
Register W i n d o w Architecture for Mult i tasking Appl icat ions

Abstract

D. Quammen
Department of Computer Sciences

George Mason University
Fairfax, VA 22030

quammen~gmuvax2.gmu.edu
D. Tabak

The organization of large register banks into windows
has been shown to be effective in enhancing the perfor-
mance of sequential programs. One drawback of such
an organization, which is of of minor importance to se-
quential languages, is the overhead encountered when
the register bank must be replaced during a task switch.
With concurrent language paradigms, such as are found
in Ada t , Occam, and Modula-2, these switches will
be more frequent. We introduce here a methodology,
and an architecture, which greatly reduces this over-
head while maintaining the inherent advantages of the
register window approach. In addition, we present ways
of implementing traditional stacks and queues, as well
as hierarchical storage structures using windows.

1 I n t r o d u c t i o n

D. R. Miller
MITRE Corporation
7525 Colshire Drive
McLean, VA 22102

rmillerGgmuvax2.gmu.edu

Electrical and Computer Engineering Department
George Mason University

Fairfax, Va, 22030
dtabak~gmuvax.gmu.edu

strate the utility of this design, an outline for an imple-
mentation of the Ada tasking requirements is presented.

We are concerned, for the time being, only with the
storage of data, rather than code. Data is dynamically
created, destroyed, and altered. Its access character-
istics tend to be temporal in nature, and its life time
tends to be either very short, or very long. The run-
time overhead needed to manage the dynamic ebb and
flow of data is expensive. It is this specific area of a
multitasking environment that we are addressing.

Current VLSI technology can provide a relatively large
bank of on-chip storage which is accessible at a much
higher speed than off-chip memory. Providing on-chip
room for this large register bank has been one of the mo-
tivating factors in reducing instruction (and therefore
control unit) complexity [11, 15]. Use of these mem-
ory banks has yielded impressive performance gains for
sequential languages [3, 17]. However, programs writ-
ten using new language paradigms, such as object ori-
ented languages and concurrent languages, cannot ben-
efit from the same techniques used by sequential pro-
grams. One unfortunate side-effect of current on-chip
memory organizations is that they need to be saved
and restored whenever an environmental context switch
occurs. This is particularly true in multitasking envi-
ronments, and is distressing when considering program
designs which feature many and frequent task context
switches.

In this paper, we present a method to manage regis-
ter windows which facilitates multitasking on a single
register window bank. We also describe the architec-
tural features to support this technique. To demon-

IAda is a registered trademark of the U.S. Government(Aria
Joint Program Office).

1.1 Organization of Large On-Chip
Memory

A number of different approaches have been developed
for organizing on-chip memory. Three of the more
widely accepted approaches are a cache, a large directly
addressable register bank, and a register (or register
window) stack. There has been much discussion as to
which of these methods is most appropriate [17, 8, 6, 5].

The first option, cache, has four major advantages;

1. control of cache loading and spilling is invisible to
the programmer

2. cache addressing is identical to memory addressing
and requires no additional compiler overhead

3. cache is responsive to dynamic behavior

4. cache can service both retentive storage, such as
globals, and dynamically created storage.

These advantages have corresponding disadvantages.
Since control is invisible to the user, the user cannot
benefit from known or deduced program behavior. In
addition since cache is mapped into memory when dy-
namic storage is created, memory as well as cache must
be allocated. This double allocation is expensive, and
is an undue overhead if the allocated memory is short-
lived. Cache also requires more hardware per memory
cell and tends to be slower than registers.

Many systems [10] utilize the second approach to
managing large numbers of registers, i.e. they provide
a large bank of general purpose registers. Registers can

57

http://crossmark.crossref.org/dialog/?doi=10.1145%2F77254.77259&domain=pdf&date_stamp=1989-12-01

use knowledge about the needs of a program to pre-
load and purge data more efficiently [8]. Users of these
systems have successfully avoided much of the overhead
of copying registers at the point of a subroutine call by
mapping register usage at compile time through either
static or trace-generated call graphs [17]. These sys-
tems benefit by allowing frequently used variables, be
they procedure locals or globals, to reside in registers.
However, compiler processing is expensive, and it is not
always possible to map every variable to a unique reg-
ister. Such variables must either reside permanently in
memory or be copied in and out of different registers.

The third technique uses the on-chip storage to hold
the top of the procedure activation stack. This has been
the work of Dit~el [4] and Patterson [11] This technique
is based on the observed behavior of C and Pascal pro-
grams which concentrate most data reference activity
to the storage at the top of the activation record stack.
This storage is generally shortlived and is frequently
deallocated (the procedure returns) before it overflows
into memory. If there is an overflow, the allocation can
be spilt into an easily managed memory resident stack.

There are several additional benefits to the register
stack technique. One, since addressing can be done rel-
ative to the top of stack or within an allocated window,
the size of the register address is small, and (to some
degree) independent of the on-chip memory size. Two,
compiler complexity is reduced since each subprogram
can assume that it has dedicated registers. However,
there are also disadvantages, recent studies [17, 6, 5]
have indicated that the housing of frequently accessed
globals may (in some situations) be a more beneficial
use of registers than procedural activation records. In
general, register stacks do not support this activity, al-
though some do provide a limited number of global reg-
isters which can be used for this purpose. In addition, if
the on-chip memory is large, much of the register bank
could remain unused if procedure call chains did not
achieve significant depth [16].

We here present a fourth arrangement which not only
exhibits the benefits of the above mentioned systems
but also lends itself to the implementation of additional
data structures required in systems with non-LIFO dy-
namic storage allocation. None of the above systems
address this domain.

1 . 2 T h r e a d e d R e g i s t e r W i n d o w s

Our goal is to design a system which offers the advan-
tages of general registers, register stacks, and cache, but
which minimizes some of the problems associated with
them. We call the concept Threaded Register Windows
[13]. Currently the basic unit of the thread is a register
window, which contains 16 32-bit registers. The size
of this window is experimental, and may be changed
later. These windows do not overlap as do those of the
Berkeley RISC-II, but dual pointers supported by the

architecture allow access to both a calling procedure's
activation window and the called activation window -
therefore any passed parameters need not be copied.
The windows can be flexibly and dynamically config-
ured to serve as:

1. Activation Record Stacks: several windows may be
dynamically linked together to form a stack to hold
procedural activation records. Because no window
overlap is required, the windows forming the stack
need not be contiguous.

2. General Purpose Traditional Data Stacks: the
same linking approach can be used to form a tradi-
tional pushpop data stack. Implicit access to this
stack is supported by the architecture.

3. General Purpose Queues: the archi tecture also
supports implicit access to queues made up of
linked register windows.

4. Statically allocated windows to hold vital infor-
mation for an interrupt handler or the operating
system.

5. Isolated packets of frequently used global or object
oriented data.

The structures are created using doubly linked lists.
The overhead involved in forming the links is low,
and the architecture supports constructs which make
it t ransparent to application programs.

There are many advantages to these structures. The
activation record stack allows the run time system to
have multiple stacks (or at least the tops of them) res-
ident on-chip at one time. This allows tasks to save
their most recently used and needed da ta in the fastest
storage available, and not copy it at the t ime of a con-
text switch. The result of this makes the performance
gains achieved by other RISC machines [3] available to
multi-tasking systems.

The queue structure allows task communications to
occur within the domains of the fast on-chip storage,
and also facilitates scheduling. The addit ional avail-
ability of traditional stacks is advantageous since this
structure is sharable by all procedures of a task or sys-
tem. Tha t is, it is not tied directly to the procedure
control structures. This structure would be useful to a
compiler; to hold data from large procedural activation
records (those which require more than 16 words); or
to support recursive algorithms, such as those used to
handle trees and graphs [2].

The interior of the windows is accessed using a
block relative address (register number). Therefore,
the operand address is short, allowing for three operand
instructions, and the compiler can assume tha t a dedi-
cated set (one window) of registers is available for local
and parameter storage. Dynamically allocated storage
is initially allocated only in the windows. This is done
by taking a free window from a hardware supported

$ 8

(chip resident) free window stack. Off-chip memory is
allocated only if an overflow occurs. Which windows
to overflow, or to underflow, can be computed in the
background using information available from the op-
erating system and guidance from the compiler. The
additional processing time needed to choose which win-
dow to overflow can be regained by avoiding misses and
unnecessary memory allocations.

This work has characteristics of several other ma-
chines, but none use identical techniques. The idea
of register windows was first developed by Patterson
[11]. However, his work is not efficiently extendible to
non-sequential situations. The AM29000 [1] can extend
register management to aid multitasking. The 128 reg-
isters can be configured as eight segments, each with
16 registers. However, these are of fixed size and are
statically allocated, one per task. This can reduce pro-
cedure cal l / return performance. The concept of point-
ers to dynamic blocks was used in the Inte] 432 [12].
However, this machine used many levels of indirection
and did not exploit on-chip storage [7]. The IBM 801
[14] added additional cache commands to avoid some of
the unnecessary overhead involved with cache (such as
loading the contents of a newly allocated procedural ac-
tivation record even though this da ta is void), however
their techniques did not go far beyond this.

31

I

D, 21, , $ tO 17 le $$ 14 13 12 ? ID 3 2 0

I - - I,I°l.l.lzl- I - I I
Program Status Word 1

2625 20 19 14 13 10 9 4 3 0

Program Status Word 2

OJR Current activation record window pointer

CLD Previous (caller's) activation record
window pointer

SOW1 Stad,JQueue Window 1 pointer

SOWI1 Stack/Queue Window 1 index

SOW2 Stack/Queue Window 2 pointer

SOWI2 Stack/Queue Window 2 index

ON *Object" Window poinler

MW Map Window pointer

MWI Map Window Index

ICCNZ Interrupt enable, carry, overflow,
negative, and zero flags

2 Regis ter W i n d o w Thread Or-
ganizat ion

Figure 1 - Processor State Registers

In the register window thread organization register ac-
cess is imphcit through window pointers contained in
the processor state. The processor state, saved in two
process status words (PSW1 and PSW2), includes ref-
erences to six windows at any one time. Additionally,
there is always an implicit reference to the global win-
dow, giving access to a total of 7"16 registers. Access is
restricted to only these windows. This allows the scope
of a procedure to be inherently protected. Because of
the limited address field, it is impossible to acciden-
tally access da ta outside the windows which have been
allocated to a process.

Figure 1 shows the organization of the processor state
registers. Of the six windows, five are used to access
user data. One, the Map Window (MW in PSW1) is
used to manage activation record stacks. The five data
window references are:

1. The current window (accessible through CUR in
PSW2) - containing the activation record of the
currently active procedure.

2. The old window (accessible through OLD in
PSW2) - containing the activation record of the
current procedure's dynamic parent. Any param-
eters which are passed, are accessed directly ,sing
this pointer.

3. StackQueue Window 1 and 2 (accessible through
SQW1 or SQW2 in PSW2) - These windows may
be treated as da ta stacks, the head or tail of a
queue, or a general da ta windows.

4. An object window, (accessible through OW in
PSW1) - this window can be used to hold any addi-
tional program-controlled da ta pointer which, for
example, can be used to access an object or fre-
quently referred to globais.

The SOW pointers also have an intra-register displace-
ment associated with them. A register address is ex-
pressed in the instruction using two fields. The first is
a three bit field indicating one of the seven accessible
windows; the second a four bit field indicating one of
the sixteen registers in that window.

The register window pointers (CUR, OLD, sOW1,
SOW2, OW, and MW) are 6 bits long; this provides
for up to 64 unique windows. When a window is spilled
to memory, it is still necessary to maintain a reference
to the da ta it contains. In this architecture, windows
are most easily spilled to specific locations in memory
called window frames. These frames are located in a
specific region of da ta memory. The approach permits
windows, whether spilled or not, to be referenced via a

59
T

16 bit pointer. If the upper 10 bits of the pointer are all
sero, then the window is resident in the register bank
in the window specified by the lower 6 bits. Otherwise,
the full 16 bit value is used to form a memory (byte)
address by shifting it left 6 bits.

2 .1 P r o c e d u r a l A c t i v a t i o n R e c o r d

S t a c k s

The activation record stacks are represented by a list of
windows (figure 2). Access to the top two windows is
possible using the OLD and CUR pointers as described
in the preceding section. To keep track of the thread
of windows allocated to the activation record stack, an
additional window, the map window (MW) is needed.
This serves as a map, or directory, of the stack. This
map, which can be housed in any register window, con-
tains a sequential list of six bit window pointers iden-
tifying the register windows in the stack and defining
their order. The return address value for each nested
procedure call is stored here as well. There is also a flag
field, which indicates that the window has overflowed
into memory. The MWI (map window index) is used
to index this window. If a procedure call depth greater
than 15 exists in one task, the hardware will t rap and
create a link for an additional map window. One reg-
ister (the link) is reserved to accommodate the doubly
linked list (two 16 bit pointers to either memory resi-
dent window frames, or to another register window).

The M W and MWI are altered by any CALL or RE-
TURN instruction. The following actions are taken on
each procedure call.

CALL: M W I ~ M W I + 1[**]
MW[MWI](2:25) ~- PC
MW[MWI](26:31) ~ PSW2.OLD

PSW2.OLD ~ PSW2.CUR
PSW2.CUR ~-- free list top [*]
PC ~-- Address of Call;

The [*] indicates that an exception may be generated
if there are no windows available to be allocated. The
[**] indicates that an exception will be generated if a
new M W must be allocated. While there appears to be
quite a bit of activity, this process will be completed in
one cycle, if an exception does not occur (in which case
it requires three cycles, unless there is a need to overflow
to memory). The RETURN instruction perform the
reverse action.

If it becomes necessary to overflow a window from
a particular activation stack into memory, the M W
plays an integral role. Windows are copied into window
frames, 16 word blocks in low memory, addressable us-
ing 16 bit addresses. To start an overflow, a memory
resident map window image, is allocated, and a pointer
to it saved in the downward link of the MW. We will
call this allocated window .frame the memory map. The

6

previous contents of the downward link of the M W is
copied to the downward link of the memory map. Next,
the activation record window to be spilled is copied into
a second memory window frame and the 16 bit pointer
to this window frame is saved in the memory map. The
reference in the M W i s marked as copied. When all 15
windows of this M W have been overflowed the M W it-
self can be spilled. Since each M W contains a pair of 16
bit pointers, the MWlinkage can be maintained regard-
less of whether the MWs are in memory or registers.
When this procedure chain is reactivated, the windows
must be copied back to register windows before control
is transferred to them. Only those procedures that are
about to be reactivated need be copied back.

If access is required to a variable down the proce-
dure chain this map (whether resident in memory or in
register windows) can be used to traverse the chain.

2 . 2 T r a d i t i o n a l S t a c k s a n d Q u e u e s

To facilitate communication in multitasking systems
the threaded register windows can be reconfigured as
queues or traditional push /pop stacks. The two SQW
and SQWI fields are used to support these structures.
Four special instructions alter these pointers; POP,
PUSH, ENQUEUE and DEQUEUE. All four instruc-
tions add or remove the single word elements from
the stack/queue which is pointed to by the SQW plus
SQWI. The SQWI is adjusted accordingly after each
instruction. When 15 elements have been pushed or
queued, a software trap will link another window to
the stack/queue.

The expandability of these structures, as illustrated
in figure 8, is especially beneficial to queue manage-
ment. In most conventional systems, queues are im-
plemented in statically allocated storage and have a
circular behavior. This requires that the memory allo-
cated be sufficiently large to accommodate the entire
queue, and that base and bound checks be done. Using
the threaded register window concept the queue is reg-
ister resident and occupies only the minimum number
of windows needed to hold the current queue contents.
As the queue grows and shrinks, register windows are
automatically allocated and deallocated. No checks for
base/bounds need be performed.

The two SQWs allow access to bo th the head and
the tail of a queue. However, frequently the entity
which queues and the entity which dequeues are sep-
arate tasks. In figure 3 two tasks axe accessing the
same queue. The source task uses SQW2 to reference
the queue's tail. The receiving task uses SQWI to ref-
erence the queue's head. The choice of using SQWI
or SQW$ is arbitrary, and can be left to programming
convention.

The queue empty condition or stack empty condition
is not automatically determined by the hardware but
requires software support. However, there is a hardware

2t

Sending Task's PSW2

+ I I

K R t0¢ 0 KR. fo~ P

S eco n~P LiM:p Wi!dow~o r U;:sk

J / First Map Window for Task 1

/ Figure 2 -
/ Activation Record Stack

Thread Maintenance

A.R foe N

A.R. f~ M

K R . ~ L

k ~ Ilor A

A.R. let e~e

4

, , [Z ~ ; T p,.v

- 3.7o. ,

Receiving Task's PSW2

Figure 3 - Queue Window Management

aid provided. If during the execution of one of the four
instructions $QWI = SQW~ and $QWI1 = SQWI2
condition codes will be set.

Parts of the stack/queue can be overflowed to the
memory window frames. In this case the links of its
neighbor windows are changed to point to the corre-
sponding memor F .frame address. As with other op-
erations presented here, this set of stack/queue opera.
tions is designed to hide as much of the register window
granularity from the applications programs as possible,
without paying a large performance penalty.

2.3 Task Switching/Interrupt Facilities

Most of the task state can be accessed through the
two PSWs. Therefore, simply saving these two words
records the configuration of the activation stack, and
all other window-based data structures. If these two
words were saved in registers, saving the current state
would require two register-to-register moves, plus any
additional logic needed to determine the storage loca-
tion.

In order to optimize a task context switch, any saved

6

scheduler data, such as the location of task control
blocks, scheduling queues, etc. should be made avail-

able as soon as the scheduler is passed control. To
facilitate this, the architecture allows for a window to
be pre-allocated for the scheduler's task CUR window.
This window may be selected at system start-up, and
a pointer to it saved in one of a set of special register
called Interrupt Control Regi3ters (ICR). There are 16
of these special registers, eight are reserved for hard-
ware interrupt vectors. The other eight may be used
for software traps. The ICR structure is shown in fig-
ure 4. The window pointer field permits the static al-
location of a window for use by each interrupt handler.
This window remains allocated even after the handler
returns. There are many advantages to this static al-
location. First, it reduces the chances of a window
underflow exception occurring at the time of an inter-
rupt. Secondly, the static nature of the window makes
it nicely suited to serving as a buffer for interrupts in-
volving data transfer.

The CALL! instruction is used for software traps.
This instruction is similar to the CALL instruction ex-

1

/'

S t a t i c a l l y

Allocated
Windows

Dedicated
Inlerrup!

Vector for interrupt 8

Vector for Inlerrupt 7

Vector for Interrupt 6

Vector for Interrupt 5

Vector |or Interrupt 4

Vector lot Interrupt 3

Vector for Interrupt 2

Vector for Interrupt 1

Vector |or Scheduler

Interrupt Control Registers

ICR 8

ICR 7

ICR'6

ICR 5

ICR 4

ICR 3

ICR 2

ICR 1

ICR 0

Figure 4 - Interrupt Control Registers

cept it may, or may not, select a window from the free
list to be used as the new CUR window. CALLlchecks
the ICR window field. If it is non-zero, then the pre-
allocated window is moved to CUR. A value of zero in
this field causes the trap to bc allocated a new window,
just as in a procedure call. This same process is used
to service hardware interrupts.

By using an instruction similar to a procedure call
to transfer control to the scheduler, the PC and the
OLD field of the currently active task is saved in that
task's MW. Becansc of the symmetry of CALLI and
CALL, once the selected task's PSWs have been loaded,
the scheduler need only execute a return instruction.
The RETURNI instruction is provided for this. It is
identical to RETURN except it does not return the
window pointed to by CUR to the free list, unless the
CUR entry in the interrupt's ICR wirLdou~field contains
a zero.

2 . 4 G l o b a l s - P a c k a g e s

Much of the emphasis of the li terature on window-based
RISC has been on the use of windows to solve the prob-
lems of locals and parameters in procedures. While
many such architectures provide a global window, few
specific proposals have been made for its usage. Also,
the special needs of multi-tasking systems for global
storage have not been widely addressed.

In a multi-tasking system, the global window would

be used most efficiently for storage which is global
to all tasks, such as scheduler information and con-
stants. However this architecture provides another im-
plicit window reference, the OWor object ~n/r~douJwhich
can be used to hold task specific global data. This win-
dow pointer in the PSW is not modified by a procedure
call but it is changed when the PSW is reloaded in a
task switch. It can therefore be considered to be a pro-
cedure global, task local reference. This window can be
used to hold frequently accessed task specific globals.
Having globals in registers was shown to bc very bene-
ficial in more conventional architectures [17]. With the
added capability of task local/procedure global stor-
age, the threaded window approach could yield highly

efficient use of registers.

2.5 Register Spill Management

Although it is hoped that little register spillage will oc-
cur (since we are primarily storing shortlived, dynam-
ically allocated, da ta in the register windows) perfor-
mance gains achieved through accessing data in regis-
ters instead of in memory could easily be destroyed if
efficient means do not exist for the movement of data
between registers and memory. A process which uses
task state data to deduce which register windows are
the best candidates for spillage to memory should exist,
and might run continuously as a background task.

There exists a certain implicit hierarchy of allocated
windows which such a task could use to anticipate the
relative likelihood that different windows will need to be
accessed soon. At the top of the hierarchy are the global
window and the pre-allocated interrupt and scheduler
windows, which are not eligible for spillage. Next would
be the Map Windows which should not be spilled until
all of the windows that they point to are spilled. At the
bot tom of the hierarchy are the stack/queue windows
and the activation record stack windows, which exhibit
the most dynamic behavior.

As can be inferred from the tree-like nature of the
hierarchy, there will probably be more windows allo-
cated which fall into the lower end of the hierarchy.
A system whose registers are being efficiently managed
would spill these lower level windows first, keeping only
a few that were recently referenced by the currently ac-
tive task. The higher level windows might be spilled for
tasks which are of low priority and /or have not run in
a long time. This information (task priority, task dy-
namic history) as well as information about procedure
call /return history and enqueue/dequeue history could
all be used to a t tempt to achieve optimum register win-
dow usage.

Some concern must be directed to a window pointed
to by the saved PSWs. These pointers sets up an alias.
The handling of this alias should be tailored to the use
of such a window. This implies a technique which is
language specific.

6 2
=

Figure 5
Task Spawning with

Cactus Stack
MA,P WINI K')W MAJ" WlhfffJW

MWL

MWl

MW

Ci_D

W-A PC - B

W-main PC - A

PC - main

Image Pointer
MW

CtD

W . C

W - B

W,A PC - B

W-main PC - A

PC - main

Image Pointer

CUR CUll

I W-B I w-c I I
PSW2

(A): INITIAL CONDITIONS: Parent task
exocuhng Procedure C - before spawning
child.

MAP WINDOW

[w.B Iw.c I I
PSW2

(B): Procedure C pushes OLD and CUR onto

MWI ~] W . B PC-C
t

W-C

W - B

This I o c . W-A PC - B
saved for child W-main PC - A

PC - main

MW ~ - Image Pointer

OLD CUR

l .c lw. Spaw .r I
P S W 2

(C): Procedure C calls spawner to create
child task. Spawner records previous
map window entry for link to parent.

MAP WINDOW

map window.

PC - B

PC - A

PC - main

MWl ~ W - C

W - B

W-A

W-main

bNV ~ - Image Pointer

OlD CUR

I w-8 I w-° I

(D): Return to Wocadure C. Parent task may
now continue to call other Wocedure6, but
It may not return from C until children finish.

3 M u l t i t a s k i n g A p p l i c a t i o n s -

A d a

The goal of this project was to provide an architec-
ture capable of handling multi-tasking efficiently. To
show the utility of this approach we attempted to imple-
ment some of the more complex constructs in the multi-
tasking language Ada. Ada implementations have fre-
quently been criticized for having too high an overhead
for tasking constructs. Our main goal was to create a
system where a rendezvous cost little more than a pro-
cedure call. Of course the architecture is not restricted
to Ada. It should work well for any language which fea-
tures multiple lines of control, or which allows multiple
states to exist concurrently.

Ada tasking is characterized by synchronous corn-

munications controlled by the rendezvous, and a hier-
archically shared memory, frequently referred to as the
cactu~ 8tack. Queues are used to transfer parameters
between communicating tasks. All of these constructs
can be easily implemented using the threaded register
window concept.

3.1 Cactus Stack

Tasking in Ada implies the concept of one task (child)
being within the scope of another (parent). All data
which is visible to the parent must also be visible to the
child, even if that data is local to the parent. This data
structure, the cactus 8tack, extends naturally from the
scoping provided by the procedure Map Window. How-
ever, a little massaging is necessary. The manipulation
of the map window during this process is shown in fig-

6 3

ure 5. We are assuming a compiler supplied subroutine
spawner which actually creates the child task. Prior to
calling spawner the parent task pushes his OLD and
CUR pointers onto the map window and marks them
as dummies. In this way, there is a record of all the ac-
tivation record windows needed by the child task. The
child keeps a pointer to a handle to the parent 's map.
Should the parent 's map window be spilled, the handle
will provide a single indirect reference for all references
to that entry - i.e. each child would use the handle to
locate the parent ' s map window. Thus, the spill man-
ager would only need to update this one indirect pointer
ra ther than seeking out each of the child processes.

3 .2 The Rendezvous

To handle the rendezvous, several support routines are
required. There must be support to; locate queues; de-
termine if a entry is open (ready and able to process
a call); and a protocol for scheduling. As was men-
tioned esther, saving the task's state at the time of a
task context switch requires that the PSWs be saved.
In addition since we may wish to remove a particular
task 's da ta from registers, what to do with the pointers
to the two top activation records must be addressed,
along with the pointer to the O W (which we used to
handle task relative information, such as the location of
the task control block, the task ID, etc.). We choose to
handle these three windows by pushing their pointers
into the M W . Specifically an interrupted or suspending
task will be subjected to a CALLl ins truct ion . This in-
struction will save OLD window pointer and the current
PC in the M W . The scheduler will then push pointers
to the other two windows (complete with the rest of the
PSWs) into M W using the PUSH command. The lo-
cation and index of the M W is stored by the scheduler
for future reference. A suspended task 's M W i s shown
in figure a.

Queues are not included in this task relative infor-
mation, since they are not task oriented but system
oriented. If queues are needed after a suspension they
must be re-requested from the queue manager. The
queue manager stores the locations of all queues along
with an indication tha t the entry associated with the
queue is open. We use queues to pass parameters be-
tween tasks, and to hold ready tasks waiting for the
processor. The steps for a simple accept call are as
follows.

1. Locate the queue head and tail for this entry, and
receive an indication if the entry is open and e x r
cutable; in addition, lock the queue. This may bc
implemented using a C A L L I to a queue manager.
The queue manager places the head and tail inh,
the PSW)s SQW1 and S Q W 2 fields, anti r e t u r n s

an indication of the entry 's status.

2. Place the parameters onto the queue. As men
tioned before, no bounds checking is required. The

6

parameter placement usually only requires regis-
ter to register moves to the register resident accept
queue .

3. Transfer control to an intermediate procedure
which will either execute the accept, or suspend
the caller. (Control is transferred using a CALL
instruction which saves the current PC and the
OLD window pointer in the MW.)

4. The i 'SWs are pushed onto the M W (preparing for
a suspend) .

5. If the az:cept i.s open, the called task's M W is lo-
cated and its PSW loaded. The accept executes,
and parameters are dequeued.

6. If the accept is closed, the queue pointers are saved,
and another task scheduled.

Although this is more expensive than a procedure
call (in this architecture) the overhead is minimal and
involves in most cases register to register moves. Ma-
chines with small register sets usually copy all registers
to memory at a procedure call. This rendezvous is less
expensive than that . The t ime would be further re-
duced by using the Haberman Nassi [9] optimization
(if appropriate) , which could be implemented easily.

4 C o n c l u s i o n

Register Window Threads are capable of handling the
dynamically created da ta of multiple tasks in on-chip
storage. This abili ty enables tasking languages such as
Ads, Occarn, and Modula to benefit from RISC tech-
nologies which use large on-board memories. This is
of special impor tance since these languages encourage
programmers to use many centers of control and fre-
quent context switches. These languages are often sug-
gested for use in real-time applications, if task context
switches cannot be executed efficiently, they will not be
effective.

We believe that the same features of the architecture
which supports mult i tasking can also be used to save
the environments of multiple object states, as is found
in object oriented languages such as Smalltalk. This
is due to the fact that tasking languages and object
oriented languages have one sinfilarity. In both types
of languages control transfers from one environment to
another fre,lucntly. This control transfer should be op-
timite,t, just a.~ procedure control transfer has been op-
timited in block s tructured languages such as C and
Pascal In addition these languages should also be able
to execute a procedure call with the same low overhead
as l,h),k structured programs.

The technique developed here offers these capahil-
itic~ and also allows communicat ion queues and tra-
,litional push /pop stacks to reside in registers; thus
cltcn,l ing the benefits of the activation record stack

4

MAP WINDOW

MWl W - B P C - C

W-A PC - B

W-main PC - A

PC - main

MW ~ - Image Pointer

CLD CUR

[w-c iv. Sohedu,er I I
PSW2

(A): Procedure C calls Scheduler (or is
interrupted) to suspend. The window
pointer for procedure B is saved in MW
along with PC.

osition [
~aved [
for

uture /

MAP WINDOW

(PSW1)

(PSW2)

W- B P C - C

W-A PC - B

W-main PC - A

PC - main

Image Pointer

CUR

I w-c Iv- Schedu'er I I
PSW2

(B): Scheduler pushes PSW2 and PSWl on
the Map Window and records MW and
MWI so that the task can be resumed later.

Figure 6 - Task Suspension

to these classes of shortlived heavily access dynami-
cally allocated data. Our technique differs from other
techniques that support multitasking in two important
ways. Other techniques segment the on-board storage.
This means that the number and size of on-chip en-
vironments is statically set. Our system dynamically
creates, and sizes, new environments. In our system,
any number of environments may exist at one time,
and this number may vary freely.

The development of this approach is still in its for-
mative stages. A simulator and compiler for the pro-
posed machine are currently under development. The
completion of these projects should permit extensive
quantitative measurements of the effectiveness of this
architecture. At this time, we feel that it is impor-
tant to explore the degree to which the register window
concept can be exploited to make the organization of
on-chip memory banks more general.

R e f e r e n c e s

[1] AMigO00 User'8 M~nu~zl. Advanced Micro De-
vices, 1987.

[2] A. V. Aho, J. Hopcroft, and J. Ullman. The Design
and Analysis of Computer Algorithm~. Addison
Wesley, 1975.

[3] Robert P. Colwell, Charles Y. Hitchcock, E. Dou-
glass Jensen, H. M. Brinkley Sprunt, and Charles P.
Kollar. Computers, Complexity and Controversy.
Computer, September 1985.

[4] D. R. Ditzel and J. R. McLellan. Register Allo-
cation for Free: The C Machine Stack Cache. In
Prec. of Me S31mposium on Architectural Support
for Programming Language8 and Operating S~ln-
terns, pages 48-56, 1982.

[5] R. Eickemeyer and J. Patel. Performance Evalua-
tion of Multiple Register Sets. In Prec. 1Jth An-

6 5

nual InterT~ational Symposium on Computer Ar-
chitecture, 1987.

[6] R. Eickemeyer and J. Patel. Performance Evalua-
tion of On-chip Register and Cache Organisation,
In Proc. 15th Annual International Symposium on
Computer Architecture, 1988.

[7] E. G. Gehringer and R. P. Colwell. Fast Object-
Oriented Procedure Calls. Computer Architecture
News, 14(2), 1986.

[8] J. Goodman and W. D. Hsu. On the Use of Regis-
ters vs. Cache to Minimize Memory Traffic. In
Proc. 14th Annual International Symposium on
Computer Architecure, 1986.

[9] A. N. Habermann and I. R. Nassi. E~icient Imple-
mentation of Ada Tasks. Technical Report CMU-
CS-80-103, Carnegie Mellon University, 1980.

[10] J. Hennessy, N. Jouppi, F. Baskett, and J. Gill.
MIPS: a VLSI Processor Architecture. In Proc.
CMU Conference on VLSI Systems and Computa-
tions, pages 337-346, 1981.

[11] D. A. Patterson and C. H. Sequin. A VLSI RISC.
Computer, 15(9), 1982.

[12] F. 3. Pollack, G. W. Cox, D. W. Hammerstrom,
K. Kahn, K. K. Lai, and J. R. Rattner. Sup-
porting Ada Memory Management in the iAPX-
432. In Proc. of the Symposium on Architectural
Support for Programming Languages and Operat-
ing Systems, pages 39-47, 1982.

[13] D. Quammen, D. R. Miller, and D. Tabak. Regis-
ter Window Management for a Real-Time Multi-
tasking RISC. In Proc. of the ~nd Hawaii Inter-
national Conference on System Sciences, 1989.

[14] G. Radin. The 801 Minicomputer. In Proc. of the
Symposium o~ A rchitectural Support for Program-
ming Languages and Operating Systems, pages 39-
47, 1982.

[15] Daniel Tabak. RISC Architecture. Research Stud-
ies Press, 1987.

[16] G. Taylor, P. Hilfinger, J. Larus, and D. Patter-
son. Evalutation of the SPUR Lisp Architecture.
In Proc. 14th Annual International Symposium on
Computer Architecture, 1986.

[17] D. W. Wall. Register Windows vs. Register Allo-
cation. SIGPLAN, 23(7), 1988.

6 6

