
TRI-Ada ‘80 MIS-3 

The VHDL Design System 
An Ada-Based ECAD System for VLSI 

Victor Berman 
Carl Schaefer 

Intermetrics, Inc. 
4733 Bethesda Avenue 

Bethesda, MD 20814 

Carl Schaefer is a Senior Software Engineer at Intermetrics, Inc., in 
Bethesda, MD. He has been active in Intermetrics' VHDL program since 1983 
and directed the implementation of the 1076 VHDL Analyzer and Simulator. 
He also directed a Diana configuration management effort which resulted in 
Revision 4 of the Diana Reference Manual (1986). He has a MS in Computer 
Science and a PhD in Linguistics. 

Victor Berman is the Program Manager for the VHDL development program at 
Intermetrics, Inc. He has been involved in the development of computer 
languages and support software for eighteen years in both management and 
technical roles. He has a MS in Electrical Engineering from Carnegie- 
Mellon University where he also did graduate work in Computer Science 
toward a PhD. 

443 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F76619.77039&domain=pdf&date_stamp=1989-07-01


TRbAda ‘88 MIS-3 

VHDL System Design Requirements 

Provide capability to describe VHSIC class VLSI components 
Very large high density Integrated Circuits 

Provide simulation of very large hierarchical designs 

Provide design data base to manage these designs 

System must be host and technology independent 
Designs are long lasting, must span new technologies 

System must run on all popular and new computing platforms 

System must allow new/additional tools to be easily integrated 

VHDL System Design Requirements 

The VHSIC (Very High Speed Integrated Circuits) Program is a Tri- 
Service program sponsored by the Department of Defense to develop an 
integrated circuit capability that has the potential of greatly enhancing 
the performance of electronic defense systems. 

The motivation for the development of a hardware description 
language came from the VHSIC program goals of reduced integrated circuit 
design time and effective VHSIC technology insertion into military 
systems. These goals indicated the need for a common interface, a 
standard means of communication, that would streamline the design and 
documentation of advanced digital systems. The means of communication was 
identified as a hardware description language. 

The requirements for VHDL and for it Support Environment stem 
from these needs. 

449 



MIS-3 

VHDL System Architecture 

l System was designed around a central data base called The 
Design Library 

This library performs functions similar to Ada Program 
Library 

0 Interface to the DL was through a Design Library Manager 
V-M) 

DLM provides procedural interface to IVAN, independent 
of low level representation 

l Basic tools consist of Analyzer, Simulator 
Analogous to front and back end of Ada compiler 

a Intermediate form called IVAN (Intermediate VHDL Attributed 
Notation) 

l Ada was chosen as the implementation language 
For system independence 
For data abstraction/hiding facilities 
For large system maintainability 
To support DOD language standardization 
To take advantage of emerging Ada technology 

VHDL System Architecture 

The central object in the VHDL support environment is the VHDL Design 
Library. The Design Library is a data structure that provides a 
single, installation-wide design repository shared by all users of the 
support environment. All of the tools communicate via the data in Design 
Library, as shown in the diagram of the VHDL Support Environment dataflow. 

The Design Library holds internal representations of VHDL descriptions in 
a form called Intermediate VHDL Attributed Notation (IVAN 1076). IVAN is 
a well-defined, documented intermediate form that may be used by any 
design tool that manipulates VHDL designs. The library may be 
conceptually structured in a manner similar to a hierarchical directory 
structure on many operating systems. 

Each tool communicates with the data in the Design Library through a piece 
of software called the Design Library Manager. This software component 
provides three sets of functions: a set of functions to allow the 
manipulation of the details of an individual IVAN representation, a set of 
functions organized around a network file system model incorporating 
relationships among entities , and a set of functions providing some 
commonly-used library access procedures at a somewhat higher level of 
abstraction. 

The Design Library and Design Library Manager provide an open interface to 
the intermediate form representation of VHDL for design and synthesis 
tools which require access to that information. 

450 



TM-Ada ‘88 

VHDL System Description 

0 HIF and VMM re-used from Intermetrics AIE development 
Provide system independent host interface and file 
system 

0 Analyzer performs syntax and static semantic analysis 
Design is similar to Ada front end 
Approximately '123k lines of Ada 

0 Simulator performs dynamic semantic analysis 
Initial version produced Ada representation of VHDL 
Approximately 40k line of Ada 

0 Intermediate form based on DIANA 
Initial version very close to syntax of VHDL 

stored source as IVAN nodes 
Later version closer to simulation semantics of language 

stored source as separate file managed by DLM 

VHDL System Description 

VHDL Analyzer 

The Analyzer checks hardware descriptions for static errors - those that 
can be determined without simulating the passage of time. The Analyzer 
also translates the VHDL source text into IVAN intermediate 
representation. VHDL descriptions are prepared in Design Files which are 
simply host system text files. If the Analyzer determines that the syntax 
and static semantics of the VHDL input is correct, its IVAN representation 
is placed in the Design Library. Listings, cross references, error 
messages etc. are of course also produced at the user option. 

VHDL Reverse Analyzer 

The Reverse Analyzer reads the IVAN representation of a design unit in the 
Design Library and produces Design Files containing VHDL source text. 

VHDL Simulator 

The VHDL Simulator assists in the verification of hardware design by 
demonstrating how the hardware would behave if it were committed to 
silicon. The simulator supports the full modeling capability of the 
language, and permits mixed level simulation at various levels of 
abstraction. The simulator allows the specification of generics as 
parameters at execution of time thus allowing multiple experiments to be 
run without changing VHDL source or performing re-analysis of Design 
Units. 

451 



MIS-3 

Impact of Ada on Software Development 

0 Decision to use Ada was made at beginning of project in 
1983 

This was a real “Leap of Faith” since NYU Ada-ED was 
only tool available for VAX 

0 Despite steep learning curve and immature tools, overall 
impact of Ada was positive 

Software engineering claims for Ada proved largely true 
especially for integration phase 

0 Strong typing and data hiding encouraged good design 
practices 

Compilation rules meant more processing language 
Sub-library facility essential 

0 Increased compilation time paid off at integration time 

0 True trade-off between machine cost and labor effort. 

iii- 
n B 

Impact of Ada on Software Development 

The decision to use Ada was made at beginning of project in 1983. 
This was a real "Leap of Faith" sine NYU Ada-ED was only tool available for 
VAX. During the first year of the project all avenues of obtaining Ada 
capabilities were explored and carefully followed. It was not until 
November 1984 (more than a year into the program) that a field test 
version of the DEC Ada compiler became available. This compiler was 
not released as a product until April 1985. 

Intermetrics was fortunate to several have several very knowledgable 
Ada users and implementors on its staff to help in the training process for 
the engineers who would be building the VHDL software in Ada. Despite a steep 
learning curve and immature tools, the overall impact of Ada was positive. 

Software engineering claims for Ada proved largely true especially 
for the integration phases. Strong typing and data hiding encouraged 
good design practises which made the complex software tractable to the 
many changes required by the fact the VHDL language was itself evolving. 

Compilation rules meant more processing for changes compared to 
other languages. This fact made a sub-library facility essential to avoid 
excessive recompilation, especially in a multi-user environment. This 
important feature was also implemented as part of the VHDL Support Environment. 

While compilation time and required machine resources were larger, 
system.integration and test went more smoothly than with other languages. 
The net for this large ,-complex program was definitely a large gain. 
There was a true trade-off between cost of machine resources and labor effort. 
This trade-off favors the use of Ada as computer resources become cheaper 
and skilled computer engineers become relatively more expensive. 

4.52 



TRldda ‘00 MIS-3 

Impact of Ada Maturity on Software Development 

l Speed of compilation 
Early compilers very inefficient 
Recompilation required overnight runs - slowed 
implementation 
Problem largely solved by later compilers, cheaper 
hardware 

l Speed of executable 
Early code suffered by factor of five from Pascal, C, 
FORTRAN 
Current code within 30% for comparable constructs 

l Code correctness 
Compiler bugs were serious problem at beginning of 
project. 
Machine generated Ada was an excellent means of 
generating compiler bugs. 
Continued to be an annoyance until late 1986 
Currently very few bugs found. 

Impact of Ada Maturity on Software Development 

The resource requirements of early Ada compilers were much larger 
than had been anticipated. This was particularly true of the virtual 
memory requirements needed to perform large compilations in reasonable 
time periods. This lack of resources made code changes very expensive 
in terms of schedule impact since small changes could result in and all- 
night recompilation. These problems have largely been solved by 
improvements in compilers and by the availability of relatively cheap 
large-capacity computers. 

The quality of generated code has also improved greatly. Early 
code suffered by a factor of roughly five from average Pascal, C, and FORTRAN 
compilers. Currently our experience is that code is generally within 30% 
for comparable constructs and this has become a relatively unimportant 
issue. 

As with most immature compilers, code correctness was a major 
problem. Adding to this problem was the lack of unanimity on Ada 
language interpretation. Cases where two compilers disagreed on the 
correctness of constructs was fairly frequent, especially when dealing 
with complex type definitions and uses. With experience and maturity 
of the Ada community, these problems are now quite rare. 

453 



TM-Ada ‘08 MIS-3 

Impact of Ada implementations on Rehostability 

l Capacity of Ada compilers - still major problem 
Automatically generated code tends to be large, not 
modular. 
Breaking up these modules leads to illogical structure. 
Other modules affected since they must “with” these 
fragments. 

l Need for unchecked conversion driven by efficiency 
requirements 

Complicated rehostability by making software dependent 
on storage layout - particularly for variant records. 

l Arithmetic types needed are not uniformly available 
64 bit arithmetic 
Various data type lengths (8 to 64 bit integers) 

Impact of Ada implementati ons on Rehostability 

One of the original and important goals of Ada was to greatly 
increase the transportability of software. There are still several areas 
in which this goal has not been fully real ized. 

One of the most important practical problems in this area 
stems from the difference in capacity between compilers and library 
systems. The fact that a program will compile on one Ada system is 
not a guarantee that it will compile on another one. Capacity is 
also difficult to quantify because it is not necessarily measured 
by lines of code in a compilation unit. It is generally a function 
of several variables which may include expression complexity, name 
environment, type declaration complexity, and number of units in a host 
file. 

This is particularly problematic for automatically generated 
code such as parse tables which tends to be large and not modular 
Breaking up these modules leads to illogical structures which are 
more difficult to maintain. The decomposition affects other modules 
since they must "with" these fragments. This tends to complicate 
configuration management for multiply hosted/targeted systems. 

454 


