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ABSTRACT 

The purpose of this paper is to compare thirteen Conceptual 
Frameworks (CFs) selected from among several categories of 
applicability to discrete-event simulation modeling. Each CF is 
briefly reviewed to provide the background information required for 
the comparison. Based on the insights gained in applying the CFs 
to the modeling of a complex traffic intersection system, the CFs are 
compared relative to their distinct characteristics and capabilities. 
Comparative comments are grouped according to the design 
guidance and implementation guidance features of the CFs. 
Conclusions highlight the inadequacies of the CFs and the 
importance of research in CF development. 

1. INTRODUCTION 

A fundamental human limitation, called the Hrair Limit, 
indicates that a human being cannot handle more than 7 ± 2 entities 
simultaneously (Miller 1956). Although this has been known for a 
long time, its implications for simulation model development have 
not been fully recognized. Simulation is used mostly for stochastic 
systems containing many simultaneous activities. The modeler needs 
conceptual assistance in representing complex systems and in 
successfully analyzing simulation models to effect system 
improvements. 

The essential assistance is expected to be provided by the 
simulation model development environment (SMDE) currently being 
constructed following the automation-based software paradigm 
(Balci and Nance 1987a, 1987b). The conceptual guidance to be 
provided within the SMDE is currently being investigated. As part 
of this research, a comparison of thirteen conceptual frameworks is 
reported in this paper. 

A Conceptual Framework (CF) is an underlying structure and 
organization of ideas which constitute the outline and basic frame 
that guide a modeler in representing a system in the form of a model. 
"Simulation strategy," "world view," and "formalism" are other 
terms used in lieu of CF. 

The purpose of this paper is to compare the CFs selected from 
among several categories of applicability to discrete-event simulation 
modeling. Each CF is briefly reviewed in Section 2. Section 3 
presents a comparison of the CFs based on their distinct 
characteristics and capabilities. Conclusions in Section 4 highlight 
inadequacies of the CFs and the importance of research in CF 
development. 

2 .  REVIEW OF FRAMEWORKS 

A brief review is presented in this section to provide the 
necessary background knowledge for the comparison of CFs in 
Section 3. The several references provide broader or more in-depth 
coverage. 

2.1  The Classical Conceptual Frameworks 

Popularized by a wide variety of Simulation Programming 
Languages (SPLs), Event Scheduling (ES), Process Interaction 
(PI), and Transaction Flow (IF) are perhaps the most well-known 
CFs used for simulation model implementation. Less predominant in 
the U.S. but well-accepted and recognized in the U.K., are Activity 
Scanning (AS) and its extension, the Three-Phase Approach (TPA). 
Balci (1988) employs a comparative exercise to bring out details in 
the differences among these CFs. 

Event Scheduling. When using ES, the modeler considers 
the system of interest to be described in terms of events. Each 
identifiable event is associated with an event routine which is "a set 
of actions that may follow from a state change in the system" (Pidd 
1984). This approach specifies that "some event is to take place at a 
determined time in the future" and can be scheduled (Kiviat 1969). 
Events that occur at a known future time are determined events 
(Nance 1981b). The scheduling of event routines is managed 
during implementation by the maintenance of the event list; a list of 
event notices or records which are ordered by time. Event routines 
contain the creation and destruction of event records (e.g., arrivals, 
departures, and other determined events), the scheduling of 
determined events (e.g., the bootstrapping of arrivals), and logical 
checks for contingent events (Nance 1981b). The occurrence of 
contingent events (sometimes called conditional events (Fishman 
1973))~ depends upon the satisfaction of some set of conditions 
which cannot be predicted in advance. The explicit scheduling of 
events results in an efficient model execution for a large class of 
models. Including checks for contingent events reduces the number 
of event records for processing and also improves efficiency. Yet, 
as Kreutzer (1986) points out, the model logic becomes fragmented 
(with the scattering of scheduling commands and the insertion of 
checks for contingent events) as the number of event routines and 
their potential interactions increase. Fragmentation makes the 
implementation less readable, less understandable, and harder to 
debug. 

Activity Scanning. AS, prominent in the U.K., requires 
that the modeler identify the various types of objects in the system to 
be modeled, the activities which the objects perform, and the 
conditions under which these activities take place. Beyond Pidd 
(1984) and Kreutzer (1986), good descriptions are accessible 
(Fishman 1973; Zeigler 1976; Hooper 1986a, 1986b). AS uses a 
test set of boolean conditions, or testhead (Pidd 1984) to enable the 
determination of the state change that can initiate an activity. The 
testheads serve to link the various activities together and to produce 
the state transitions of the model objects and the interactions among 
them. In this way, the model is made up of modules or activity 
descriptions (testheads and associated resulting actions which await 
execution at the appropriate time. 

Implementations of AS include a two-phase monitor or 
executive which performs a time scan (to ascertain the time 
increment or update to the system clock) and an activity scan (a 
check of all testheads to determine which of the activities are to be 
next executed (Pidd 1984)). In its purest implementation, AS uses 
the fixed-time increment time flow mechanism; the activity scan of 
testheads is strictly a scan of state conditions (Kiviat 1969; Balci 
1988). This state-based approach is sometimes mixed with a time- 
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based approach to increase implementation efficiency by attaching 
time cells to model objects or activities (Pidd 1984; Kreutzer 1986). 
The time cells hold activity occurrence times and enable the use of 
the variable-time increment method for updating the system clock. 

The Three-Phase Approach. The Three-Phase Approach 
(TPA) is a modification of AS which improves execution efficiency. 
The approach categorizes activities as B-activities or C-activities 
(Tocher and Owen 1961; Tocher 1963). The B-activities are the 
bound-to-occur or book-keeping activities that represent the 
unconditional state changes (unconditional events) which can be 
scheduled in advance. The C-activities are the conditional or co- 
operative activities that represent the state changes which are 
conditional upon the co-operation of different objects or the 
satisfaction of specific (compound) conditions. Because B-activities 
become due at a determined time, their testheads may be dropped 
and they can be scheduled using an events list technique (O'Keefe 
1986). Since the traditional, repetitive activity scan and testhead 
checks do not need to be done on the B-activities, unnecessary scans 
are removed and efficiency is improved. C-activities with testheads 
must enter the usual, repetitive activity scan of their testheads. 
Comprehensive descriptions of the TPA are available in current 
literature (Crookes 1982; Pidd 1984; O'Keefe 1986; Balci 1988). 

Process Interaction. Instead of the event or activity, PI 
(Kiviat 1969; Fishman 1973; Pidd 1984) uses the process as its 
basic building block. The process represents a sequence of events 
and interspersed activities through which a specific object moves. 
As the object moves through its process, it may experience certain 
delays and be blocked in its movement. Delays can be time-based 
and determined (e.g., service times, arrival times) or state-based and 
contingent (e.g., wait-until situations). Objects experience periods 
of activity during process execution and periods of inactivity or 
delay. When an object experiences a delay in its process and 
becomes "passive," another model object is allowed to become 
"active" (Franta 1977) initiating or resuming its process. Such 
delays are incurred and execution is shifted (to another object) at 
interaction points (Kiviat 1969). An object process returns to an 
active state following such interaction at its reactivation points. PI 
enables the modeler to clearly grasp a model's structure since each 
object or class of objects can be represented by a single, coherent 
process rather than through multiple event routines (Kiviat 1969; 
Fishman 1973). 

Transaction Flow. TF handles the time and state 
relationships of the model in exactly the same manner as the PI CF. 
Several different and distinct characteristics are noted. 
"Transactions" are created and moved through the blocks, executing 
specialized actions that are "associated" with each block. The block 
structure generates a rigid structure which limits the "examination 
and communication" among system components (Shub 1980). In 
addition, as objects (transactions) pass through these blocks, 
"predefined processes" are activated which are hidden to the 
modeler. Statement languages with their lower level primitives 
provide generality and flexibility to the modeler. Tocher (1965) 
characterizes SPLs as machine or material-oriented. He further 
defines transactions to be material or temporary objects. In a 
machine-oriented view, servers (machines) are the dominating and 
active influence in the model (Kreutzer 1986). They obtain the 
material objects (transactions), operate on them, and place them in 
(or remove them from) queues. TF promotes material-oriented 
models in which the transactions are the dominant objects. Servers, 
now passive, are "acquired, held, and released again" by the 
transactions which flow from machine to machine (Kreutzer 1986). 

2 . 2  Other Discrete-Event Conceptual Frameworks  

Conceptual frameworks offering direct application to the field 
of discrete-event simulation and modeling have emerged within the 
last decade. These frameworks are the System Theoretic Approach 
(STA), the Conical Methodology (CM), and the Condition 
Specification (CS). 

System Theoretic Approach. Under the STA (Zeigler 
1976, 1984), a modeler can identify the static and dynamic structure 
of the model. The STA, based upon set theory and the systems 
modeling fo~rrnalism, provides a comprehensive, yet general, model 
representation and allows hierarchical decomposition and 
abstraction. A system model can be informally represented by 
describing its: 

• components - "the parts from which the model is 
constructed," 

• descriptive variables - "tools to describe the conditions of the 
components at points in time," and 

component interactions - "the rules by which components 
exert influence on each other, altering their conditions and so 
determining the evolution of the model's behavior over 
time." 

The Discrete Event System Specification (DEVS) (Zeigler 
1976) is a formal specification for discrete-event models which 
incorporates these concepts and provides for a variable-time 
increment time flow mechanism. DEVS provides the static structure 
of the model. In addition, model dynamic structure is obtained via 
the rules of component interaction. DEVS is developed from a more 
general formalism, the Systems Modeling Formalism (Zeigler 
1984), which also contains a continuous time base. Although the 
formalisms of the STA make its direct use cumbersome, recent work 
surrounding the development of a PC-based environment (PC- 
Scheme) is helping to improve the modeler's ability to build model 
specifications based upon DEVS and the STA (Zeigler 1987). 

The Conical Methodology. The CM (Nance 1981a, 
1987) divides model representation tasks into two stages: model 
definition and model specification. The CM is based on the object- 
oriented paradigm and seeks to achieve five primary objectives 
(Nance 1987): model correctness, testability, adaptability, 
reusability, and maintainability. CM mandates a strict separation 
between model representation and model execution. Top-down 
definition and bottom-up specification techniques are at the core of 
its procedural guidance. Top-down model definition produces a 
static model representation and is accomplished through a 
hierarchical decomposition of the model into successive submodels. 
At each level of decomposition, attributes, including attribute 
dimensionality and range of values, are assigned (to the particular 
submodel associated with that level) and are classified by type in 
accordance with Nance's (1987) taxonomy tree. Bottom-up 
specification produces a model representation which contains the 
necessary information for model dynamics. Specification, "...the 
process of describing system behavior so as to assist the system 
designer in clarifying his conceptual view of the system" (Barger 
1986), is started at some base-level submodel in the decomposition 
hierarchy and is performed at successively higher levels until the 
model level is reached. The time flow mechanism to be used in 
building the model is not dictated. 

The Condition Specification. CS produces a model 
specification that can be analyzed to: "detect potential problems with 
the specification," "assist in the construction of an executable 
representation of the model," and "construct useful model 
documentation" (Overstreet and Nance 1985). The CS, attributed to 
Overstreet (1982), is the principal target form for bottom-up 
specification within the CM. The CS provides a representational 
foundation upon which additional analysis can be conducted for 
efficient model implementation (Overstreet and Nance 1985; Nance 
and Overstreet 1987). The analytic and diagnostic capabilities of the 
CS are an extremely desirable and significant strength. The principal 
components of the CS are the interface specification, the 
specification of model dynamics, and the report specification 
(Overstreet and Nance 1985). The input and output attributes of the 
model are described within the interface specification. The 
specification of model dynamics consists of a set of object 
specifications and a transition specification. The object specification 
is a complete listing of all objects and their attributes. A value range 
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is given for each attribute. The transition specification contains the 
description of model dynamics in the form of condition and action 
pairs (CAPs). The report specification is defined for the data output 
or model results. 

2.3 More Generic Conceptual Frameworks 

The following conceptual frameworks have applications within 
and beyond the domain of discrete-event simulation and modeling. 
The first two presented in this section, the Entity-Relationship- 
Attribute (ERA) and the Entity-Attribute-Set (EAS) frameworks, 
have their conceptual underpinnings from the field of database 
design. Yet, ERA is closely akin to EAS which has roots in the 
popular SPL, SIMSCRIPT (CACI 1983; Kiviat, et al. 1983). 
Finally, the Object-Oriented Paradigm (OOP) plays a significant role 
within software engineenng and programming methodology and 
finds its origins in the early development of SIMULA. 

Entity-Relationship-Attribute. ERA is based upon the 
Entity-Relationship (ER) model of Chen (1976). The ER model is a 
data model which is rooted in set and relation theory. Chen 
introduces the ER model through the context of levels of logical 
views of data, and develops the ER model for two of these levels: 
the conceptual level ("information concerning entities and 
relationships which exist in our minds" and the representational 
level (an information structure or organization of information in 
which data represents entities and the relationships which exist 
among them). We are concerned with the conceptual view of the 
model (of entities, their relationships, and their values) as it exists in 
our minds at the first level. Entities may be grouped into entity sets. 
Relationships may also specify similar groupings called relationship 
sets. Entity and relationship information is maintained within sets 
which contain values (called value sets). Entities and values are 
linked to one another by attributes. In addition to entities, 
relationships can also have attributes. Successful application of 
ERA relies on the proper identification of set membership and 
semantics, definition of value sets and attributes, and organization of 
data into relations. 

Ent i ty-Att r ibute-Set .  The terms entity, attribute, and set 
are concepts central to EAS (Markowitz, et al. 1983): 

• entity - "some concrete or abstract 'thing' represented by the 
simulation," 

• attribute - "some property or characteristic of the entity," and 

• set - "an ordered collection of entities." 

In EAS, entities of interest in the system are maintained in a 
database. The database also maintains complete information on a 
particular entity to include attribute and value data, the identification 
of the sets to which the entity belongs or which it owns, and the 
membership of the sets which it owns. A key characteristic of EAS 
is that sets are ordered. This ordering may be strictly on a first-in, 
first-out (FIFO) basis or in some other determined order. 
Hierarchical decompositions and tree-like structures of the system 
are easily defined. Set ordering provides the ability to represent 
timed events and a system state can be represented in a database. A 
function can be determined which transforms the database from state 
to state. Model dynamics are difficult to represent. 

The Object-Oriented Paradigm. The OOP is viewed as a 
framework for system design. According to Meyer (1987), "object- 
oriented design may be defined as a technique which, unlike 
classical (functional) design, bases the modular decomposition of a 
software system on the classes of objects the system manipulates, 
not on the functions the system performs." Functions tend to 
change in order to adapt to changing needs whereas objects remain 
more or less constant (Meyer 1987). The paradigm is principally 
characterized by two features: (1) encapsulation of data and 
operations and (2) an inheritance mechanism for developing object 
hierarchies. An object can be considered to be "encapsulated", an 
"armor-plated" entity (Cox 1986) with "private data and a set of 

operations that can access that data." The use of objects therefore 
improves the reliability and maintainability of system code. 
Additionally, by inherent abstraction, the object improves the view 
of the system by introducing a higher level perspective and promotes 
reusability of code. The principles of modularity, abstract data 
typing, and information hiding are accommodated. Inheritance is 
the ability to define new objects from existing objects by extending, 
reducing, or otherwise changing their functionality. New instances 
of an object class can be easily created which automatically inherit 
the attributes of that class definition. Inheritance supports 
hierarchical structures that are commonly found in the real world and 
provides substantial benefit to the user by improving his 
understanding and view of the system. 

2.4 Frameworks with Applications Potential 

We conclude our review of conceptual frameworks with 
coverage of Structured Modeling (SM) and the Process Graph 
Method (PGM). Both frameworks, active in other fields, show 
promise for applications to discrete-event simulation model 
development. 

Structured Modeling. SM (Geoffrion 1987, 1989) seeks 
to provide not only a generic framework for model representation 
but also an environment to meet total model developmental needs 
throughout the model life-cycle. SM can be used in a top-down 
model design strategy that embodies a stepwise refinement approach 
and which results in a well documented, easily communicated 
design. SM aims to be broadly applicable and technique 
independent (mathematical programming, database theory for data 
models, conceptual graphs and knowledge representation). The SM 
framework for model representation uses "a hierarchically 
organized, partitioned, and attributed acyclic graph "for model 
semantic and mathematical structure, The framework can be 
decomposed into elemental, generic, and modular  structures.  

Model elemental structure is generated through the formation 
of model elements of five types (primitive and compound entity, 
attribute, function, and test) into a directed graph in which the nodes 
represent the elements. The construction of an elemental structure 
(Geoffrion 1987) is intended to completely capture "the definitional 
detail of a specific model instance." Table representations of the 
elemental structure, elemental detail tables, contain instance data and 
low-level model information which is necessary for a complete 
model specification. 

The generic structure accomplishes the grouping of elements 
according to "natural familial" boundaries. The generic structure 
thus provides the modeler with a natural view of the system under 
study. The modular structure (Geoffrion 1987) is a further 
refinement on the generic structure. The modular structure is created 
in order to bring into play the concepts of data abstraction and 
information hiding. "Modules" are formed by grouping the genera 
"into conceptual units ... according to commonality or semantic 
relatedness." Modules, themselves, can then be grouped into higher 
order modules. In this way, complex models can be simplified into 
a representation which will be better understood. A modeling 
language, SML, supports the central concepts of SM. 

Process Graph Method. The PGM is derived from the 
parallel computation model which was suggested by Karp and Miller 
(1966) and later improved upon by the U. S. Navy (Kaplan 1987). 
PGM is used primarily for the development of signal processing 
models. The basis for the PGM is the process graph, a directed 
graph of nodes and arcs which is classified as a data flow model. 
Three of the primary benefits of the process graph are its parallel 
computation capabilities for greater throughput, the ease at which 
modelers can perform top-down design, and portability of 
applications. Each node in the process graph represents aprimitive 
function (some type of computation or process) or may alternatively 
represent a subgraph which is itself a process graph. Such a 
convention allows the modeler to use abstraction and modularity to 
represent complex models in a fashion that is more easily 
understood. Arcs represent queues which contain the input and 
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output data needed by nodal primitive functions for execution. 
Nodes execute only when the data necessary for execution are 
available at the input queues. Such a node execution scheme allows 
multiple computations to be performed in parallel thus generating 
greater throughput. 

3 .  COMPARISON OF FRAMEWORKS 

In this section, the selected CFs are compared on the basis of 
their application to a real-world traffic intersection (TI) modeling 
problem (Derrick 1988). The TI is selected because it offers 
complexity of model component interaction unlike that found in the 
usual textbook examples. The TI contains a single traffic light with 
north, south, east, and west directions which controls vehicular 
traffic in each of the intersection's eleven lanes. The central 
intersection space is conceptually divided into thirty-five blocks 
through which the vehicles travel. The blocks in a vehicle's path are 
used as locators for that vehicle as it moves through the intersection 
and enable the representation of a smoothly flowing traffic pattern. 
Care is taken to be circumspect in drawing conclusions from these 
applications under such a restricted domain. The intent, however, is 
to develop a starting point for discussion by accomplishing a 
thorough investigation under a single problem domain. 

Two basic types of guidance can be provided by the CFs in 
constructing model representations. First is implementation 
guidance (algorithmic, managerial, supervisory) which directly 
impacts the subsequent executable form of any model 
representation. Secondly, CFs can provide design (structural, 
existential, skeletal) guidance. Here, the modeler is aided in his 
definition of the model's static and dynamic structure as he identifies 
the objects (components, entities), their attributes, and their rules of 
interaction. We explore the comparisons of the CFs with regards to 
the types of guidance that each explicitly makes available to the 
modeler. Grouping our comparisons by guidance type 
(implementation or design) improves the clarity and meaningfulness 
of our comments. We caution the reader to avoid generalizing the 
comparisons to all problem domains. 

3.1 Implementation Comparisons 

The classical CFs provide implementation level guidance to the 
modeler. This guidance may be considered to assist the modeler in 
the mode of sequencing and in the method of sequencing. The 
mode of sequencing reflects the world view or Weltansicht 
(Lackner 1962), the view promoted by the CF that effects model 
transformation from state to state. Viewing the model as being 
composed of events, activities, or processes influences the 
programming task and determines the coding format (event routines, 
activity descriptions, or process descriptions). The method of 
sequencing is the guidance perspective relating to the algorithmic 
nature of the CF, e.g., whether by explicit scheduling of events, 
scanning of conditions, or by concurrent control of object 
interactions. 

Comparing Mode of Sequencing. Within event routines, 
we note that the burden is placed on the modeler to include all 
conditional testing (on conditions other than time). As the 
complexity of model interaction increases, the modeler is less able to 
accurately make such determinations and maintain consistency in the 
model. The programmed model becomes error-prone, hard to 
modify, and difficult to debug. In addition, the model logic 
surrounding the occurrence of a particular event can become 
fragmented and scattered throughout the code, making the code hard 
to read and understand. 

Activity descriptions free the modeler from having to explicitly 
specify the interactions and relations among events (Laski 1965; 
Kreutzer 1986). Under AS or the TPA, the programmed model is 
readable and simple, primarily due to the clarity achieved through 
the grouping of the conditional tests (Kiviat 1969; Kreutzer 1986). 

The ability to apply an object-oriented approach and confine all 
information pertinent to a single process description improves 
readability and understanding, naturally enhances maintainability, 
and reduces problems in debugging. PI requires that a modeler 
signal an object's activation and passivation and explicitly control 
the queueing and competition for resources. However, TF 
automatically accomplishes many of these tasks within its block 
structure. Support of the modularity principle, afforded by both the 
activity-oriented (grouping by state conditions) and the process- 
oriented (grouping by object process) frameworks, speed 
application development. 

Comparing Method of Sequencing. Under ES, the 
direct determination of event selection, execution, and clock update 
through the use of the events list produces an efficient execution 
when the model is composed of less interactive, more independent 
objects (Kiviat 1969; Nance 1971; Birtwistle, et al. 1985; Hooper 
1986b). Under the same conditions, AS produces a less efficient 
representation for execution since with an increase in the number of 
independent components, the number of repetitive, redundant, and 
unnecessary scans also increases. However, whenever a model is 
characterized by a large number of primarily dependent and 
interactive components, AS demonstrates improved execution 
efficiency (Nance 1971). 

The TPA improves execution efficiency while retaining the 
advantages of AS. With the use of reactivation points and ability to 
effect concurrency among objects, the process-oriented frameworks 
(PI and TF) are able to simplify a programmed model. They are 
preferred when the model is composed of a balance of independent 
and dependent components (Hooper 1986b). 

Table 1 summarizes the comparative features just discussed, 
giving a panorama of the key characteristics of the classical CFs 
when used to build models like the TI which have many components 
and component interactions. The ES, AS, TPA, PI, and TF CFs 
provide a wide range of implementation guidance characteristics, 
compared and discussed above. 

3.2 Design Comparisons 

CFs other than the classical CFs provide design guidance. We 
compare them relative to their ability to effectively assist the modeler 
in his design of the static and dynamic structure of the model. 
Additionally, the identification of relationships (how the objects are 
bonded or related to one another) is also of concern. 

Model Static Structure.  The CFs discussed here provide 
limited guidance for the identification of objects and their attributes 
and coerce the modeler to perform this identification task. 

OOP - The OOP conceptually stipulates that all information 
for a given object (including attribute information) is 
encapsulated within that object's description. 

• PGM - Object and attribute information is contained in 
variable attribute and queue attribute tables. 

ERA and EAS - Both ERA and EAS derive their conceptual 
basis from the objects (entities) and attributes that make up a 
given model. 

CM - CM, an extension of the OOP, very clearly guides the 
modeler in a top-down definition of model objects and 
attributes. 

• SM - The elemental and generic structures enable a full 
designation of objects and their attributes. 

CS - The object specification includes provision for object 
and attribute identification and establishes the static structure 
of the model but focuses on the specification of model 
dynamics. 
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Table 1: Characteristics of Classical Conceptual Frameworks 

C O N C E P T U A L  ES AS T P A  PI TF 
FRAME~VORI( 

CONDITIONS 
FOR 

MA_XIMUM 
EFFICIENCY 

BURDEN ON 
MODELER 

BURDEN ON 
EXECUTIVE 

MODEL LOGIC 
DESCRIPTION 

MAINTAINABILITY 

NATURAL 
REPRESENTATION 

CAPABILITY 

DEVELOPMENTAL 
TIME, EFFORT 

REQUIRED 

APPLICATION 
LINES OF 

CODES 

Independent 
Objects 

High 

Low 

Fragmented 
throughout 
event routines 

Low 

Poor 

Very high 

1312 

Dependent 
Objects 

Low 

High 

Conditional logic 
concentrated at 
testheads 

Itight 

Good 

Independent or 
Dependent 
Objects with 
resource 
competition 

Low 

High 

Conditional logic 
concentrated at 
testheads and 
determinedlogic 
concentrated at 
B-activities 

Hight 

Good 

Bulance of 
Independent and 
Dependent Objects 

Moderate# 

High 

Concentrated in 
modules of 
process 
descriptions 

High§ 

Excellent 

High 

Balance of 
Independent and 
Dependent Objects 

Low 

High 

Con¢entruted in 
modules of 
block 
segments 

High§ 

Excellent 

Low Low Low 

1778 443 

t Due to localization of state with grouping of conditional test ing 
§ Due to localization of object and modularizat ion of process descriptions 
# Due to modeler responsibilities in act ivat ion,  passivation,  and queueing for resources 
:~ Lines of source code for event routines or process descriptions; applicable to research 

applications [Derrick 1988] only; does not  include code for ini t ia l izat ion or s tat is t ics  
collection 

• STA - Model components and descriptive variables relate 
object and attribute information. 

Model Dynamic Structure. The relationships and rules of 
dynamic design guidance, once specified, provide the motive force 
for affecting the state changes among the model objects. Therefore, 
this aspect of guidance is critical to producing a working, accurate 
model representation. The CS, STA, and CM provide explicit 
support, albeit limited, for accomplishing this task. We note that the 
dynamic design guidance provided by these CFs is independent of 
mode of sequencing. 

The transition specification of the CS guides a modeler for this 
purpose. The transition specification, however, only provides 
limited guidance in format and syntax to the modeler for developing 
dynamic relationships. The STA via the DEVS formalism also 
provides dynamic design guidance. The "necessary equipment" to 
specify model dynamics is available to the modeler in the form of the 
time advance and transition functions. Similar to the CS, the STA 
provides only limited guidance in format and syntax (notation). Set 
theoretic notation and the intricate details of the DEVS formalism 
makes"using the equipment" a difficult task for the modeler. 
Bottom-up specification of the CM enables the specification of 

model dynamics but is much less structured than the CS and STA. 
It has been conjectured (Geoffrion 1987) that SM can accommodate 
the dynamic relationships of  discrete-event models but this 
applicability is yet to be shown. 

Model  Relat ionships .  A hierarchical decomposition 
capability supports the definition of 1:1 or 1 :m relationships among 
objects. Hierarchical decompositions (from an object or entity 
viewpoint) are possible when the model is influenced by OOP, 
PGM, ERA, EAS, CM, SM, or STA CFs. The inheritance features 
of the OOP and PGM described in their applications allow 
hierarchical decompositions. The use of entity and relationship sets 
enable ERA to easily handle hierarchical decompositions; the entity- 
relationship diagram makes it easy to define the l:m relationships. 
In a similar manner, the use of  sets in EAS makes such 
decomposition possible. Both CM (with its OOP orientation) and 
SM (with its hierarchically organized structures) provide the 
flexibility of hierarchical decompositions. The set orientation of the 
STA allows the establishment of object hierarchies. Since CS can 
be extended to include sets, hierarchical decompositions should be 
possible. 
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Although our experience from applications to the TI system is 
limited concerning abilities of the CFs for m : n  relationships, we 
offer the following perceptions: 

ERA offers the most straightforward approach for m : n  
relationships when assisted by the entity-relationship 
diagram. 

CM and SM suggest excellent capabilities for r n : n  
relationships based on the experience gained from the 
literature review and in performance of the TI applications. 
Ease in use of the SM for accomplishing this within the SML 
is currently limited. 

• EAS, STA, and CS allow definition of m : n  relationships but 
without the direct, natural clarity of the above approaches. 

OOP and PGM should permit designation of m : n  
relationships since an object may represent a set of objects 
and a process graph node may represent an underlying 
network of process graph nodes. 

Table 2 summarizes the comparisons of CFs based on design 
guidance. Each CF that has been considered in this section provides 
a level of design guidance that is sufficient to adequately define 
model structure. Depending on the aspect, certain CFs maintain a 
clear advantage for the modeler. Table 3 lists the CFs according to 
the type of guidance they provide. 

Table 2: Comparisons Based on Design Guidance 

CONCEPTUAL 
FRAMEWORK OOP ERA EAS CM§ SM§ CS§ STA§ PGM§ 

OBJECT AND 
ATTRIBUTE 

NAMING 
Yes Yes Yes Yes Yes Yes Yes Yes 

CAPABILITY FOR 
DYNAMIC DESIGN 
SPECIFICATIONS 

No No No Limited No Limited Limited No 

CAPABILITY FOR Yes Yes ~ Yes Yes 
O N E - T O - M A N Y  

RELATIONSHIPS 

CAPABILITY FOR 
M A N Y - T O - M A N Y  Yest Excellent Yest Excellent 
RELATIONSHIPS 

Yes Yes~ Yes Yes 

Good Limited Limited Yest 

t Not observed 
With set extension 

§ Includes documenting features 

Table 3: Types of Guidance Provided by the 
Conceptual Frameworks Under Review 

DESIGN 
IMPLEMENTATION (DYNAMIC) 

ES 

AS 

TPA 

PI 
TF 

DESIGN 
(STATIC) 

EAS 

ERA 

CM 

SM 
OOP 
PGM 

CS 

STA 

CM 

CS 

STA 
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4. CONCLUSIONS 

Thirteen selected CFs for discrete-event simulation modeling 
are bnefiy reviewed and compared. The review introduces the 
fundamentals of four groups of CFs: (1) the classical (execution- 
oriented) group, (2) emerging discrete-event CFs, (3) CFs with 
demonstrated viability to other than discrete problem domains, and 
(4) CFs exhibiting potential for discrete-event simulation modeling. 
The comparison contributes a detailed and instructive discussion of 
the characteristic differences among the CFs, based upon their 
individual application to a complex real-world traffic intersection 
system. 
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