
MGMT-2 

LESSONS LEARNED BY USING 

DIFFERENT METHODOLOGIES 

ON FIVE Ada PROJECTS 

Mary E. Biddle 
GTE Government Systems 

Rockville, Maryland 

Mary E. Biddle has recently joined 
GTE Government Systems as a 
Member of the Technical Staff 
working in SW Support to 
Systems Engineering where she is 
supporting the Ada project, 
MINSTREL. Before coming to 
work at GTE, she was employed 
at Magnavox Electric Systems 
in Fort Wayne, Indiana where 
she worked on several Ada 
projects. Previous to this . 
experience, she was employed 
at Harris Corp. in Melbourne, 
Florida where she also worked 
on several Ada projects. 

556 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76619.76643&domain=pdf&date_stamp=1989-07-01


TRl-Ma ‘88 MGMT-2 

PROJECT 1 

0 No Methodology 

0 Packages formed around 
Functional Capabilities 

0 Types grouped into 
One Large Types Package 

MAIN 

/ \ 
Package1 Package2 

Subprograms Subprograms 

/ \ \ 

Package4 Package5 
r 

Subprograms Subprograms 

L 

c . , Package6, * 

TYPES 

PROJECT 1 



TRI-Ada ‘88 MGMT-2 

PROJECT 2 

0 W/SD 

0 Packages formed around 
Functional Capabilities 

0 Types grouped into 
several small Types Packages 

Subprograms 

Package8 

i 

lYPEs 

PROJECT 2 

558 



TRI-Ada ‘00 MGMT-;! 

PROJECT 3 

0 W/SD 

0 Packages formed around 
Functional Capabilities 

0 Types grouped into 
the same Packages as 
the Subprograms 

rl MAIN 

I I 

, Package1 * Package2 , 

Types I I Types 

Subprograms 
I I 

Subpmgrams 

PROJECT 3 

559 



-ml-Ada ‘88 MGMTP 

PROJECT 4 

0 SAIOOD 

0 Packages formed around Objects 

0 OOD started after the system 
was broken into Functional 
Groups 

PROJECT 4 

560 



TRIAda ‘58 MGMT-2 

PROJECT 5 

0 

0 

0 

SAIOOD 

Packages formed around Objects 

OOD started after System Analysis 

561 



TRI-Ada ‘80 MGMFP 

was one instance in which 15 different packages had 

to be examined in order to debug one line of code. It 

the “with”ing structure was far less complex tha.n the 

two previous projects. (See figure 3.) 

was very frustrating and not very efficient. 

o Types were duplicated quite often. It was much 

easier to create a new type than to trace through the 

system to look for the existing type. Not only was a 

new type created, but in many cases a whole new 

package would be created. 

o Subprograms were duplicated at an alarming rate. 

The system was much too complex to spend the 

time looking for the subprograms needed. Instead 

new subprograms would be created. Figure 3. Package Structure for Project 3. 

4. Project 3 
Experiences and Lessons Learned. 

Background. The third project was an EW program 

resulting in 50,000 SLOC. The target was the 

Motorola 68020. The host and development 

environment was the VAX/VMS 8550 with the Verdix 

Ada Development System. 

o Recompiling was reduced to a minimum. (Since 

packages were formed around functional capabilities, 

when more than .one functional capability needed the 

same type it would be duplicated in several packages. 

o System test and integeration went more quickly 

with fewer problems than any program of this kind had 

Methodology. The developers on the third project 

were introduced to Object Oriented Development 

(OOD), but were reluctant to use it. They were new 

to Ada and had difficulty grasping the concepts of 

OOD. Due to their past experience, the staff chose 

functional decomposition according to DeMarco as 

the methodology for the project. Data flow diagrams 

were used for analysis and structure charts were 

used for design. The importance of package design 

was stressed but no common methods were 

incorporated. 

in the past. 

o Types were duplicated. Types that were needed 

by several logical functionalities were duplicated in 

several packages. 

o Subprograms were duplicated. Since the types 

were duplicated, some of the basic utilities needed 

by the types were also duplicated. 

o Types collided. Since types were duplicated there 

were occasions when the two types needed to be 

the same type. Explicit type conversion could be 

used for simple types. When compound types were 

duplicated the process became very lengthy and 

complicated. 

o Circular dependency was also a problem. The use 

of functional capabilities to design packages often 

resulted in circular dependencies that required a 

rework of the design that distorted the original 

concept. 

Topology. Due to the introduction of OOD, the 

types and subprograms were not separated into 

different packages. The packages were designed 

around functionality but each package included the 

types as well as the subprograms. The complexity of 

564 



TRI-Ada ‘88 MGMT-2 

o During system test and integration it was difficult 

to trace a problem to the source. The types package 

was so large that it was difficult to find the 

appropriate data representation being used by the 

source. When several data types were used to form 

a new data type, the problem was compounded. 

Many hours were spent tracing data. This only 

increased the problem by making the package much 

larger. 

o Types were often duplicated. When a new 

function was added which used a type that the 

developer did not know existed, the developer 

added a new definition. It was much easier and 

faster for the developer to add a new type than to 

look through the types package to see if the 

definition existed. 

o Subprograms were often duplicated. When the 

developers duplicated a type, they would tend to 

duplicate the subprogram the type needed as well. 

.3. Project 2 

Background. The second project was an automatic 

test equipment program resulting in approximately 

200,000 SLOC. The DEC compiler was used on the 

VAW’JMS 8600. 

Methodology. After examining the mistakes of the 

first project, the program developers decided to use 

a more stringent methodology, Yourdon’s functional 

decomposition methodology. The developers used 

data flow diagrams to express the analysis phase 

and structure charts to help determine the design. 

No formal techniques were incorporated to develop 

the package design, although it was decided the 

large types package would not be used. 

Topology. The packages were formed based on 

functionality. Types were added as an afterthought. 

The grouping of the types into packages was based 

on need. In one case two CPCls needed to 

communicate, a types package was formed. In 

another case a package needed certain types to 

communicate with its subordinate packages, so a 

types package was formed. The structure be gan to 

look like a spider web. (See figure 2.) 

l-l Types 

Figure 2. Package Structure for Project 2. 

Experiences and Lessons Learned. 

o Whenever data changed it was not unusual to 

recompile large portions of the system. There was 

much less compiling than with the one common types 

package, but many packages were coupled through 

the sharing of the types package. 

o During system test and integration it was very 

difficult to trace a problem. The complexity of the 

system was increased by the “with”ing structure to the 

point where it was almost unmanageable. When 

looking at a procedure in a package it was not unusual 

to require five or six types packages. When that 

procedure referenced several procedures in different 

packages it became too complex to sort out. There 

563 


