
TRI-Ada ‘0% AT1 

A Simplified 
Graphic Notation 
for Ada Programs 

D. Sterne 
G. Pretti 

A. Glendening 
B. Jachowski 

Government Systems Corporation 

Mr. Daniel F. Sterne is currently a Software System Architect 
and Methodologist for a several hundred thousand-line application 
at GTE. Prior to working at GTE, he was a member of the senior 
technical staff of the Johns Hopkins University Applied Physics 
Laboratory, where he led their applied research in Ada, including 
the Ada prototyping of a portion of the AEGIS Combat System. 

His educational background includes an M.S. in Computer Science 
from the University of North Carolina at Chapel Hill, and a B.S. in 
Mathematics from the University of Washington. He is a member 
of the ACM, SIGAda, and IEEE Computer Society. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76619.76621&domain=pdf&date_stamp=1989-07-01


AT-1 

COMMON ADA DIAGRAM PROBLEMS 

. LITTLE, IF ANY, OFF-THE-SHELF “SMART” TOOL SUPPORT 

. INCOMPREHENSIBLE TO CUSTOMERS, SENIOR STAFF 

. ATTEMPT TO SHOW TOO MUCH 

. Too Detailed ==> No Big Picture View 

l Too Many Dimensions Simultaneouslv ==> Obscures 
Simple Design Deficiencies 

THE GTE APPROACH 

. EXTEND STRUCTURE CHART CONCEPTS AND SEMANTICS 

l Familiar - SimiIar to Traditional Block Diagram 

l Easy to Understand or Parse 

. REPRESENT ESSENTIAL DESIGN DIMENSIONS... 

l SeDaratelv Via 3 Interrelated Diagrams 

l At Different Levels of Detail 

. EXPLOIT OFF-THE-SHELF TOOLS (TEKTRONIX) 

. SUPPLEMENT WITH SIMPLE GTE-WRITTEN TOOLS 

9 



TRI-Ada ‘88 
AT-1 

SIMPLIFIED NOTATION FOR ADA 

. TWO BIG-PICTURE VIEWS 

l Withing Diagram 

l Dependencies Among “Library Unit Groups” 
(Grau,Gilroy) 

l High-Level Static Compile-time Structure 

l Tasking Diagram 

l Task Interactions - Control and Data Flow 

l High-Level Run-time Structure, Concurrency 

l CLOSE-UP VIEW : Ada Structure Chart 

l Internal Structure Of Single Library Unit Group 

l Detailed Compile-time and Run-time Structure, Visibility 

I 1 

STERNE-DF- E/26/88 

withing Diagram. so::es represenr library unit groups 

10 



TRI-Ada ‘88 

STEFWE-DF- a/26/88 

AT-1 

I I 

let 

T 

visible- 
subp4 

Tasking Diagram. Boxes represent concurrent run-time contests. 

STEW-DF- E/26/88 

Ada Structure Chart for status-coordinationgkg. 

11 



TRl-Ada ‘00 AT-1 

AUTOMATED SUPPORT TOOLS 

. DIAGRAMS CONSTRUCTED USING USING TEKTRONIX 
VAX/VMS STRUCTURED DESIGN TOOLS 

. SIMPLE GTE-WRITTEN TOOLS 

l “EVALUATOR“ Compares Withing Diagram Plus “Waiver 
List” To Ada 

. “BUILDER” Constructs Draft Withing Diagram From Ada 
Plus “Waiver List” 

. SIMILAR TOOLS FOR OTHER DIAGRAMS APPEAR 
STRAIGHT-FORWARD 

CONCLUSION 

l NOTATION USED WITH EXCELLENT RESULTS ON LARGE 
APPLICATION AT GTE 

. CONVEYS ESSENTIAL DESIGN DIMENSIONS 

l Effectively 

l Independently 

l At appropriate levels of detail 

. DIAGRAMS ARE SIMPLE, ECONOMICAL 

l Accessible To Nonexperts 

l Maintainable With Off-the-shelf Editors 

l Conducive to Analysis By Modest Cost Tools 

12 



TRI-Ada ‘88 
AT-1 

A SIMPLIFIED GRAPHIC NOTATION FOR ADA PROGRAMS - -- 

D. Sterne 
G. Pretti 

A. Glendening 
B. Jachowski 

GTE Government Systems, 
Rockville, Maryland 

ABSTRACT 

A number of graphic notations for describing 
Ada programs have been proposed. In general, 
these are not supported by off-the-shelf too/s; 
they are perceived by nonexperts as incom- 
prehensible; they obscure simple design 
deficiencies; and they cannot adequately 
represent design overviews. To address these 
problems, a simplified graphic notation has been 
developed and used in a large Ada application 
at GTE Government Systems Corporation, in 
Rockville, Maryland. The notation consists of 
three interrelated diagrams based on extensions 
of structure chart concepts. 

INTRODUCTION 

Unlike earlier widely-used programming lan- 
guages, Ada provides a variety of building 
blocks from which programs can be constructed, 
including packages, tasks, subprograms, and 
generics. Consequently, the topology of Ada 
programs is complex [BOOCH] and not readily 
represented by simple traditional diagrams such 
as dataflow diagrams [DEMARCOJ, structure 
charts [MYERS], and block diagrams. New, 
more descriptive diagrams, tailored for Ada, 
have been developed [BOOCH] [BUHR] 
[CHERRYJ [RATIONAL] [BURKH] [NIELS] 

[STERNE85]. These diagrams tend to be sig- 
nificantly more complex than traditional 

diagrams, however, and most present one or 
more of the following drawbacks. 

A. Few, if any, off-the-shelf tools exist to 
support the drawing or automated 
analysis of these diagrams, except for 
general-purpose graphical editors 
such as the MacDraw program for the 
Apple Macintosh computer 
[MACDRAW]. 

B. The diagrams may be viewed as in- 
comprehensible by customers and 
senior engineers because their inter- 
pretation requires an extensive under- 
standing of Ada constructs. 

C. The diagrams may represent so much 
detailed information, such as individual 
task entries, that they are unsuitable 
for portraying a system-level overview. 

D. The diagrams may attempt to show 
too many independent dimensions at 
once, including containment, visibility, 
concurrency, control flow, and data 
flow. As a result, simple design 
deficiencies, such as circular depen- 
dencies among tasks or among 
packages [NISSEN] PW 
[STERNE86], may be obscured. 



TRl-Ada ‘80 AT-1 

E. The diagrams may include informal an- 
notations, such as clouds, causing 
them to be insufficiently rigorous or 
standardized to be used as formal 
deliverable documentation, especially 
for large software projects. 

At GTE Government Systems in Rockville, MD, 
a new simplified notation for Ada programs has 
been developed and used successfully as the 
primary graphic representation for a several 
hundred thousand-line Ada application. The 
notation comprises three types of interrelated 
diagrams that provide the essential views of 
program organization needed for design reviews 
and maintenance. These include two high-level 
views, called the Withing Diagram and the Task- 
ing Diagram, and a more detailed view called 
the Ada Structure Chart. All three types of 
diagrams are based on extensions of traditional 
structure chart concepts and are constructed 
from structure chart symbols, to which a few ad- 
ditional semantics are given depending on 
diagram type. 

In its emphasis on simplicity, economy, and 
separation of concerns, this notation departs 
from better known and more elaborate graphical 
approaches, and provides the following benefits. 

A. tt conveys the essential dimensions of 
an Ada design independently, effec- 
tively, and at the level of detail ap- 
propriate to each dimension. 

6. Its diagrams are simple enough to 
have the following properties. 

1. They can be understood by 
customers and senior en- 
gineers familiar with traditional 
block diagrams and structure 
charts. 

2. They can be constructed and 
maintained using existing off- 
the-shelf structure chart 
editors. 

3. They can be analyzed by 
modest-cost automated tools, 
and easily standardized for for- 
mal documentation of large 
systems 

OVERVIEW OF NOTATION - 

A traditional structure chart [MYERS] shows the 
calling relationships among subprograms. In ad- 
dition, it shows relative levels of responsibility 
and abstraction via placement of symbols along 
the vertical axis. The advantages of structure 
charts include simplicity, usefulness, ease of un- 
derstanding, and familiarity to many software en- 
gineers and customers. For large Ada applica- 
tions, however, structure charts have two major 
disadvantages. 

A. The subprogram-level view provided 
by structure charts is too low, in terms 
of level of abstraction, to represent the 
architecture of a large program. Dis- 
cerning the organization of a program 
containing several thousand sub- 
programs by examination of structure 
charts is a difficult task at best. 

6. Ada provides many important con- 
structs and relationships not readily 
described by structure charts, includ- 
ing tasks and entries, generics, 
packages, compilation dependencies, 
elaboration, visibility, containment and 
concurrency. 

GTE’s approach to the first problem is employ 
scaled-up summary structure charts to provide a 
“big-picture” view. Since Ada programs have 
two important dimensions, compile-time struc- 
ture and run-time structure, two different sum- 
maries are needed: the Withing Diagram and 
the Tasking Diagram. A means to navigate be- 
tween these two representations is also 
provided. 

GTE’s approach to the second problem is to 
adapt traditional structure chart notation to en- 

14 



TRI-Ada ‘1313 AT-1 

compass several Ada-specific constructs. The 
resulting diagrams, called Ada Structure Charts, 
are used primarily to represent the internals of 
library packages. 

THE WITHING DIAGRAM 

A Withing Diagram represents a summary of the 
static organization of an Ada program’s source 
code. Conceptually, it is a high-level structure 
chart in which each box represents a group of 
subprograms (and tasks) rather than individual 
subprograms. More precisely, a box on a With- 
ing Diagram represents a library unit group or 
LUG as defined in [GRAU], that is “a single Ada 
library unit, its body (if any), all subunits of the 
library unit, and anything nested within the 
library unit, the body, and the subunits.” A With- 
ing Diagram treats the four types of LUGS - 
package LUGS, subprogram LUGS, generic unit 
LUGS, and generic instantiation LUGS - as 
equivalent entities. 

As shown in figure 1, arrows between boxes 
represent compilation dependencies between 
LUGS. The arrow drawn from the LUG 
DEVICE-MGMT-PKG to the LUG 
STATUS~COORDINATION~PKG means that 
some part of DEVICE-MGMT-PKG contains the 
Ada statement “WlTH 
STATUS-COORDINATION-PKG;” and is de- 
pendent on that unit. Frequently, a compilation 
dependency is analogous to the calling relation- 
ship shown by an arrow on a traditional structure 
chart. However, an arrow on a structure chart 
represents a call from a single subprogram to 
another single subprogram, whereas an arrow 
on a Withing Diagram can represent calls from 
many subprograms (or tasks) in one LUG to 
many subprograms (or tasks) in another. Com- 
pilation dependencies may also be caused by 
access to visible declarations of types, con- 
stants, objects, or exceptions, or to generic units 
for purposes of instantiation. 

A consequence of depicting all compilation 
dependencies is that widely-referenced 
packages of declarations (e.g., global data 
types) or utility subprograms will appear on a 
Withing Diagram as connected to many other 
LUGS. This may obscure other more significant 
dependencies. To avoid this problem, GTE con- 
ventions allow such extensively “withed” LUGS 
to be enumerated on a “waiver list” and omitted 
from a Withing Diagram. Beyond being a nota- 
tional convention, the waiver list is a specifica- 
tion fed into automated diagram analysis and 
construction tools, as described in a later sec- 
tion. 

Since a large program may consist of many 
more LUGS than can be shown on a one-page 
diagram, a diagram can be split into multiple 

paw using we connector symbols. 
Nevertheless, a single-page Withing Diagram 
can typically depict as many as 15 to 25 LUGS. 
Assuming use of identical character size and 
line widths, a Withing Diagram can provide a 5 
fold to lo-fold, or greater, improvement in “field 
of view” over better-known notations, such as 
those proposed in [BOOCH] and [BUHR]. The 
degree of improvement depends on the average 
number of contained units and visible declara- 
tions per LUG. In such better-known notations, 
each unit or declaration may require its own 
labeled rectangle, parallelogram, oval, or other 
symbol, thereby occupying page space that 
could otherwise be used for additional LUGS. 
The Withing Diagram’s wider field of view can be 
invaluable when a higher-level design perspec- 
tive is needed, especially during development of 
large programs. 

GTE conventions require that the boxes on a 
Withing Diagram be arranged so that all arrows 
point downward. This serves several purposes. 
First, this forces a top-down view of the 
program, in which more abstract functions are at 
the top, and more detailed functions are’at the 
bottom. Second, it facilitates a rapid initial 



I I 
main 
proc- 

text - 
io device- 

coordination 
instantiation 

utilities 

Figure 1. Example Withing Diagram. Boxes represent library unit groups. 



TRI-Ada ‘88 AT-1 

assessment of the potential impact of changing 
or recompiling any LUG; any other LUG encoun- 
tered by tracing upward from the changed LUG 
through the diagram arrows may potentially be 
affected. (For example, figure 1 shows that the 
only LUG potentially affected by a change in 
DEVICE-MGMT-PKG is the main procedure 
MAIN-PROC.) Third, it detects circular depen- 
dencies among LUGS, because it is impossible 
to arrange the boxes as required, if a circularity 
exists. Although Ada permits circular depen- 
dencies among LUGS, GTE design conventions 
do not. 

THE TASKING DIAGRAM 

The Tasking Diagram summarizes the run-time 
overview of an Ada program, showing the con- 
currency, control flow, and primary data flow 
among Ada tasks. Like a Withing Diagram, it is 
conceptually a high-level structure chart, in 
which boxes on the diagram represent sub- 
program groups rather than individual sub- 
programs. However, instead of grouping sub- 
programs together according to LUG member- 
ship, subprograms are combined into task- 
centered groups according to calling chains. 
Each box on a Tasking Diagram represents an 
Ada task together with all subprograms it calls, 
directly or indirectly as a result of chained sub- 
program calls. By definition, a subprogram call 
chain ends once it reaches a task entry. Since 
the main program is an implicit task, it too, 
together with the subprograms it calls, is 
represented by a box. External entities that may 
affect the concurrency of tasks, such as I/O 
devices and operating system components, are 
represented by double-sided boxes. 

Since subprograms do not affect concurrency, 
they are not shown explicitly but are included im- 
plicity in the boxes representing the tasks that 
call them. Similarly, since package boundaries 
do not affect concurrency, packages are not 
shown graphically. Nevertheless, the names of 

packages that contain tasks do appear, but only 
as parts of box labels, which are given in 
<package-name>.<task-name> format, allow- 
ing convenient navigation between Tasking and 
Withing diagrams. Names of packages that do 
not contain tasks, however, do not appear. 

As shown in figure 2, the CONTROLLER task in 
DEVICE-MGMT-PKG calls at least one entry in 
the COLLECTOR task in 
STATUS-COORDINATION-PKG; the call may 
be chained through layers of subprograms. The 
directed bubble, a “data couple,” represents the 
primary flow of data, which in this case shows 
output from the CONTROLLER to the COLLEC- 
TOR. The flow of data may be input, output, or 
both. Figure 2 also indicates that the CON- 
TROLLER task calls the COMMAND-BUFFER 
task in DEVICE-MGMT-PKG and obtains data 
from it, and communicates bidirectionally with an 
I/O device. 

As for Withing Diagrams, GTE conventions re- 
quire that the boxes on a Tasking Diagram be 
arranged so that all arrows (call chains) point 
downward. This serves two purposes. First, it 
forces a top-down view of the program, this time 
from a control-flow standpoint. Arranged this 
way, a generalized stratification according to 
level of authority is revealed. The tasks “in 
charge” will appear at the top, with subordinates 
near the bottom, and server tasks will appear 
beneath their customers. Second, it detects cir- 
cular calling relationships among tasks, because 
it is impossible to arrange the boxes as required, 
if a circularity exists. Circular calling relation- 
ships among tasks can harbor circular deadlock 
and should generally be avoided [DEC] 
[NISSEN]. 

A Tasking Diagram can reveal and summarize 
the fundamental run-time organization and pur- 
pose of a program. For example, from figure 2, 
the following observations can be made. Of the 
six concurrent entities (boxes) shown, the main 

17 



controller controller 

Flgure 2. Example Tasking Diagram. Boxes represent concurrent run-time contexts. 



TRI-Ada ‘09 AT-1 

procedure and the device controller task are 
clearly “in charge”, because they have sub- 
ordinates and no superordinates; this is reflected 
in their vertical positioning with respect to the 
other entities. The main procedure fetches in- 
put, probably commands, from a terminal, and 
some form of status, from the status collector 
task. Based on these inputs, it sends output, to 
a command buffer. The device controller task 
retrieves commands from the buffer, manipu- 
lates an I/O device in response, and reports the 
results to the status collector task. The results, 
or perhaps summaries of previously reported 
results, are later retrieved by the main proce- 
dure. In short, the program is a closed loop con- 
trol application having a human operator in the 
loop. *Note that little of the preceding information 
can be deduced from the Withing Diagram. 
Note also that if the Withing and Tasking 
Diagrams were merged into a single diagram, 
the Tasking Diagram’s clear depiction of run- 
time structure would be obscured by the Withing 
Diagram’s depiction of compile-time structure. 
This points out the value of representing the 
compile-time dimension separately from the run- 
time dimension. 

THE ADA STRUCTURE CHART -- 

The Ada Structure Chart is a traditional structure 
chart [MYERS] showing calling relationships, 
with additional notational conventions for Ada. 

Given a large enough sheet of paper, it is 
theoretically possible to represent the global call 
tree for an entire program on a single structure 
chart. In practice, the call tree must be par- 
titioned into several structure charts. The GTE 
convention is to partition the global call tree at 
LUG boundaries, putting each LUG on its own 
structure chart. A LUG that is too big for a 
single-page chart is drawn on a multiple-page 
chart, using page connector symbols as junc- 
tions between pages. A different symbol, the 
double-sided box is used as a junction between 
the charts belonging to different LUGS. 

An Ada structure chart shows a detailed view of 
a LUG’s internal structure and calling relation- 
ships, and interfaces to other LUGS. Each box 
on an Ada structure chart represents a sub- 
program, task, or package initialization block. 
Figure 3, shows the Ada structure chart for the 
package STATUS~COORDINATION~PKG, con- 
sisting of a collection of call trees, one for each 
visible subprogram or task. Some call trees 
merge because they have common com- 
ponents, such as the hidden task COLLECTOR; 
others are disjoint. Each tree depicted des- 
cends until completed or until it exits the LUG 
boundary, in which case the first subprogram or 
task encountered outside the boundary is shown 
(for example SOME-FUNCTl in the 
UTILITIES-PKG LUG). To distinguish between 
visible and hidden components, hidden com- 
ponents are drawn as single-sided boxes; visible 
components, even those belonging to other 
LUGS are drawn as double-sided boxes to in- 
dicate their roles as LUG interfaces and chart 
junctions. 

AUTOMATED SUPPORT TOOLS 

The three types of diagrams shown here are 
constructed, edited, and maintained at GTE 
using the Structure Chart Editor component of 
the Tektronix Structured Design Tools running 
on VAXIVMS systems FEKlJ Diagrams 
created by this tool are stored on disk as files of 
character strings that can be easily parsed by 
diagram analysis tools, thereby extracting titles, 
labels, symbol types, symbol positions, and con- 
nectivity information. At present, two simple 
automated tools have been developed to aug- 
ment the Structure Char-l Editor. Both support 
development and maintenance of Withing 
Diagrams. 

The first tool, the Evaluator, compares a Withing 
Diagram and accompanying waiver list to the 
withing relationships found in a set of previously 
compiled Ada units. During the design phase, 

19 



visible 
subpl- 

visible 
subp2 - 

collector 

utilities - 
pkg.some- 

functl 

visible - 
suk )P3 I 

i 
\ 

hidden 
subpl- 

\ 

utilities 
pkg.some- 

funct2 

hidden hidden 

hidden - 
subp4 

hidden 
subp5- 

hidden 
subp6- 

Figure 3. Example Ada Structure Chart showing the internal structure of status-coordinationgkg. 



TRI-Ada ‘813 AT-1 

the diagrams are compared by the Evaluator 
with Ada specifications and body skeletons. 
During the implementation and maintenance 
phases, diagrams will be compared with 
specifications and fully coded bodies. If 
changes are introduced into the code after the 
diagrams have been produced, the Evaluator 
can be used to identify corresponding diagram 
changes needed to maintain consistency. It is 
expected that this capability will contribute 
towards keeping design documentation up to 
date, a historically difficult task. 

The second tool, the Builder, produces an “as 
built” Withing Diagram from a set of compiled 
Ada units and an accompanying waiver list. 
This tool is used primarily to produce a first draft 
of a diagram that can be edited to obtain a more 
pleasing positioning of symbols. The develop- 
ment of similar pairs of tools for Tasking 
Diagrams and Ada Structure Charts has been 
investigated and appears relatively straight for- 
ward, especially if these tools make use of sym- 
bol table information produced by other tools, 
such as compilers. 

Diagrams and code throughout the software life- 
cycle. These tools also demonstrate the ease 
with which other diagram analysis tools may be 
developed. 

SUMMARY AND CONCLUSION 

A simplified graphic notation for representing the 
structure of Ada programs has been described. 
This notation is being used extensively at GTE 
Government Systems in the development of a 
large Ada application. In its emphasis on 
simplicity, economy, and separation of concerns, 
this notation departs from better known and 
more elaborate graphical approaches. Ex- 

perience to date indicates that the notation 
provides the following benefits. 

- It effectively describes the essential 
dimensions of an Ada design. 

- It is understandabie by persons having 
limited Ada expertise. 

- It is compatible with existing off-the- 
shelf structure chart editors. 

- It is conducive to automated analysis by 
simple tools. 

EXPERIENCE TO DATE -- 
REFERENCES 

Withing and Tasking Diagrams have been used 
extensively at GTE throughout the preliminary 
design phase in the development of a several 
hundred thousand-line Ada application. Ada 
Structure Charts have been used for portions of 
the application that have proceeded into the 
detailed design phase. During both internal and 
customer design reviews, these diagrams have 
served, with excellent results, as the primary 
design “road map” through sets of compiled Ada 
specifications. 

Preliminary experience using the Withing 
Diagram Builder and Evaluator tools has been 
positive, and suggests that these tools will 
provide a convenient and effective means of 
maintaining consistency between Withing 

[BOOCH] Booth, G., Software Engineering with 
Ada, Benjamin/Cummings, Menlo Park, CA, 
1983. 

[BUHR] Buhr, R.J.A., System Design with Ada, 
Prentice-Hall, Englewood Cliffs, NJ, 1984. 

[BURKH] Burkhardt, B., Lee, M., “Drawing Ada 
Structure Charts,” ACM Ada Letters, VI, 3, May 
1986,71-80. 

[CHERRY] Cherry, G.W., The PAMELA 
Designer’s Handbook, Thought*‘Tools, Inc., 
Reston, VA, 1986. 

21 



TRI-Ada ‘08 AT-1 

[DEC] VAX Ada Programmer’s Run-time Refer- 
ence Manual, AA-EF88A-TE, Digital Equipment 
Corp., Maynard, MA, Feb 1985,7-18. 

[DEMARCO] DeMarco. T., Structured Analysis 
and System Specification, Yourdon Press, New 
York, NY, 1975. 

[GRAU] Grau, J.K., Gilroy, K.A., “Compliant 
Mappings of Ada Programs to the DOD- 
STD-2167 Static Structure”, ACM Ada Letters, 
VII, 2, 1987, 73-84. 

[MACDRAW] MacDraw, Apple Computer, Inc., 
Cupertino, CA, 1984. 

[MYERS] Myers, G.J., Composite Structured 
Design, Van Nostrand Reinhold, New York, NY, 
1978. 

[NIELS] Nielsen, K.W., Shumate, K., “Designing 
Large Real-Time Systems With Ada,” Com- 
munications of the ACM, 30, 8, August 1987, 
695-715. 

[NISSEN] N&en, J., Wallis, P., Portability and 
Style in Ada, Cambridge University Press, 
Cambridge, UK, 1984, 157. 

[RATIONAL] “Large System Development and 
Rational Subsystems,* Dot. No. 6004, Rational, 
Mountain View, CA, November, 1986. 

[STERNE85] Sterne, D.F., et al, “Use of Ada for 
Shipboard Embedded Applications,” Proceed- 
ings of the Washington Ada Symposium, Laurel, 
MD., March 24-26, 1985. 

[STERNE86] Sterne, D.F., et al, “Package Cou- 
pling and Hierarchial System Structure in Ada,” 
Johns Hopkins University Applied Physics 
Laboratory CER-86-002, March 1986. 

[TEICT] Tektronix Inc., “Structured Design Tools 
User’s Manual for VAX/VMS Hosts,” March 
1986. 


