determined relatively easily by inspection, but the next 16% is
much more difficult [7].
The overhead in our technique in terms of timing and resource
utilization will be zero. Since we only play with the net delays,
the technique does not use any extra resources and therefore has
virtually no impact on the power consumption or resource
utilization of the design. So, independent of the signature size, the
resource utilization of the FPGA will remain unchanged. Also, the
nets used to embed the watermark are selected in such a way that
none of them is a part of the critical path. To make sure that the
design meets its performance requirements, suitable constraints
can be put on the nets, which lie on the critical path. In this way
we can ensure that changes caused in the design as a result of

watermarking will not affect the critical path. The only possible
overhead is the amount of extra time the tool may take to place
and route the watermarked design because of the timing
constraints enforced on certain nets. However, this, generally,
does not take much time unless the resource utilization percentage
for the design is extremely high (above 80-85 %), which is
generally not recommended for FPGAs.
The proposed technique is generic in the sense that it can be
easily integrated with the CAD tool and the whole process of
embedding a watermark, we believe, can be fully automated.

4. EXPERIMENTAL RESULTS
We applied our technique to several real-world FPGA designs: a
Data Acquisition Path (DAP) [22], a RISC core [24], a Video
Encoder [24] and an Address Generator [23]. We implemented
these designs on the Xilinx Virtex-II family of devices. We chose
for each design, a suitable device according to its size. The Data
Acquisition Path is the largest one with more than two million
gates and was implemented on XC2V3000. The Video Encoder is

Figure 5. Routed DAP design with 16-bit signature.

Figure 4. Routed original DAP design.

150

of moderate size (50 thousand gates) and was therefore
implemented on the relatively smaller XC2V500. The RISC core
and Address Generator were implemented on the small XC2V80
due to their small sizes (five thousand and two thousand gates
respectively). For all our work, we used the Xilinx ISE 5.1
We implemented these designs following the normal FPGA
design flow in Xilinx ISE and generated the bitstream
configuration files. We applied our watermarking technique and
re-implemented the design to generate the watermarked bitstream
file. We then computed, for each design, the Hamming distance
between the bitstream files generated with and without
watermark. To measure the impact of the watermarking
constraints on the bitstream file, we first embedded a one bit
watermark in the DAP design. We did this ten times and each
time we added the constraint on a different net. We observed, on
an average, a 0.7% difference in the bitstreams. This design was
implemented on the large XC2V3000 FPGA, whose bitstream
contains more than 10 million bits. Thus a 0.7% difference
resulted in more than 70,000 bits being changed due to the
introduction of a constraint on a single net. If we embed 16 bits,
the difference becomes 1.13%, that is, 119,512 bits. This
noticeable difference in the bitstream is sufficient to prove
authorship. Furthermore, it is virtually impossible to distinguish
between bits coming from the watermark or those coming from
the original design. This makes the task of reverse engineering
very difficult.
Figures 4 and 5 show the fully routed DAP design, before and
after watermarking. As can be observed, just by looking at the
implementation of the design, it is not possible to conclude that
the design is watermarked or where in the design is the signature
embedded.

To demonstrate that our technique has zero overhead, we embed a
16-bit signature ‘0100110101000100’ (ASCII code of ‘MD’ in
binary) in the four selected designs. We refer to the Place &
Route Report and the Timing Analysis results from the tool to
report the results. Table 2 reports the statistics for resource
utilization, frequency requirements and bitstream differences. We
can see that there is no overhead on resource utilization, as
expected. The overhead in timing is also zero, because both
before and after watermarking, the delays between flip-flops are
less than the clock period, that is, they satisfy the system

frequency requirement. Our results show that the watermarked
design provides the same quality as the un-watermarked design to
the customer. As the only cost of our technique, the designers
need extra time to re-implement, i.e., re-place and re-route the
design. We report in Table 3 the amount of CPU time required to
place and route the watermarked design. As we can see, there are
increases in total implementation times ranging from 10 to 46
seconds (which includes increases in placement times from 4 to
14 seconds and increases in routing times from 6 to 32 seconds)
depending on the design size. These increases are due to the extra
effort that may be required on part of the place and route tool to
meet the constraints on the selected nets. However, this is not
really an overhead from the point of view of the end user of the
design as the design is still able to run at its required frequency,
utilizing the same number of resources. Another aspect of our
technique is that it uses information, which has already been
generated by the tool. Thus, integrating our technique with the
tool will not be very difficult, as no new information needs to be
extracted from the design.

5. CONCLUSIONS
In this paper we propose a new watermarking technique to protect
FPGA designs. The main feature of this technique is that, unlike
existing techniques, it will not introduce any area or timing
overhead. We achieve this by designing without any watermark
and then re-implementing the design to embed the watermark.
This new watermarking method has two advantages. First,
watermark becomes an inherent part of the design after re-
implementation and is thus resilient and robust. Second, our
approach is developed in such a way that it maintains the original
design quality even after embedding the watermark.
We demonstrate these on several real-world FPGA designs on the
Xilinx development platform, while our approach can be easily
used with other FPGA development tools. We embed the
watermark in the place and route phase of the design cycle but it
is also possible to watermark at other design stages or even across
multiple stages. We are currently working on extending our
technique to FPGA fingerprinting and the protection of ASIC
designs.

Table 2. Validation of zero overhead and strength of
watermark on benchmark FPGA designs.

FPGA Designs Original Watermarked Overhead Bitstrem
Difference

Resources 1083 1083 0% DAP
(2,503,260

gates)
fmax required:

40MHz √ √ 0%
1.13%

Resources 1522 1522 0% VIDEO
(56,253
gates)

fmax required:
35MHz √ √ 0%

2.15%

Resources 746 746 0% RISC
(6,894
gates)

fmax required:
50MHz √ √ 0%

5.47%

Resources 285 285 0% AddrGen
(2,862
gates)

fmax required:
40MHz √ √ 0%

1.83%

Table 3. CPU time for place and route(in seconds).

CPU Time (second) FPGA Designs
Placement Routing Total

Original 51 78 129
Watermarked 65 110 175 DAP

Extra 14 32 46
Original 9 14 23

Watermarked 16 24 40 VIDEO
Extra 7 10 17

Original 3 5 8
Watermarked 7 10 17 RISC

Extra 4 5 9
Original 2 2 4

Watermarked 6 8 14
Address

Generator
Extra 4 6 10

151

6. ACKNOWLEDGEMENTS
Our sincere thanks to Dr. Tullio Grassi of the High Energy Group
in the Physics Department, University of Maryland, for his
valuable suggestions and for his kindness to let us use one of the
designs from his group for this work.
We would also like to thank Professor John Lach, Department of
Electrical and Computer Engineering, University of Virginia, for
sharing with us some insights on his early works on this topic.

7. REFERENCES
[1] A.E. Caldwell, H. Choi, A.B. Kahng, S. Mantik, M.

Potkonjak, G. Qu, J.L. Wong. “Effective Iterative
Techniques for Fingerprinting Design IP”, 36th ACM/IEEE
Design Automation Conference Proceedings, pp. 843-848,
June 1999.

[2] I. Hong and M. Potkonjak, “Behavioral Synthesis
Techniques for Intellectual Property Protection”, 36th
ACM/IEEE Design Automation Conference Proceedings,
pp. 849-854, June 1999.

[3] A. B. Kahng, D. Kirovski, S. Mantik, M. Potkonjak, and J.
L. Wong, “Copy Detection for Intellectual Property
Protection of VLSI Design”, Proc. IEEE/ACM Intl.
Conference on Computer-Aided Design, pp. 600-604,
November, 1999.

[4] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I.
L. Markov, M. Potkonjak, et al., “Constraint-Based
Watermarking Techniques for Design IP Protection”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1236-1252, October 2001.

[5] D. Kirovski, Y. Hwang, M. Potkonjak, and J. Cong.
“Intellectual Property Protection by Watermarking
Combinational Logic Synthesis Solutions”, IEEE/ACM
International Conference on Computer Aided Design,
pp.194-198, November 1998.

[6] D. Kirovski, D. Liu, J.L. Wong, M. Potkonjak, “Forensic
engineering techniques for VLSI CAD tools”, IEEE/ACM
Design Automation Conference, pp. 580-586, June 2000.

[7] J. Lach, W.H.Mangione-Smith and M. Potkonjak, “Robust
FPGA Intellectual Property Protection Through Multiple
Small Watermarks”, 36th IEEE Conference on Design
Automation Conference, pp. 831-836, June 1999.

[8] J. Lach, W. H. Mangione-Smith, M. Potkonjak, “Signature
Hiding Techniques for FPGA Intellectual Property
Protection”, IEEE/ACM International Conference on
Computer Aided Design, pp. 186-191, November 1998.

[9] J. Lach, W. H. Mangione-Smith, M. Potkonjak, “FPGA
Fingerprinting Techniques for Protecting Intellectual

Property”, Proceedings of the IEEE 1998 Custom Integrated
Circuits Conference, pp. 299-302, May 1998.

[10] M. Ohlrich, C. Ebeling, E. Ginting and L. Sather,
“SubGemini: Identifying Subcircuits Using a Fast Subgraph
Isomorphism Algorithm”, Proceedings of the 30th
IEEE/ACM Design Automation Conference, pp. 31-37, June
1993.

[11] A.L. Oliveira. “Robust Techniques for Watermarking
Sequential Circuit Designs”, 36th ACM/IEEE Design
Automation Conference Proceedings, pp. 837-842, June
1999.

[12] G. Qu and M. Potkonjak. “Fingerprinting Intellectual
Property Using Constraint-Addition”, 37th ACM/IEEE
Design Automation Conference Proceedings, pp. 587-592,
June 2000.

[13] G. Qu. “Publicly Detectable Techniques for the Protection of
Virtual Components”, 38th ACM/IEEE Design Automation
Conference Proceedings, pp. 474-479, June 2001.

[14] J. Smith and B. Comiskey, “Modulation and Information
Hiding in Images”, First International Workshop on
Information Hiding, 1996.

[15] G. A. Spanos and T. B. Maples, “Performance Study of a
Selective Encryption Scheme for the Security of Networked,
Real-Time Video”, International Conference on Computer
Communications and Networks, 1995.

[16] K.W. Yip and T.S. Ng, “Partial-Encryption Technique for
Intellectual Property Protection of FPGA-Based Products”,
IEEE Transactions on Consumer Electronics, pp. 183-190,
February 2000.

[17] Personal Communication with Chris Mead, Xilinx Inc.

[18] Synopsys White Paper on FPGA solutions.

[19] Virtex™-II Platform FPGA Data Sheet.

[20] Virtual Socket Interface Alliance. “Intellectual Property
Protection White Paper: Schemes, Alternatives and
Discussion Version 1.0”, September 2000.

[21] Xilinx FPGA Reuse Methodology Manual, 2nd Edition.

[22] High Energy Group, Physics Department, University of
Maryland.

[23] Benchmark Suite for Placement, CAD/VLSI Lab, National
Tsinghua University.
http://nthucad.cs.nthu.edu.tw/~ycchou/benchmark.

[24] www.opencores.org.

[25] www.xilinx.com.

152

	Main Page
	GLSVLSI'03
	Front Matter
	Table of Contents
	Author Index

