
TRI-Ada ‘aa AT-3 84

Ada Software Engineering and Optimized Code

Ada Compilers and Run-Time Issues

Ada Software Engineering
and

Optimized Code I

Gary Frank4

Tel&oft

Mr. Frankel received a B.S. from California Institute of Technology in 1974;

graduating with honors. He then spent 3 years designing and implementing

real-time simulators and trainers. For the last 9 years he has been engaged

in systems programming including 7 years of design and development work

on the TeleSoft Ada compiler and related tools.

Copyright 0 1988 by TeleSoft

55

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76619.77021&domain=pdf&date_stamp=1989-07-01

TM-Ada ‘80 AT-3 &4

Ada Software Engineering and Optimized Code

r 1

Usage of Software Engineering Practices CAN result In High Quality Code

0 Software Engineering Practices

o Abstract Data Types wl Information Hiding

o Reusable 8 Generalized Software Constructs

o Careful definition of Types with Associated Runtime Checks

+

o Software Engineering Inspired Optimizations

0 Mining

o Interprocedural Information

0 Collections

o Check Removal

0 Lifetime Minimization

+

o Global Optimizations

o Optimized Code without sacrificing Software Engineering

Ada promotes the usage of a number of software engineerin
Historically, users believed that constructing software using t R

practices.
ese

approaches resulted in poorer code and that careful low-level coding
was the only way to get high quality results.

The mafuration of Ada global optimizers can now provide implementations
of classlcal global optimlzations that significantly improve the out

R
ut

code quality. However, an Ada Optimizing Compiler must still ta e
into account the hi

B
h level software engineering practices to ensure that

users can get the ull power of other important optimizations.

A number of optimizations in the TeleGen2 Ada Compilatiin System
have been specially aimed at supporting users who practice good engineering
skills. These users should be encouraged, not penalized by the compiler-These
optimizations allow the user to produce generalized reusable software with
information hiding without being penalized. The optimizations also sup R the
user in makin
information is to

extensive usage of Ada type and subty
th used to remove runtime checks a I-K!

e constraints. Qo hat

code.
to actually produce better

These software engineering oriented optimizations must be combined with
a powerful implementation of classical global and local o timizations.
Those optimizations provide the high code quality while R e engineering
oriented optimizations remove impediments that would block the other
powerful improvements.

The combination results in a compiler which is capable of producing highly
optimal code while encouraging good software engineering.

Copyright 0 1988 by TeleSoft

56

TFWda ‘88 AT-3 84

Ada Software Engineering and Optimized Code

SOFIWARE ENGINEERING PRACTICE

0 lnfolmalion Hiii UelnQ amall w

0 saparate compllatii unita

0 Reusdle and Genedized Saftwcre

OCOlWlrainedType&.suMypeDefilillOfW

Ada
c?

ran-totes the use of a number of software engineering practices. These
pra ices include :

* Construction of abstract data types with small sub r rams to provide
information hiding. This approach makes it critica for he compiler to be PO8
able to minimize or remove the effect of the subprogram when the
structure is only utilized for information hiding.

l Construction of programs in se
clearly necessary to minimize t I!

arated compilation units. This technique is
e compilation effect of changes

and modifications in program development.
normally works against compilers by making

Yet, this se f aration
considerab e information

unavailable.

l Production of reusable general software constructs. These
7

rogram
unrts frequently handle generalized cases or muttiple posslb e
vanatrons. A specrflc usage will onl
and the compiler needs to remove t t;

utilize a parhal capability
e unnecessary code.

l Extensive usa
checks to catc R

e of constraints and Ada’s language provided runtime
errors. Programs that provide proper assertions

about the valid values of objects clearly are more robust and better
defined. However most current users either do a sloppy job of
definition or turn off all checks when really usin

I8
the code. The

compiler should make it possible to leave the ecks on and still
get good quality code.

* Explicit declarations with appropriate initialization. The Ada
declarations are in specific source locations in program units and
this frequently laces the object initialization far from its usage.
Without compr er support, that can be detrimental to code quality - f
by artdlcially extending the lifetime of that object.

CopyTight 0 1988 by TeleSoft

57

TM-Ada ‘88 AT-3 &4

Ada Software Engineering and Optimized Code

1 SOMARE ENGINEERING ORIENTED OPTMZATIONS m

o Inlining - Bah Prapa lnline marked and Small

0 Inhpmcedurd lnbmatiin Gdharin~ - Dstatled id0 on usags and

definitii ot rlondodobjede

oCdledions-Se(dCompilationUnitscombinedtomakeanewConstrud

wilh Ltmhd Extmnal lntsrtace

o Check Removal - Rangs Pqa@on and Test Pushii

0 Lhtime Minimization - Move lnittttelion code ctosar to usaga

0 Cptiiizatbn lnteract*bn - Many d these optimizat’hs work together

to increase their usefulness.

l lnlining - This includes not only user directed inlining, but also
inlining of subpro rams that are sufficiently small or called only
once. lnlining is 8 one early in the optimization process to expose
the inlined code to other optimizations.

l Interprocedural Information Gatheri
extensive usage of subprograms an F?

- With the modem practice of
the Ada encouragement of this

practice, it is critical that the compiler not have to make overly
pessimrstii assumptions about the effects of that call. This
requires gathering information on the uses-and definitiins of non-local
ObJeCtS by subprograms so that the caller can take 1nt0 account
those effects.

l Collections - The compiler allows the user to grou
units together and define a collection. That colle cf

a set of compilation
ion has a defined

interface. The user could define an equivalent top-down construct, but
fre

a
uently the bottom up buikf of that construct uses existi

an is easier to define. T This allows the compiler to utilize t
components
e

same o
availab e otherwise. P

timizations on a larger code structure with information not

l Check Removal - Checks in Ada are excellent tools for debugging
code and assettin
can utilize range cp

the proper behavior of that code. The compiler
eclarations, explicit assignments, tests etc to

analyze the possible ran
?I

fessions. fhis allows
the compiler to remove c

e of obtects and ex
ecks that are not s P

maintain program correctness.
tily necessary to

l Lifetime Minimization - Ada declarations with initialization (especially
defauft initialization) are frequently far removed from the usage of
those declared ob’ects. This extends the lifetime of those objects
unnecessarily an d worsens register utilization. Therefore, these
initializations are moved as close as possible to the usage.

l Optimization Interaction - timizations work t ether in important
wa
inc uding removal of dead code (due to generalized constru Y

s. lnlining opens up c3 e for check remova op and other o timizations
CT s).

Collections allow more extensive inlining and s’ nificantly improved
inte
whii T

rocedural information. Check removal un ‘Eb
would be prevented by those checks.

locks optimrzations

Copy-right 0 1988 by Tel&oft

TRI-Ada ‘08 ATa 84

Ada Software Engineering and Optimized Code

/ \

piiiiq

0 Pragma Inha difected

0 Called-Once auto inlining

O-SlllaH-~

0 Payoffs

OCdlFhlOVd

OcodeFbllOVal

0chackRsmoval

o Avail&la for other Optimizatii

l Inli@ng is the critical element of optimizations aimed at software

eTeef’nY*
This atlows users to utilize subprograms for information

hl ~ng and o write generalized software.

l Users can direct the inlining based on their knowled e of the su
9 bprogram- The user may know that the subprogram will be sma I and is just here

for information hiding or it ma
where a particular instance o f

be a generalized software component
tt wilt utilize only a single case.

l The compiler also inlines sub
that case, the code only nee B

rograms that are called only once. In
s to be resent once and the call overhead

is automatically removed. This situa ion could occur due to user structuring P
for readability or due to collections or due to maintenance changes.

l The compiler also recognizes subprograms that are sufficiently small
that the call itself consumes as much space as the actual body. This
happens frequently when subprograms are used for information hiding.

* lnlining has a number of benefits. Of course, the first payoff is simpl
the removal of the call overhead. This overhead includes costs invo ved ‘I
in parameter passing. This payoff occurs even without other optimizations.

l Other and often more important payoffs occur due to opening the subprogram
body to other optimizations. Considerable information on ranges and
values of parameters can now be utilized, This can result in removal of
;$Wr;ebasa blocks and branches - especially for a general purpose

* Check removal is also made easier in the open inlined body due to
the improved range information available on the specific parameters.
Information on the flow-thru effects of the subpro ram body are also
improved relative to the normal interprocedural n ormation gathering. *B

Copyright 0 1988 by TeleSoft

59

TRI-Ada ‘88 AT-3 &4

Ada Software Engineering and Optimized Code

o Allows amlrolled Combining d previously coded units

0 Elimination of unused subprograms

0 Improved intecprooedural info

0 hnpmw3d Mining

l A collection is a set of separate corn
subunits) that the user wants to corn ii

ilation units (library units and
ine for improved o timization.

The collection has a specified interface, which IS norma R
of the interfaces of the libra

y a subset

IS usually uttlrzed when a se 7
units in the qllection. This capabilIty

of units combines to provide a s ecdrc
fun&on and the development has stabilized suff icrently to no P
need frequent changes to those units.

The prima2 puy se of collections is to allow good development
ff

ractices
with a num er o separately corn

r
iled units and still get the payo of

global optimization utilizing all of he available information.

* The o
p’

imizing compiler will eliminate any unused subprograms from
the co lection. These may be subpro rams which are used in some contexts,
but not in this
parts of Text- 0 when only the P

articular collection.. w n example would be large
strings or integer portions are used.

l The available inter-procedural information is significantly improved.
Without collections, the compiler must make worse case assumptions about
any external units. For units whose interface is not visible outslde
the collection, this is no longer true. The compiler can utilize
information on items accessed by those subprograms and also can provide
data on what parameters are actually used to call the subprogram.

l In a collection the optimizin
were previously external an 8

compiler can now inline routines that
that are sufficient1 small or called only

once. In other words, the prima benefit of co lections is to enable
2c

Y
other optimizations which were b ked by the separate compilation.

Copyright 0 1988 by TeleSoft

80

AT-3 84

Ada Software Engineering and Optimized Code

l Ada checks are a powerful tool in helping debug programs. The checks form im licit
assertions on the programmers part of how the values of the pro ram should be t ave. If the
user has explicit1
which further te sr

checked a particular assertion, then the compl er should remove any checks 9
that same assertion. Similarly, the compiler should remove checks where

the possible value set of the ob’ect or expression tested cannot violate the assertion.
Check removal is accomplishe d by careful analysis of the range of the value being checked. If
that value passes the check assertion, then the check is removed.
Check removal is critical both for basic code improvement and for unblocking other
optimizations.

l The fjrst step in check removal is the calculation of the possible range of an expression
(~afticularly.numenc expressions).
t e ex

The more refined the user subtypes are, the more accurate

to furt R
resslon range will become. The expression range can be used to. remove checks and
er refine the range of any object which the expression value IS assigned to. The

propagated ran e of objects also improves the expression range calculation (ex. an object with
range 1 ..lOO bu whose only reaching value is an initialization of 5). 9

l Range propagation is accomplished by tracking the possible values of an object in linear code
and merging possible incomin

R
values in branch situations. Obviously, good subt

r
e

constraints on objects initially elps the compiler do a better job of check removal. can also
help actually generate better code in some cases. Consistent usage of a sub

x it easier to remove checks. For example, some benchmarks are very poor in t
pe also makes
is area and

actually make it impossible to remove the checks where a simple proper subtype on a formal
parameter would solve the problem.

l Branch test pushing occurs when an object is tested at some branch point (ex. an if test).
ifxc5then

z :=x;
else

y:=x-3;
end if;

On the true branch,.x has a value bounded with a max of 5, while the min is 6 on the false
branch. This contnbutes to check removal on the branches and expression range
calculations. The user has often put in this test as a specific assertion and that aHows the
compiler to remove any checks that test that same characteristic.

l Check test pushing occurs when a check has already been made on a specific value or object
for a particular assertion. Further checks on that assertion are removed. The prime example
is a null access check. Once a single test has verified that the access value is not null, no
other checks are necessary that test for null.

Copyright 0 1988 by TeleSoft

61

TRI-Ada ‘68 AT-3 8 4

Ada Software Engineering and Optimized Code

CLASSICAL OPTIMIZATIONS

o Common .S&-Expression Recognitii

0 OeadGode Removal

o Global Register Allocatll

0 Lwp InvalIant code Motii

o Loop Strength Reductii

o Arithmetic Strenglh Redudii

l CSE Recognition - The corn
compute the same value a ni

iler recognizes common sub expressions that
replaces subsequent evaluatrons with usa e

of the first calculation of the ex
a target dependent cost since 8

ression. This re lacement is controlled
SEs may be be tP

% y

on the machine and the context.
er recalculated depending

l Dead-Code Removal - Entire basic blocks can be dead code in a given

Ii
rogram. This can occur due to range propagation eliminating a code
ranch or the inlinin

cases is not used in gt
of a generalized software unit where a set of
hat particular context. Dead statements can also

occur when the target of an assi nment is never utilized. This
is a frequent occurrence in long- erm maintenance of code. 9

l Global Re
a dominan factor in maki B

ister Allocation - The quality of the register allocation is

allocation is performed for %
all other optimizations payoff. . Global
e entire subprogram using a pnority

based graph coloring approach.

l Loop Invariant Code Motion - Loops are the key component in speed
improvements in most code. The compiler moves any expressions and
statements in a loop that are the same on all passes of the loop.
In nested loops, these are moved as far out in the loop structure as
possible.

* Loop Strength Reduction - Arithmetic o
addressing arithmetic) that de

P
end on t R

rations inside loops including
b

can frequently be improved.
e bop induction varia les

his improvement “reduces” a more
ex

r
ensive operation such as a multiply to an add.

of his o
The common examples

p’
imtzation are in arra indexing inside loops, but other

cases a so occur and can be IY andled uniformly.

Copyright 0 1988 by TeleSoft

62

AT-3 84

Ada Software Engineering and Optimized Code

o Highly Optimized Code can Be Acheived
Without Sacrificing Software Engineering
Practices.

An optimizing compiler that does a quality job on

classical optimizations and has optimizations that

strongly support Ada software engineering practices

can and does produce highly optimized code. That

combination allows the user to produce welldesigned

code and achieve the required efficiency.

Copyright 0 1988 by TeleSoft

63

