
TRI-Ada ‘66 RTE-4

Ada in Real-Time Embedded Systems

Orbital Maneuvering Vehicle (OMV)

William T. Howle

NASA I MSFC

William T. Howle is a Computer Engineer in the Systems

Software Branch of the Information and Electronics Systems

Laboratory at NASA’s Marshall Space Flight Center. He joined

NASA in July 1987 after receiving a Bachelor’s degree in

Computer Engineering from Auburn University, and is currently

participating in the design and development of flight software

for the Orbital Maneuvering Vehicle.

363

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76619.77035&domain=pdf&date_stamp=1989-07-01

Color Chart of OMV

The OMV is a NASA project assigned to the Marshall Space Flight
Center, Huntsville, Alabama. The contract was awarded in November of
1986 to TRW Space and Technology Group, Redondo Beach, California.

The Design, Development, Test and Evaluation (DDT&E) mission is
scheduled for 1993.

364

TRI-Ada ‘66 KrE4

OMV Requirements Summary

- PROVlDE SPACECRAFT DELIVERY, RETRIEVAL. REBOOST, DEBOOST,
AND VIEWING

- SHUllLE BASED, (ETR&WTR), GROUND CONTROLLED

- SPACE BTATlON BASED - GROUND AND STATION CONTROLLED

- AUTOMATlC NAVlGATlON AND RENDEZVOUS

- MAN IN THE LOOP CONTROL FOR FlNAL OPERATIONS

- PROVlDE LIMITED RESOURCES TO PAYLOADS

- ACCOMODATE VARIOUS MISSION KlTS

- NINE MONTHS ON -ORBIT WITH SELF CONTAINED STORAGE

- CAPABLE OF ON-ORBIT MAINTENANCE

- TEN YEAR LIFE WlTH REFURBISHMENT

The OMV will provide several services to various types of spacecraft
including new and existing satellites. The OMV can be controlled through
the shuttle’s payload interface, from the Ground Control Console at JSC,
or from the Space Station. It has automatic navigation and rendezvous
capabilitiy and does require man in the loop control for final operations
such as docking with the Space Station or payloads.

The OMV can accomodate various mission kits including a three-point
docking system and a grapple arm. It has a nine month on - orbit
capability with self -contained storage and is capable of on - orbit
maintenance. The expected life of an OMV is ten years with refurbishment.

365

-ml-Ada ‘88 ME-4

Ada and the OMV Project

- OMV PROGRAM DIRECTED TO USE THE Ada PROGRAMMING LANGUAGE
IN FLIGHT AND GROUND SOFTWARE

- MIL-STD - 1760A ARCHlTECTURE SELECTED FOR THE ON-BOARD FLIGHT
PROCESSOR

- TLD SYSTEMS, LTD. Ada COMPILER SELECTED FOR 1750A CODE
GENERATION

- UTILIZED VAX 6650, TLD Ada, AND VAX Ada FOR PROTOTYPE DEVELOPMENT

Following the DOD’S commitment to Ada, NASA has begun to adopt Ada
in many new space flight programs including Space Station and OMV. The
OMV program originally intended to use FORTRAN, but Ada was eventually
adopted through an Engineering Change Proposal (ECP).

The CDC444-RR microprocessor was chosen as the 1750A processor for
the flight computer. It is a 16 - bit processor with a 250 microsecond cycle
time. There will be 256 K words of memory in the OMV on-board computer.

The TLD cross compiler is hosted on a VAX 8650 and generates 1750A
assembly code specific to the CDC444 processor. This code is then loaded
into the on-board computer’s memory before launch.

A major flight software prototyping effort took place on the VAX 8650
using VAX Ada and TLD Ada. This prototyping included models of various
parts of the OMV operational flight program such as the executive model
(used to evaluate Ada tasking) and a data load model (used to evaluate
dynamic memory in Ada).

The prototyping provided much insight into the pros and cons of using
Ada in OMV flight software.

366

FlTE-4

The TLD Ada Compiler

- PERFORMS INTELLIGENT OPTIMIZATION OF SOURCE CODE IN PRODUCING
EFFlClENT OBJECT CODE

- THE MOST FREGUEMLY USED LANGUAGE FEATURES AVERAGED 13 ADA
TO MACHINE CODE EXPANSION RATIO

- EACH LINE OF ADA CODE AVERAGED 7.5 WORDS OF MEMORY AND TOOK
10.5 MICROSECONDS TO EXECUTE

1 THE MORE ADVANCED FEATURES OF ADA TENOED TO BE TOO INEFFlClENT 1
FOR USE IN REAL-TIME SYSTEMS

Overall, the TLD compiler does an excellent job in optimizing the Ada
source code in order to produce the most efficient object code possible.

An Ada to machine code expansion ratio of 15 along with 7.5 words
of memory and 10.5 microseconds execution time for an Ada construct
proved satisfactory for OMV flight software.

These statistics are from a group of benchmark programs designed to
examine the efficiency of the TLD compiler and linker. The statistics are
averaged across the Ada language and exclude language features that
are inefficient or not planned for use.

Even though the results of the benchmark tests were impressive, the
more advanced features of Ada can be very inefficient especially
in real -time aplications such as the OMV flight program.

367

Ada Features Undesirable in OMV Real-Time Applications

SMALL INEFFICIENCIES :

- VARIANT RECORDS

- IF STATEMENTS WITH COMPOUND CONDITIONS

- PRIVATE TYPES AS FORMAL PARAMETERS IN GENERICS

- DATA STRUCTURES THAT USE DYNAMIC MEMORY

- DECLARATION OF ARRAYS WITH INITIAL VALUES

LARGE INEFFICIENCIES :

- TASKING

During benchmark testing with the TLD compiler and prototype development
with VAX Ada, several features in the MIL-STD 1815A Language Reference
Manual were found to be too inefficient for use in OMV flight software.
These inefficiencies are specific to the TLD Ada compiler. Most of the more
inefficient features of Ada are not inherently called for in real-time embedded
applications such as the OMV flight program.

Variant records generate alot of control code. Private types used as formal
parameters in generics generate a load /store sequence for each private
object before each compiled language construct.. Dynamic memory
allocation /deallocation simply requires too much overhead for a real -time
system. When an array is declared with initial values, a block of literals is
created and a block move is used to copy the literals into the array.

368

TRI-Ada ‘88 RTE-I

Tasking lneff iclencies

- LANGUAGE REFERENCE MANUAL (LRM) PROVlDES FOR ONLY FIXED
PRlORlTY LEVELS FOR TASKS

- ENTRY QUEUES ARE FIRST IN, FlRST OUT (FIFO) ONLY

- NEED THE ABILITY TO SPECIFY A TASK AS NONPREEYPTlBLE BY
OTHER TASKS

- TASKING IMPOSES SERIOUS SIZING AND TIMING IMPACTS

- LARGEOVERHEAD IN TASK ELABORATION, INlTIALIZATION, AND
ACTIVATION

The Ada Language Reference Manual provides only fixed priority levels
for tasks. There may be a need to be able to change the priority of an
Ada task at run time. Most implementations allow this only at compile time,
or sometimes at link time.

Entry to Ada tasks are FIFO. The Ada rendezvous requires synchronous
communication. Asynchronous entry to tasks and prioritized entry queues
would provide more efficient task scheduling constructs and possibly allow
some Ada systems to meet real - time constraints.

May need the capability to prevent a task from being preempted by other
tasks in order to meet real -time constraints.

The prototype tasking algorithms were several orders of magnitude slower
than the traditional sequentiat real - time executive. Also, the load size was
found to be approximately three times that of the traditional sequential
executive.

369

TM-Ada ‘00 R-E-4

Future of Ada and the OMV

I - THE OMV FLIGHT SOFTWARE WILL USE TRADITIONAL EXECUTIVE
ARCHITECTURE EXCLUDING TASKING

- THE FLIGHT SOFIWARE WILL AVOID THE USE OF DYNAMIC MEMORY
AND LIMIT THE USE OF GENERICS

- THE GROUND SOFTWARE WILL USE VAX Ada ON A VAX SYSTEM

The OMV flight software will avoid the use of tasking due to its increased
overhead. The more traditional sequential executive architecture will be
employed instead.

Also, the OMV flight software will avoid the use of dynamic memory and
limit the use of generics.

The ground software will use VAX Ada and run on a VAX system. Many
of the same issues concerning the advanced features of Ada are being
reviewed .

370

