TRI-Ada ‘88 AT-3 &4

Ada Software Engineering and Optimized Code

/ Ada Compilers and Run-Time Issues \

Ada Software Engineering
and
Optimized Code

Gary Frankel

k TeleSoft /
TELESCOFT.

©1598

Mr. Frankel received a B.S. from California Institute of Technology in 1974;
graduating with honors. He then spent 3 years designing and implementing
real-time simulators and trainers. For the last 9 years he has been engaged

in systems programming including 7 years of design and development work
on the TeleSoft Ada compiler and related tools.

Copyright © 1988 by TeleSoft

55

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76619.77021&domain=pdf&date_stamp=1989-07-01

TRI-Ada ‘88 AT3 &4

Ada Software Engineering and Optimized Code

/ |Usage of Software Engineering Practices CAN result in High Quality Cohl

o Software Engineering Practices
o Abstract Data Types w/ Information Hiding
o Reusable & Generalized Software Constructs
o Careful definition of Types with Associated Runtime Checks
+
o Software Engineering inspired Optimizations
o lnlining
o Interprocedural Information
o Collections
o Check Removal
o Lifetime Minimization
+
o Global Optimizations

o Optimized Code without sacrificing Software Engineering

/

©1988

Ada promotes the usage of a number of software engineering practices.
Historically, users believed that constructing software using these
approaches resulted in poorer code and that careful low-level coding
was the only way to get high quality resutlts.

The maturation of Ada global optimizers can now_ provide implementations
of classical global optimizations that significantly improve the outeut

code quality. However, an Ada Optimizing Compiler must still take

into account the high level software engineering practices to ensure that
users can get the full power of other important optimizations.

A number of optimizations in the TeleGen2 Ada Compilation System .
have been specially aimed at supporting users who practice good engineering
skills. These users should be encouraged, not penalized by the compiler.These
optimizations allow the user to produce generalized reusable software with
information hiding without being penalized. The oplimizations also support the
user in mak[n%gxtenswe usage of Ada type and subtype constraints. That
gggrmatlon is both used to remove runtime checks and to actually produce better
e.

These software engineering oriented optimizations must be combined with
a powerful implementation of classical global and local optimizations.
Those optimizations provide the high code quality while the engineering
oriented optimizations remove impediments that would block the other
powerful improvements.

The combination results in a compiler which is capable of producing highly
optimal code while encouraging good software engineering.

Copyright © 1988 by TeleSoft

56

TRI-Ada ‘88 AF3 &4

Ada Software Engineering and Optimized Code

r ISOFTWARE ENGINEERING PRACTICE I \

o Information Hiding using small subprograms
o Separate Compilation Units
o Reusable and Generalized Software

o Constrained Type & Subtype Definitions

S s

©1988

Ada promotes the use of a number of software engineering practices. These
practices include :

* Construction of abstract data types with small subpro%rams to provide
information hiding. This approach makes it critical for the compiler to be
able to minimize or remove the effect of the subprogram when the
structure is only utilized for information hiding.

* Construction of programs in separated compilation units. This technique is
clearly necessary to minimize the compilation effect of changes
and modifications in program development. Yet, this selparatlon

normally works against compilers by making considerable information
unavailable.

* Production of reusable general software constructs. These program
units frequently handle generalized cases or multiple possible
variations. A specific usage will onlx' utilize a partial capability
and the compiler needs to remove the unnecessary code.

* Extensive usage of constraints and Ada’s language provided runtime
checks to catch errors. Programs that provideé proper assertions
about the valid values of objects clearly are more robust and better
defined. However, most current users either do a sloppy job of
definition or turn off ali checks when really using the code. The
compiler should make it possible to leave the checks on and still
get good quality code.

* Explicit declarations with appropriate initialization. The Ada
declarations are in specific source locations in program units and
this frequently lplaces the object initialization far from its usage.
Without compiler support, that can be detrimental to code quality
by artificially extending the lifetime of that object.

Copyright © 1988 by TeleSoft

57

TRI-Ada ‘88 AT3 &4

Ada Software Engineering and Optimized Code

(| SOFTWARE ENGINEERING ORIENTED OPTIMIZATIONS I \

o inlining - Both Pragma infine marked and Smali

o Interprocedural Information Gathering - Detailed info on usage and
definition of non-local objects

o Collections - Set of Compilation Units combined to make a new Construct
with Limited External Interface

o Check Removal - Range Propagation and Test Pushing
o Lietime Minimization - Move Initialization code closer to usage

o Optimization Interaclion - Many of these optimizations work together

to increase their usefulness.

N N—

©1988

* Inlining - This includes not only user directed inlining, but also
inlining of s_ubp_rograms that are sufficiently small or called only
once. Inlining is done early in the optimization process to expose
the inlined code to other optimizations.

* Interprocedural Information Gathering - With the modem practice of
extensive usage of subprograms and the Ada encouragement of this
practice, it is critical that the compiler not have to make overly
pessimistic assumptions about the effects of that call. This
requires gathering information on the uses.and definitions of non-local
?r%ectsfl?y c'tsubprograms so that the caller can take into account

se effects.

* Collections - The compiler allows the user o group a set of compilation
units together and define a collection. That collection has a defined
interface. The user could define an equivalent top-down construct, but
frequently the bottom up build of that construct uses existing components
and is easier to define. This allows the compiler to utilize the
same optimizations on a larger code structure with information not
available otherwise.

* Check Removal - Checks in Ada are excellent tools for debugging
code and asserting the proper behavior of that code. The compiler
can utilize range declarations, explicit assignments, tests, etc to
analyze the possible ran%e of objects and exP_ressnons. This allows
the compiler to remove checks that are not strictly necessary to
maintain program correctness.

* Lifetime Minimization - Ada declarations with initiaiization (especially
default initialization) are frequently far removed from the usage of
those declared objects. This extends the lifetime of those objects
unnecessarily and worsens register utilization. Therefore, these
initializations are moved as close as possible 1o the usage.

* Optimization Interaction - Optimizations work together in important
ways.. Inlining opens up code for check removal and other optimizations
including removal of dead code (due to generalized constructs).
Collections allow more extensive inlining and significantly improved
interprocedural information. Check removal unblocks optimizations
which would be prevented by those checks.

Copyright © 1988 by TeleSoft

58

TRI-Ada ‘88 AT-3 &4

Ada Software Engineering and Optimized Code

4)

o Pragma Inline directed

o Called-Once auto infining

o "Smal” subprograms

o Payoffs
o Call Removal
o Code Removal
o Check Removal
o Available for other Optimizations

-

* Inlining is the critical element of optimizations aimed at sofiware
ef meenn?. This allows users to utilize subprograms for information
hiding and 1o write generalized software.

* Users can direct the inlining based on their knowledge of the_sub{)rogram.
The user may know that the subprogram will be small and is just there
for information hiding or it may be a generalized software component
where a particular instance of it will utilize only a single case.

* The compiler also inlines subprograms that are called only once. In
that case, the code only needs to be present once and the call overhead
is automatically removed. This situation could occur due to user structuring
for readability or due to collections or due to maintenance changes.

* The compiler also recognizes subprograms that are sufficiently small
that the call itself consumes as much space as the actual body. This
happens frequently when subprograms are used for information hiding.

* Inlining has a number of benefits. Of course, the first payoff is simpl
the removal of the call overhead. This overhead includes costs involved
in parameter passing. This payoff occurs even without other optimizations.

* Other and often more important payoffs occur due to opening the subprogram
body to other optimizations. Considerable information on ranges and
values of parameters can now be utilized. This can result in removal of
entltr_e basic blocks and branches - especially for a general purpose
routine.

1988

* Check removal is also made easier in the open inlined body due to
the improved range information available on the specific parameters.
Information on the flow-thru effects of the subprogram body are also
improved relative to the normal interprocedural information gathering.

Copyright © 1988 by TeleSoft

59

TRi-Ada ‘88 Al-3 &4

Ada Software Engineering and Optimized Code

e

o Allows controlled Combining of previously coded units

o Elimination of unused subprograms

o Improved interprocedural info

o improved Infining

I

©1988

* A collection is a set of separate compilation units (library units and
subunits) that the user wants to combine for improved optimization.
The collection has a specified interface, which is normally a subset
of the interfaces of the library units in the collection. This capability
is usually utilized when a sef of units combines to provide a specific
function and the development has stabilized sufficiently to no
need frequent changes to those units.

The primary purpose of collections is to allow good development practices
with a number ot separately compiled units and still get the payoft of
global optimization utilizing’ alt of the available information.

* The optimizing compiler will eliminate any unused subprograms from
the collection. These may be §ubprograms which are used in some contexts,
but not in this particular collection. An example would be large
parts of Text_IO when only the strings or integer portions are used.

* The available interprocedural information is significantly improved.
Without collections, the compiler must make worse case assumptions about
any external units. For units whose interface is not visible outside
the collection, this is no longer true. The compiler can utilize .
information on items accessed by those subprograms and also can provide
data on what parameters are actually used to call the subprogram.

* In a collection, the optimizing compiler can now inline routines that
were previously external an that are sufficiently small or calied only
once. In other words, the pnma%genem of collections is to enable
other optimizations which were blocked by the separate compilation.

Copyright © 1988 by TeleSoft

TRI-Ada ‘88

Ada Software Engineering and Optimized Code

\

| CHECK REMOVAL I

o Expression Range Calculation
o Range Propagation
o Branch Test Pushing

o Check Test Pushing

N

©1988

* Ada checks are a powerful tool in helping debug programs. The checks form implicit
assertions on the programmers part of how the values of the program should behave. If the

user has explicitly checked a particular assertion, then the compiler should remove any checks

which further te

Check removal is accomplished by careful analysis of the range of the value being checked. If

r that same assertion. Similarly, the compiler should remove checks where
the possible value set of the object or expression tested cannot violate the assertion.

that value passes the check assettion, then the check is removed. .
Check removal is critical both for basic code improvement and for unblocking other

optimizations.

* The first step in check removal is the calculation of the possible range of an expression

(ﬁarticularly_numeric expressions). The more refined the user subtypes are, the more accurate
the exgressngn range will become. The expression range can be used to remove checks and
er refine the range of any object which the expression value is assigned to. The .
propagated range of objects also improves the expression range calculation (ex. an object with

to furt

range 1..100 but whose only reaching value is an initialization of 5).

* Range propagation is accomplished by tracking the possible values of an object in linear code
and merging possible incoming values in branch situations. Obviously, good subt
constraints on objects initially helps the compiler do a better job of cheCk removal.
help actually generate better code in some cases. Consistent usage of a subtype also makes

Wgan also

it easier to remove checks. For example, some benchmarks are very poor in this area and

actually make it impossible to remove the checks where a simple proper subtype on a formal

parameter would solve the problem.

* Branch test pushing occurs when an object is tested at some branch point {ex. an if test).

if x < 5 then
Z=X;
else
y =x-3;
end if;

On the true branch, x has a value bounded with a max of 5, while the min is 6 on the false

branch. This contributes to check removal on the branches and expression range

calculations. The user has often put in this test as a specific assertion and that atlows the
compiler to remove any checks that test that same characteristic.

* Check test pushing occurs when a check has already been made on a specific value or object

for a particular assertion. Further checks on that asSertion are removed. The prime example
is a null access check. Once a single test has verified that the access value is not null, no
other checks are necessary that test for nuil.

Copyright © 1988 by TeleSoft

61

A3 &4

TRI-Ada ‘88 Al-3 &4

Ada Software Engineering and Optimized Code

/ I CLASSICAL OPTIMIZATIONS I \

o Common Sub-Expression Recognition
o Dead-Code Removal

o Global Register Allocation

o Loop Invariant Code Motion

o Loop Strength Reduction

o Copy Propagation

o Arithmetic Strength Reduction

_ I

©1908

* CSE Recognition - The compiler recognizes common sub expressions that
compute the same value and replaces subsequent evaluations with usage
of the first calculation of the expression. This replacement is controlled by
a target dependent cost since CSES may be better recalculated depending
on the machine and the context.

* Dead-Code Removal - Entire basic blocks can be dead code in a given
grogram. This can occur due to range propagation eliminating a code
ranch or the |n||n|_n% of a generalized software unit where a set of
cases is not used in that particular context. Dead statements can also
occur when the target of an assignment is never utilized. This
is a frequent occurrence in long-lerm maintenance of code.

* Global Register Allocation - The quality of the register allocation is
a dominant factor in making all other optimizations payoff. Global
allocation is performed for the entire subprogram using a priority
based graph coloring approach.

* Loop Invariant Code Motion - Loops are the key component in speed
improvements in most code. The compiler moves any expressions and
statements in a loop that are the same on all passes of the loop.

In ne%tled loops, these are moved as far out in the loop strucfure as
possible.

* Loop Strength Reduction - Arithmetic operations inside loops (including
addressing arithmetic) that depend on the loop induction variables
can frequently be improved. This improvement "reduces” a more
expensive operation such as a multiply to an add. The common examples
of this optimization are in array indexing inside loops, but other
cases also occur and can be handled uniformly.

Copyright © 1988 by TeleSoft

62

TRI-Ada ‘88 AF3&4

Ada Software Engineering and Optimized Code

K CONCLUSION \

o Highly Optimized Code can Be Acheived
Without Sacrificing Software Engineering
Practices.

_ S

©1988

An optimizing compiler that does a quality job on
classical optimizations and has optimizations that
strongly support Ada software engineering practices
can and does produce highly optimized code. That
combination allows the user to produce well-designed
code and achieve the required efficiency.

Copyright © 1988 by TeleSoft

63

