
TRI-Ada ‘88 RTE-1 

IMPROVED HELLFIRE, 
SUCCESSFUL USE OF -i :4E ADA LANGUAGE 
IN AN EMBEDDED, TtcAL-TIME APPLICATION 

Bill Miller 

Rockwell International 

Missile Systems Division 
Duluth, Georgia 30136 

ABSTRACT 

The Missile Systems Division of Rockwell Inter- 
national has been involved in the successful 
development of embedded, highly real-time, Ada 
software for controlling the guidance of the 
AGM-114 HELLFtRE antitank missile. This project 
is the first operational tactical missile application 
using Ada. This software development effort was 
a very typical embedded project, with many of the 
typical embedded project challenges. Using Ada for 
an embedded, real-time system provided Rockwell 
with a distinotive set of advantages and disadvan- 
tages. It was not only the use of Ada, but a total 
“Software Engineering” approach that resulted in 
the overall success of the software project. 

1. IT CAN BE DONE! 

There appears, in the military software industry, 
to be a significant amount of technical armwaving 
with regard to Ada. There are innumerable 
seminars, symposiums, papers presented, theories 
expounded and general beating of our collective 
software chests. The actual concrete ac- 
complishments within the Ada world do not yet ap- 
pear to measure up to our expectations. 

However, the Missile Systems Division of 
Rockwell International has accomplished 
something unique while maintaining a very low pro- 
file. It has actually developed a working, embedd- 
ed, tactical missile control software application in 
Ada. Not only has it accomplished this feat, a first 
for any DOD contractor; it has done all of this dur- 
ing the Full Scale Engineering Development of the 
digital autopilot upgrade to AGM-114 HELLFIRE 
modular missile program. 

This program and Ada success was and could 
only have been accomplished with significant Ada 
training, planning, use of structured development 
techniques and total support by engineering and 
program management as well as an honest, frank, 
and cooperative relationship with the U.S. Army, the 
customer for the HELLFIRE missile. 

The objective of this paper is to describe some 
of the experiences encountered, to review some of 
the methodology used and to make recommenda- 
tions for future real-time, software projects that will 
be using Ada. 

2. WHAT’S A HELLFIRE? 

A HELLFIRE missile is a modular (launchable 
from various platforms), anti-tank missile. It is 7 in- 
ches in diameter, 5 feet long and weighs about 100 
pounds. It is laser-guided and is supersonic. 

The digital autopilot’s job is to sample the seeker, 
gyros and fin positions, perform the necessary 
calculations and to output new fin positions to main- 
tain a stable flight on the way to the target. For an 
object that travels at 700 feet per second this oro- 
vides a significant processing challenge to the 
microprocessor and the software. 

Although the entire Improved HELLFIRE project 
resulted in the development of a moderate amount 
of Ada code, the amount of software that actually 
resides in the missile is not particularly large: ap- 
proximately 3500 lines of Ada and 2000 lines of 
assembly language. The total software is about 55 
Kbytes of ROM memory with the Runtime Services 
Library (RSL) using about 12 Kbytes of the 55. 

3. ONLY THE BEST WILL DO 

When Missile Systems Division of Rockwell In- 
ternational in Duluth, Georgia began the pre- 
contract award effort for the Improved HELLFIRE 
we had absolutely no Ada experience. When we 
started the program, we hand-selected only the best 
software engineers (i.e. engineeers with specific 
software education) from within the Duluth division. 
The average software engineer had 6 years of 
embedded software experience. The company 
funded a three week intensive, off-site Ada training 
course taught by Data General here in the Atlanta 
area. The course consisted not only of Ada train- 
ing, but Ada training using an actual MSD control 
system application. The course was attended by 

274 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76619.76632&domain=pdf&date_stamp=1989-07-01


TN-Ada ‘aa 

every software engineer who was selected to work 
on the project as well as the software quality 
engineer who was selected for the project. 

As a result of early identification and training of 
all engineers who were to work on the program, the 
project was fully staffed from the first day of the 
effort. 

The software manager of the group (also hand 
selected) was an accomplished software engineer 
who also had significant engineering management 
experience. 

4. PLANNING THE HARDWARE 

As a part of the overall planning, every item of 
anticipated test equipment was identified and ac- 
quired. This list of equipment was crested by the 
most senior members of the development team 
over the period of a couple of weeks prior to the 
start of the software development effort. Their task 
was to attempt to identify the types of problems that 
could arise during the development effort and deter- 
mine if a specific tool existed .that could fac,ilitate 
solving the problem. With very few exceptions the 
set of tools defined and acquired was exactly what 
was needed. This wise investment in the time to 
define the equipment and in capital equipment itself 
resulted in having the necessary tools at the ap- 
propriate time. Very little development time was lost 
due to running around trying to dig up some old 
piece of test gear. 

Another planning effort centered upon how many 
digital autopilot boards (target hardware assets) 
would be available for the software development 
team. This author has seen too many projects 
where only one new board is allocated to all of 
engineering. It quickly becomes cobbled up with 
hardware patches, making it marginally useful for 
software check-out. 

5. WHICH COMPILER? 

The compiler selection for this program was tight- 
ly coupled to the microprocessor selection. 
Availability of processors as well as the availability 
of a validated compiler were both a concern. (We 
were, because of requirements constraints, only in- 
terested in microprocessor chips, not single board 
computers.) 

At the time we were selecting the compiler, ap- 
proximately summer of 1986, the processor/com- 
piler pair that best offered the possibility of actual- 
ly being available was the Intel 80286 processor 
and the Softech compiler. 

RTE-1 

We had narrowed the processor selection to a 
couple of different new processors, each processor 
had promised the imminent validation of a compiler 
targeted to their processor. The feeling was to go 
with the vendor that actually had working hardware. 
It was felt that if we went with the vendor that had 
working hardware and the Ada compiler failed, then 
we could write in some other language. However, 
if we went with someone that had a validated com- 
piler but no hardware, then we could end up with 
software but no processor. 

6. COMPILER EXPERIENCES 

As an opening remark here, let me warn the 
reader that validation isn’t everything its cracked up 
to be. Our first experiences with a “validated” com- 
piler resulted in the compiler frequently failing in 
new and wondrous ways. It did everything from 
hanging up the host computer system (a VAX 
11/765) to producing bad code and everything in 
between. (The bane of being an early adopter is that 
you are a guinea pig, attempting to do things that, 
have never been done before.) One normally 
assumes that adding two variables and putting the 
result into a third variable does not require signifi- 
cant amounts of debugging. With any new compiler, 
this is not necessarily the case.. 

While solving these compiler-related problems 
can be technically exciting for awhile, eventually the 
engineers get tired of “debugging the compiler ven- 
dor’s product” and you the manager get tired of 
reporting to your management that “we’ve looked 
at the code 5 different ways and there should be 
no reason why it shouldn’t run.” Each new compiler 
version release became a new uncharted land to 
be conquered. Eventually we became tired and 
pressed for time and stayed with a particular ver- 
sion of the compiler with all known bugs either solv- 
ed or worked around. As a result of the above ex- 
periences, we have become somewhat wary of swit- 
ching from a known good compiler version to a new 
“better” version, or to another vendors compiler. 

However, we were not left to fend for ourselves 
at each new compiler version release. During the 
initial installation of any new compiler version, 
Softech has been extremely helpful in solving the 
problems that have been encountered. They ap- 
parently have a reasonably sized software staff and 
have assigned one person to be our interface and 
have worked quite closely with our software 
engineers. As a result, their mean time to solve 
each problem seems to be quite reasonable. 

275 



TN-Ada ‘80 

7. WALK BEFORE YOU RUN 

We had, at the beginning of the project determin- 
ed that it was not a goal to implement a 
sophisticated program from the Ada standpoint. Too 
often, I have seen the mistake made of using the 
project as a justification for experimenting with new 
tools. The sole goal of Improved HELLFIRE was to 
develop a program that would control the missile 
flight and to use the features of Ada that best 
facilitated this goal. 

While Ada offers many language features that are 
highly attractive, initial tests, or trade studies, show- 
ed some of them to be far too costly with regard 
to time and/or memory. 

The major language features that our HELLFIRE 
design avoids are: generics and tasking. Whereas 
these are two prime characteristics of the Ada 
language, the highly critical time constraints of our 
system prevented either of these features from be- 
ing usable. 

Task context switching, to be usable for us would 
need to occur. in the 10 tu 20 microsecond’range. 
For generics there is a run-time instantiation tax that 
we felt was not worth the price. Instead of tasking 
we used a background/foreground technique to 
handle the two primary processing rates. We wrote 
our own rendezvous software to move data between 
the two processes. 

The software design methodology use for this 
project consisted primarily of Yourdontm Data Flow 
Diagrams. This method, although poo-pooed by 
many critics, has been used successfully by the 
author continually on small, highly realtime projects 
over the last 8 to 10 years. Whereas other, newer 
design methods such as OODtm (Object Oriented 
Design) or PAMELA’” (Process Method for 
Embedded Large Systems) might have offered 
some advantages, it was decided to have only one 
new variable, Ada, in this project’s equation. 

In an attempt to accomplish some amount of ear- 
ly software prototyping, prior to creating code 
bodies, specifications for all software modules were 
created, compiled and linked with stubbed bodies 
to ensure that consistent data flow was occurring 
throughout the software system. Additionally, any 
assembly language that was used was interfaced 
to other Ada software via an Ada specification. 

This early definition of acceptable language 
features was highly contributory to the software’s 
overall cost and schedule successes. Redoing the 
software following a completed design, coding and 
check-out would not have allowed us to meet our 
schedule. 

RTE-1 

8. BEWARE OF RUN-TIME 

When we first embarked upon our Ada effort we 
were absolutely unprepared for the many implica- 
tions of the run-time. Our timer structure, interrupt 
system and memory layout were somewhat non- 
standard. This non-standard hardware didn’t pro- 
ve to be too great a problem with the Sof-tech Run- 
time. What proved to be too great a problem was 
getting all the run-time features that we needed 
without “buying the entire farm” of run-time (text 
l/O, tasking, etc.). Softech offers two versions of run- 
time: mini-RSL (Run Time Services Library) and full 
RSL. Unfortunately mini-RSL didn’t have everything 
we needed and full-RSL was too big for us (taking 
all 64K of the memory allowed to be used by the 
Improved HELLFIRE software). As a result Softech 
created a midi-RSL for us (at a cost) that contain- 
ed the necessary features. 

The ideal run-time is one that would be fully con- 
figurable, allowing one to select and choose only 
those desired features. 

Once the technical issues of run-time are solv- 
ed, then one must climb the multipie copy licens- 
ing wall. For the HELLFIRE program, this may not 
be a large dollar item. However, the legal ramifica- 
tions are far too mind-boggling for this Software 
Manager to comprehend. The HELLFIRE digital 
autopilot is to be dual sourced once it gets into pro- 
duction. Who needs to get licenses, the Army, both 
contractors or all three? What about if one of the 
contractors wants to build missiles for another arm 
of the armed services or for a foreign country? 
These are questions that still remain to be 
answered. 

9. THROUGHPUT PROBLEMS! 

Throughput was anticipated from the beginning 
of the program to be a bottleneck. As a result it was 
closely monitored beginning at the earliest design 
stage. The problem with throughput was twofold: 
We had the real physical limitation of the 
microprocessor, and we had the problem that 100% 
Ada would reequire customer concurrence and an 
approved deviation. 

From the very beginning, there was a serious 
concern that 1000/o Ada would not fit into the 
available throughput of the microprocessor. 
However, until the entire system was built up and 
a system was put into hardware-in-the-loop testing, 
no real, total throughput measurement could be 
made. (A frightening but common prospect was that 
we would not really have a firm handle on total 
throughput until month 20 of a 38 month project.) 
Moreover the complexity of the requirements 

270 



TRI-Ada ‘88 

made it difficult to predict software “hot spots”. 
Therefore we decided to develop the entire system 
in Ada with the intention of converting to asssembly 
language later as required to achieve the necessary 
throughput margins. 

As the requirements firmed up, a throughput 
budget for each module was established. If all 
module bugets could be achieved, and acceptable 
throughput margin would be attained. As testing 
progressed, any module that grossly missed it’s 
budget was re-evaluted in a couple of ways. First 
the code was reviewed to determine if’changes 
could be made to remove subroutine or function 
calls. Then the requirements were reviewed to 
determine if changes or simplifications could be 
made to remove subroutine or function calls. Then 
the requirements waere reviewed to determine if 
changes or simplifications could be made that 
would still accomplish the intended task but allow 
the module to remain as Ada code. Next, the code 
itself was reviewed to determine if coding any of the 
math as integer (since we used floating point types 
rather heavily) was feasible. ,Finally, after above ef- 
forts failed, modtiles were conveiied to asseinbty’ 
language. However, the original Ada code was re- 
tained, maintained and delivered as part of the final 
product. This allows for an easier growth back to 
Ada if faster processors become available. Modules 
with marginal timing were left unchanged until the 
entire system was put together and tested. 

The resultant delivered code consisted of a mix 
of both Ada and asssembly, with the minimal 
amount of assembly used to achieve necessary 
throughput margins. There was defiantly a trade of 
throughput margin versus percent Ada that waas 
made with the Army’s concurrence. In the particular 
case of Improved HELLFIRE, throughput is sitting 
at approximately 80% and the Ada/Assembly mix 
is sitting at about 80% Ada (versus the contract 
desired values of 60% throughput utilization and 
100% Ada). 

10. SOFTWARE QUALITY’S ROLE 

As a military contractor, my largest complaint with 
Software Quality Assurance (SQA) has been that 
too often they act as Software Paperwork Quality 
Assurance. While it is important that paperwork 
have a minimum of errors, I believe that SQA can 
and should have a larger and more critical role in 
the development of software. This role requires 
SQA engineers who understand software systems 
instead of paperwork systems. While this concept 
may seem obvious at first, one needs to consider 
that development engineers want to do engineer- 
ing, not quality. 

ME-1 

For this program we had a software quality 
engineer assigned full time to this program. This 
SQA engineer sat with the development engineers, 
participated in design decisions reviewed design 
specifications and most importantly had access via 
the VAX to read all the engineering development 
files. The SQA engineer participated in the above 
mentioned Ada training course. As a result he was 
well prepared to and did spend a significant amount 
of time actually looking at PDL and source code 
during its development to ensure that not only were 
standards being adhered to but to also ensure that 
technical requirements are being satisfied. 

Moreover, the sofware quality engineer ensured 
that test plans were followed and tests logs with 
results were maintained. 

Finally, the software quality engineer was used 
as a developmental configuration management 
librarian. In this capacity he was able to ensure the 
integrity of tested software modules. 

11. RECOMMENDATIONS 

Ada was mandated on the Improved HELLFIRE 
program. Perhaps we at MisslIe Systems Oivisjon 
were too naive to take an exception to the Ada re- 
quirement at the beginning of the project. If we had 
Improved HELLFIRE would have been just another 
project with some software in it and I wouldn’t be 
here today telling you what can be accomplished. 
Ada is really not a word that should scare or even 
challenge potential real-time software contractors. 
Ada is a tool for developing software that offers 
tremendous advantages over other High-Order 
Languages. As the products of the Ada compiler 
vendors become more mature and sophisticated, 
it is obvious to this writer that Ada will become the 
preferred development language of all software 
engineers. 

This software project is not only a testimony to 
the Ada programming language but also to modern 
software engineering techniques. The keys to this 
successsful software program are embodied in the 
following points: 

1. Adequate Planning 
2. Anticipation of and tracking of potential problems 
3. Early Prototyping 
4. Sufficient capital equipment 
5. Sufficient target hardware assets 
6. Highly qualified and trained engineers 
7. Intense SQA involvement 
8. Use of Ada! 

277 



RTE-1 

Bill Miller has 16 years of real-time, commercial and 
military software development experience. He has been with Rock- 
well International for the past five years and is currently the 
Kandger of Software Design at llissile Systems Division. Prior to 
this assignment Bill was the manager of Real-Time Software En- 
gineering for the Strategic Defense and Electra-Optic Division at 
Rockwell , guiding the developement of multiprocessor. real-time 
image processing and signal processing applications. Bill has a 
B.S. in Computer Science from the University of California at Ir- 
vine and an tlBA from .West Coast University. 



TRI-Ada RTE-1 



TRI-Ada RTE-1 



TRl-Ada RTE-1 


