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The organization of large register banks into windows 
has been shown to be effective in enhancing the perfor- 
mance of sequential programs. One drawback of such 
an organization, which is of of minor importance to se- 
quential languages, is the overhead encountered when 
the register bank must be replaced during a task switch. 
With concurrent language paradigms, such as are found 
in Ada t , Occam, and Modula-2, these switches will 
be more frequent. We introduce here a methodology, 
and an architecture, which greatly reduces this over- 
head while maintaining the inherent advantages of the 
register window approach. In addition, we present ways 
of implementing traditional stacks and queues, as well 
as hierarchical storage structures using windows. 
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strate the utility of this design, an outline for an imple- 
mentation of the Ada tasking requirements is presented. 

We are concerned, for the time being, only with the 
storage of data, rather than code. Data is dynamically 
created, destroyed, and altered. Its access character- 
istics tend to be temporal in nature,  and its life time 
tends to be either very short, or very long. The run- 
time overhead needed to manage the dynamic ebb and 
flow of data  is expensive. It is this specific area of a 
multitasking environment that  we are addressing. 

Current VLSI technology can provide a relatively large 
bank of on-chip storage which is accessible at a much 
higher speed than off-chip memory. Providing on-chip 
room for this large register bank has been one of the mo- 
tivating factors in reducing instruction (and therefore 
control unit) complexity [11, 15]. Use of these mem- 
ory banks has yielded impressive performance gains for 
sequential languages [3, 17]. However, programs writ- 
ten using new language paradigms, such as object ori- 
ented languages and concurrent languages, cannot ben- 
efit from the same techniques used by sequential pro- 
grams. One unfortunate side-effect of current on-chip 
memory organizations is that they need to be saved 
and restored whenever an environmental context switch 
occurs. This is particularly true in multitasking envi- 
ronments, and is distressing when considering program 
designs which feature many and frequent task context 
switches. 

In this paper, we present a method to manage regis- 
ter windows which facilitates multitasking on a single 
register window bank. We also describe the architec- 
tural features to support this technique. To demon- 

IAda is a registered trademark of the U.S. Government(Aria 
Joint Program Office). 

1.1 Organization of Large On-Chip 
Memory 

A number of different approaches have been developed 
for organizing on-chip memory. Three of the more 
widely accepted approaches are a cache, a large directly 
addressable register bank, and a register (or register 
window) stack. There has been much discussion as to 
which of these methods is most appropriate [17, 8, 6, 5]. 

The first option, cache, has four major advantages; 

1. control of cache loading and spilling is invisible to 
the programmer 

2. cache addressing is identical to memory addressing 
and requires no additional compiler overhead 

3. cache is responsive to dynamic behavior 

4. cache can service both retentive storage, such as 
globals, and dynamically created storage. 

These advantages have corresponding disadvantages. 
Since control is invisible to the user, the user cannot 
benefit from known or deduced program behavior. In 
addition since cache is mapped into memory when dy- 
namic storage is created, memory as well as cache must 
be allocated. This double allocation is expensive, and 
is an undue overhead if the allocated memory is short- 
lived. Cache also requires more hardware per memory 
cell and tends to be slower than registers. 

Many systems [10] utilize the second approach to 
managing large numbers of registers, i.e. they provide 
a large bank of general purpose registers. Registers can 
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use knowledge about the needs of a program to pre- 
load and purge data more efficiently [8]. Users of these 
systems have successfully avoided much of the overhead 
of copying registers at the point of a subroutine call by 
mapping register usage at compile time through either 
static or trace-generated call graphs [17]. These sys- 
tems benefit by allowing frequently used variables, be 
they procedure locals or globals, to reside in registers. 
However, compiler processing is expensive, and it is not 
always possible to map every variable to a unique reg- 
ister. Such variables must either reside permanently in 
memory or be copied in and out of different registers. 

The third technique uses the on-chip storage to hold 
the top of the procedure activation stack. This has been 
the work of Dit~el [4] and Patterson [11] This technique 
is based on the observed behavior of C and Pascal pro- 
grams which concentrate most data reference activity 
to the storage at the top of the activation record stack. 
This storage is generally shortlived and is frequently 
deallocated (the procedure returns) before it overflows 
into memory. If there is an overflow, the allocation can 
be spilt into an easily managed memory resident stack. 

There are several additional benefits to the register 
stack technique. One, since addressing can be done rel- 
ative to the top of stack or within an allocated window, 
the size of the register address is small, and (to some 
degree) independent of the on-chip memory size. Two, 
compiler complexity is reduced since each subprogram 
can assume that it has dedicated registers. However, 
there are also disadvantages, recent studies [17, 6, 5] 
have indicated that the housing of frequently accessed 
globals may (in some situations) be a more beneficial 
use of registers than procedural activation records. In 
general, register stacks do not support this activity, al- 
though some do provide a limited number of global reg- 
isters which can be used for this purpose. In addition, if 
the on-chip memory is large, much of the register bank 
could remain unused if procedure call chains did not 
achieve significant depth [16]. 

We here present a fourth arrangement which not only 
exhibits the benefits of the above mentioned systems 
but  also lends itself to the implementation of additional 
data  structures required in systems with non-LIFO dy- 
namic storage allocation. None of the above systems 
address this domain. 

1 . 2  T h r e a d e d  R e g i s t e r  W i n d o w s  

Our goal is to design a system which offers the advan- 
tages of general registers, register stacks, and cache, but  
which minimizes some of the problems associated with 
them. We call the concept Threaded Register Windows 
[13]. Currently the basic unit of the thread is a register 
window, which contains 16 32-bit registers. The size 
of this window is experimental, and may be changed 
later. These windows do not overlap as do those of the 
Berkeley RISC-II, but dual pointers supported by the 

architecture allow access to both a calling procedure's  
activation window and the called activation window - 
therefore any passed parameters need not be copied. 
The windows can be flexibly and dynamically config- 
ured to serve as: 

1. Activation Record Stacks: several windows may be 
dynamically linked together to form a stack to hold 
procedural activation records. Because no window 
overlap is required, the windows forming the stack 
need not be contiguous. 

2. General Purpose Traditional Data  Stacks: the 
same linking approach can be used to form a tradi- 
tional pushpop data stack. Implicit access to this 
stack is supported by the architecture. 

3. General Purpose Queues: the archi tecture  also 
supports implicit access to queues made up of 
linked register windows. 

4. Statically allocated windows to hold vital infor- 
mation for an interrupt handler or the operating 
system. 

5. Isolated packets of frequently used global or object 
oriented data. 

The structures are created using doubly linked lists. 
The overhead involved in forming the links is low, 
and the architecture supports constructs which make 
it t ransparent  to application programs. 

There are many advantages to these structures.  The 
activation record stack allows the run time system to 
have multiple stacks (or at least the tops of them) res- 
ident on-chip at one time. This allows tasks to save 
their most recently used and needed da ta  in the fastest 
storage available, and not copy it at the t ime of a con- 
text switch. The result of this makes the performance 
gains achieved by other RISC machines [3] available to 
multi-tasking systems. 

The queue structure allows task communications to 
occur within the domains of the fast on-chip storage, 
and also facilitates scheduling. The addit ional  avail- 
ability of traditional stacks is advantageous since this 
structure is sharable by all procedures of a task or sys- 
tem. Tha t  is, it is not tied directly to the procedure 
control structures. This structure would be useful to a 
compiler; to hold data from large procedural  activation 
records (those which require more than 16 words); or 
to support  recursive algorithms, such as those used to 
handle trees and graphs [2]. 

The interior of the windows is accessed using a 
block relative address (register number).  Therefore, 
the operand address is short, allowing for three operand 
instructions, and the compiler can assume tha t  a dedi- 
cated set (one window) of registers is available for local 
and parameter storage. Dynamically allocated storage 
is initially allocated only in the windows. This is done 
by taking a free window from a hardware supported 
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(chip resident) free window stack. Off-chip memory is 
allocated only if an overflow occurs. Which windows 
to overflow, or to underflow, can be computed in the 
background using information available from the op- 
erating system and guidance from the compiler. The 
additional processing time needed to choose which win- 
dow to overflow can be regained by avoiding misses and 
unnecessary memory allocations. 

This work has characteristics of several other ma- 
chines, but  none use identical techniques. The idea 
of register windows was first developed by Patterson 
[11]. However, his work is not efficiently extendible to 
non-sequential situations. The AM29000 [1] can extend 
register management  to aid multitasking. The 128 reg- 
isters can be configured as eight segments, each with 
16 registers. However, these are of fixed size and are 
statically allocated, one per task. This can reduce pro- 
cedure cal l / return performance. The concept of point- 
ers to dynamic blocks was used in the Inte] 432 [12]. 
However, this machine used many  levels of indirection 
and did not exploit on-chip storage [7]. The IBM 801 
[14] added additional cache commands to avoid some of 
the unnecessary overhead involved with cache (such as 
loading the contents of a newly allocated procedural ac- 
tivation record even though this da ta  is void), however 
their techniques did not go far beyond this. 
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CLD Previous (caller's) activation record 
window pointer 

SOW1 Stad,JQueue Window 1 pointer 

SOWI1 Stack/Queue Window 1 index 

SOW2 Stack/Queue Window 2 pointer 

SOWI2 Stack/Queue Window 2 index 

ON *Object" Window poinler 

MW Map Window pointer 

MWI Map Window Index 

ICCNZ Interrupt enable, carry, overflow, 
negative, and zero flags 

2 Regis ter  W i n d o w  Thread Or- 
ganizat ion  

Figure 1 - Processor  State Registers 

In the register window thread organization register ac- 
cess is imphcit  through window pointers contained in 
the processor state. The processor state, saved in two 
process status words (PSW1 and PSW2), includes ref- 
erences to six windows at any one time. Additionally, 
there is always an implicit reference to the global win- 
dow, giving access to a total  of 7"16 registers. Access is 
restricted to only these windows. This allows the scope 
of a procedure to be inherently protected. Because of 
the limited address field, it is impossible to acciden- 
tally access da ta  outside the windows which have been 
allocated to a process. 

Figure 1 shows the organization of the processor state 
registers. Of the six windows, five are used to access 
user data.  One, the Map Window (MW in PSW1) is 
used to manage activation record stacks. The five data 
window references are: 

1. The current window (accessible through CUR in 
PSW2) - containing the activation record of the 
currently active procedure. 

2. The old window (accessible through OLD in 
PSW2) - containing the activation record of the 
current procedure's dynamic parent. Any param- 
eters which are passed, are accessed directly ,sing 
this pointer. 

3. StackQueue Window 1 and 2 (accessible through 
SQW1 or SQW2 in PSW2) - These windows may 
be treated as da ta  stacks, the head or tail of a 
queue, or a general da ta  windows. 

4. An object window, (accessible through OW in 
PSW1) - this window can be used to hold any addi- 
tional program-controlled da ta  pointer which, for 
example, can be used to access an object or fre- 
quently referred to globais. 

The SOW pointers also have an intra-register displace- 
ment associated with them. A register address is ex- 
pressed in the instruction using two fields. The first is 
a three bit field indicating one of the seven accessible 
windows; the second a four bit field indicating one of 
the sixteen registers in that  window. 

The register window pointers (CUR, OLD, sOW1, 
SOW2, OW, and MW) are 6 bits long; this provides 
for up to 64 unique windows. When a window is spilled 
to memory, it is still necessary to maintain a reference 
to the da ta  it contains. In this architecture, windows 
are most easily spilled to specific locations in memory 
called window frames. These frames are located in a 
specific region of da ta  memory.  The approach permits 
windows, whether spilled or not, to be referenced via a 
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16 bit pointer. If the upper 10 bits of the pointer are all 
sero, then the window is resident in the register bank 
in the window specified by the lower 6 bits. Otherwise, 
the full 16 bit value is used to form a memory (byte) 
address by shifting it left 6 bits. 

2 .1  P r o c e d u r a l  A c t i v a t i o n  R e c o r d  

S t a c k s  

The activation record stacks are represented by a list of 
windows (figure 2). Access to the top two windows is 
possible using the OLD and CUR pointers as described 
in the preceding section. To keep track of the thread 
of windows allocated to the activation record stack, an 
additional window, the map window (MW) is needed. 
This serves as a map, or directory, of the stack. This 
map, which can be housed in any register window, con- 
tains a sequential list of six bit window pointers iden- 
tifying the register windows in the stack and defining 
their order. The return address value for each nested 
procedure call is stored here as well. There is also a flag 
field, which indicates that  the window has overflowed 
into memory. The MWI  (map window index) is used 
to index this window. If a procedure call depth greater 
than 15 exists in one task, the hardware will t rap and 
create a link for an additional map window. One reg- 
ister (the link) is reserved to accommodate the doubly 
linked list (two 16 bit pointers to either memory resi- 
dent window frames, or to another register window). 

The M W  and MWI are altered by any CALL or RE- 
TURN instruction. The following actions are taken on 
each procedure call. 

CALL: M W I ~ M W I +  1[**] 
MW[MWI](2:25) ~- PC 
MW[MWI](26:31) ~ PSW2.OLD 

PSW2.OLD ~ PSW2.CUR 
PSW2.CUR ~-- free list top [*] 
PC ~-- Address of Call; 

The [*] indicates that  an exception may be generated 
if there are no windows available to be allocated. The 
[**] indicates that an exception will be generated if a 
new M W  must be allocated. While there appears to be 
quite a bit of activity, this process will be completed in 
one cycle, if an exception does not occur (in which case 
it requires three cycles, unless there is a need to overflow 
to memory).  The RETURN instruction perform the 
reverse action. 

If it becomes necessary to overflow a window from 
a particular activation stack into memory, the M W  
plays an integral role. Windows are copied into window 
frames, 16 word blocks in low memory, addressable us- 
ing 16 bit addresses. To start  an overflow, a memory 
resident map window image, is allocated, and a pointer 
to it saved in the downward link of the MW. We will 
call this allocated window .frame the memory map. The 
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previous contents of the downward link of the M W  is 
copied to the downward link of the memory map. Next, 
the activation record window to be spilled is copied into 
a second memory window frame and the 16 bit pointer 
to this window frame is saved in the memory map. The 
reference in the M W i s  marked as copied. When all 15 
windows of this M W  have been overflowed the M W  it- 
self can be spilled. Since each M W  contains a pair of 16 
bit pointers, the MWlinkage can be maintained regard- 
less of whether the MWs are in memory or registers. 
When this procedure chain is reactivated, the windows 
must be copied back to register windows before control 
is transferred to them. Only those procedures that are 
about to be reactivated need be copied back. 

If access is required to a variable down the proce- 
dure chain this map (whether resident in memory or in 
register windows) can be used to traverse the chain. 

2 . 2  T r a d i t i o n a l  S t a c k s  a n d  Q u e u e s  

To facilitate communication in multitasking systems 
the threaded register windows can be reconfigured as 
queues or traditional push /pop  stacks. The two SQW 
and SQWI fields are used to support  these structures. 
Four special instructions alter these pointers; POP, 
PUSH, ENQUEUE and DEQUEUE. All four instruc- 
tions add or remove the single word elements from 
the stack/queue which is pointed to by the SQW plus 
SQWI. The SQWI is adjusted accordingly after each 
instruction. When 15 elements have been pushed or 
queued, a software trap will link another  window to 
the stack/queue. 

The expandability of these structures,  as illustrated 
in figure 8, is especially beneficial to queue manage- 
ment. In most conventional systems, queues are im- 
plemented in statically allocated storage and have a 
circular behavior. This requires that  the memory allo- 
cated be sufficiently large to accommodate  the entire 
queue, and that base and bound checks be done. Using 
the threaded register window concept the queue is reg- 
ister resident and occupies only the minimum number 
of windows needed to hold the current  queue contents. 
As the queue grows and shrinks, register windows are 
automatically allocated and deallocated. No checks for 
base/bounds need be performed. 

The two SQWs allow access to bo th  the head and 
the tail of a queue. However, frequently the entity 
which queues and the entity which dequeues are sep- 
arate tasks. In figure 3 two tasks axe accessing the 
same queue. The source task uses SQW2 to reference 
the queue's tail. The receiving task uses SQWI to ref- 
erence the queue's head. The choice of using SQWI 
or SQW$ is arbitrary, and can be left to programming 
convention. 

The queue empty condition or stack empty  condition 
is not automatically determined by the hardware but 
requires software support.  However, there is a hardware 
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Figure 3 - Queue Window Management 

aid provided. If during the execution of one of the four 
instructions $QWI = SQW~ and $QWI1 = SQWI2 
condition codes will be set. 

Parts of the stack/queue can be overflowed to the 
memory window frames. In this case the links of its 
neighbor windows are changed to point to the corre- 
sponding memor F .frame address. As with other op- 
erations presented here, this set of stack/queue opera. 
tions is designed to hide as much of the register window 
granularity from the applications programs as possible, 
without paying a large performance penalty. 

2.3 Task Switching/Interrupt Facilities 

Most of the task state can be accessed through the 
two PSWs. Therefore, simply saving these two words 
records the configuration of the activation stack, and 
all other window-based data  structures. If these two 
words were saved in registers, saving the current state 
would require two register-to-register moves, plus any 
additional logic needed to determine the storage loca- 
tion. 

In order to optimize a task context switch, any saved 
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scheduler data, such as the location of task control 
blocks, scheduling queues, etc. should be made avail- 

able as soon as the scheduler is passed control. To 
facilitate this, the architecture allows for a window to 
be pre-allocated for the scheduler's task CUR window. 
This window may be selected at system start-up, and 
a pointer to it saved in one of a set of special register 
called Interrupt Control Regi3ters (ICR). There are 16 
of these special registers, eight are reserved for hard- 
ware interrupt  vectors. The other eight may be used 
for software traps. The ICR structure is shown in fig- 
ure 4. The window pointer field permits the static al- 
location of a window for use by each interrupt handler. 
This window remains allocated even after the handler 
returns. There are many advantages to this static al- 
location. First, it reduces the chances of a window 
underflow exception occurring at the time of an inter- 
rupt. Secondly, the static nature of the window makes 
it nicely suited to serving as a buffer for interrupts in- 
volving data  transfer. 

The CALL!  instruction is used for software traps. 
This instruction is similar to the CALL instruction ex- 
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Figure 4 - Interrupt Control  Registers 

cept it may, or may not, select a window from the free 
list to be used as the new CUR window. CALLlchecks 
the ICR window field. If it is non-zero, then the pre- 
allocated window is moved to CUR. A value of zero in 
this field causes the trap to bc allocated a new window, 
just as in a procedure call. This same process is used 
to service hardware interrupts. 

By using an instruction similar to a procedure call 
to transfer control to the scheduler, the PC and the 
OLD field of the currently active task is saved in that 
task's MW. Becansc of the symmetry of CALLI and 
CALL, once the selected task's PSWs have been loaded, 
the scheduler need only execute a return instruction. 
The RETURNI instruction is provided for this. It is 
identical to RETURN except it does not return the 
window pointed to by CUR to the free list, unless the 
CUR entry in the interrupt's ICR wirLdou~field contains 
a zero. 

2 . 4  G l o b a l s - P a c k a g e s  

Much of the emphasis of the li terature on window-based 
RISC has been on the use of windows to solve the prob- 
lems of locals and parameters in procedures. While 
many such architectures provide a global window, few 
specific proposals have been made for its usage. Also, 
the special needs of multi-tasking systems for global 
storage have not been widely addressed. 

In a multi-tasking system, the global window would 

be used most efficiently for storage which is global 
to all tasks, such as scheduler information and con- 
stants. However this architecture provides another im- 
plicit window reference, the OWor object ~n/r~douJwhich 
can be used to hold task specific global data. This win- 
dow pointer in the PSW is not modified by a procedure 
call but it is changed when the PSW is reloaded in a 
task switch. It can therefore be considered to be a pro- 
cedure global, task local reference. This window can be 
used to hold frequently accessed task specific globals. 
Having globals in registers was shown to bc very bene- 
ficial in more conventional architectures [17]. With the 
added capability of task local/procedure global stor- 
age, the threaded window approach could yield highly 

efficient use of registers. 

2.5 Register Spill Management 

Although it is hoped that  little register spillage will oc- 
cur (since we are primarily storing shortlived, dynam- 
ically allocated, da ta  in the register windows) perfor- 
mance gains achieved through accessing data  in regis- 
ters instead of in memory could easily be destroyed if 
efficient means do not exist for the movement of data  
between registers and memory. A process which uses 
task state data  to deduce which register windows are 
the best candidates for spillage to memory should exist, 
and might run continuously as a background task. 

There exists a certain implicit hierarchy of allocated 
windows which such a task could use to anticipate the 
relative likelihood that  different windows will need to be 
accessed soon. At the top of the hierarchy are the global 
window and the pre-allocated interrupt and scheduler 
windows, which are not eligible for spillage. Next would 
be the Map Windows which should not be spilled until 
all of the windows that  they point to are spilled. At the 
bot tom of the hierarchy are the stack/queue windows 
and the activation record stack windows, which exhibit 
the most dynamic behavior. 

As can be inferred from the tree-like nature of the 
hierarchy, there will probably be more windows allo- 
cated which fall into the lower end of the hierarchy. 
A system whose registers are being efficiently managed 
would spill these lower level windows first, keeping only 
a few that  were recently referenced by the currently ac- 
tive task. The higher level windows might be spilled for 
tasks which are of low priority and /or  have not run in 
a long time. This information (task priority, task dy- 
namic history) as well as information about  procedure 
call /return history and enqueue/dequeue history could 
all be used to a t tempt  to achieve optimum register win- 
dow usage. 

Some concern must be directed to a window pointed 
to by the saved PSWs. These pointers sets up an alias. 
The handling of this alias should be tailored to the use 
of such a window. This implies a technique which is 
language specific. 
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Figure 5 
Task Spawning with 

Cactus Stack 
MA,P WINI K')W MAJ" WlhfffJW 

MWL 

MWl 

MW 

Ci_D 

W-A PC - B 

W-main PC - A 

PC - main 

Image Pointer 
MW 

CtD 

W . C  

W - B  

W,A PC - B 

W-main PC - A 

PC - main 

Image Pointer 

CUR CUll 

I W-B I w-c I I 
PSW2 

(A): INITIAL CONDITIONS: Parent task 
exocuhng Procedure C - before spawning 
child. 

MAP WINDOW 

[w.B Iw.c I I 
PSW2 

(B): Procedure C pushes OLD and CUR onto 

MWI ~ ] W . B  PC-C 
t 

W-C 

W - B  

This I o c .  W-A PC - B 
saved for child W-main PC - A 

PC - main 

MW ~ - Image Pointer 

OLD CUR 

l .c lw. Spaw .r I 
P S W 2  

(C): Procedure C calls spawner to create 
child task. Spawner records previous 
map window entry for link to parent. 

MAP WINDOW 

map window. 

PC - B 

PC - A 

PC - main 

MWl ~ W - C  

W - B  

W-A 

W-main 

bNV ~ - Image Pointer 

OlD CUR 

I w-8 I w-° I 

(D): Return to Wocadure C. Parent task may 
now continue to call other Wocedure6, but 
It may not return from C until children finish. 

3 M u l t i t a s k i n g  A p p l i c a t i o n s  - 

A d a  

The goal of this project was to provide an architec- 
ture capable of handling multi-tasking efficiently. To 
show the utility of this approach we attempted to imple- 
ment some of the more complex constructs in the multi- 
tasking language Ada. Ada implementations have fre- 
quently been criticized for having too high an overhead 
for tasking constructs. Our main goal was to create a 
system where a rendezvous cost little more than a pro- 
cedure call. Of course the architecture is not restricted 
to Ada. It should work well for any language which fea- 
tures multiple lines of control, or which allows multiple 
states to exist concurrently. 

Ada tasking is characterized by synchronous corn- 

munications controlled by the rendezvous, and a hier- 
archically shared memory, frequently referred to as the 
cactu~ 8tack. Queues are used to transfer parameters 
between communicating tasks. All of these constructs 
can be easily implemented using the threaded register 
window concept. 

3.1 Cactus  Stack 

Tasking in Ada implies the concept of one task (child) 
being within the scope of another (parent). All data 
which is visible to the parent must also be visible to the 
child, even if that data is local to the parent. This data 
structure, the cactus 8tack, extends naturally from the 
scoping provided by the procedure Map Window. How- 
ever, a little massaging is necessary. The manipulation 
of the map window during this process is shown in fig- 

6 3  



ure 5. We are assuming a compiler supplied subroutine 
spawner which actually creates the child task. Prior to 
calling spawner the parent  task pushes his OLD and 
CUR pointers onto the map  window and marks them 
as dummies.  In this way, there is a record of all the ac- 
tivation record windows needed by the child task. The 
child keeps a pointer to a handle to the parent 's  map. 
Should the parent 's  map  window be spilled, the handle 
will provide a single indirect reference for all references 
to that  entry - i.e. each child would use the handle to 
locate the parent ' s  map  window. Thus, the spill man- 
ager would only need to update  this one indirect pointer 
ra ther  than seeking out each of the child processes. 

3 .2  The Rendezvous 

To handle the rendezvous, several support  routines are 
required. There must  be support  to; locate queues; de- 
termine if a entry is open (ready and able to process 
a call); and a protocol for scheduling. As was men- 
tioned esther,  saving the task's  state at the time of a 
task context switch requires that  the PSWs be saved. 
In addition since we may  wish to remove a particular 
task 's  da ta  from registers, what to do with the pointers 
to the two top activation records must be addressed, 
along with the pointer to the O W  (which we used to 
handle task relative information,  such as the location of 
the task control block, the task ID, etc.). We choose to 
handle these three windows by pushing their pointers 
into the M W .  Specifically an interrupted or suspending 
task will be subjected to a CALLl ins truct ion .  This in- 
struction will save OLD window pointer and the current 
PC in the M W .  The scheduler will then push pointers 
to the other two windows (complete with the rest of the 
PSWs) into M W  using the PUSH command.  The lo- 
cation and index of the M W  is stored by the scheduler 
for future reference. A suspended task 's  M W i s  shown 
in figure a. 

Queues are not included in this task relative infor- 
mation,  since they are not task oriented but system 
oriented. If  queues are needed after a suspension they 
must be re-requested from the queue manager.  The 
queue manager stores the locations of all queues along 
with an indication tha t  the entry associated with the 
queue is open. We use queues to pass parameters  be- 
tween tasks, and to hold ready tasks waiting for the 
processor. The steps for a simple accept call are as 
follows. 

1. Locate the queue head and tail for this entry, and 
receive an indication if the entry is open and e x r  
cutable; in addition, lock the queue. This may bc 
implemented using a C A L L I  to a queue manager. 
The queue manager  places the head and tail inh, 
the PSW)s SQW1 and S Q W 2  fields, anti r e t u r n s  

an indication of the entry 's  status. 

2. Place the parameters  onto the queue. As men 
tioned before, no bounds checking is required. The 
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parameter  placement usually only requires regis- 
ter to register moves to the register resident accept 
queue .  

3. Transfer control to an intermediate procedure 
which will either execute the accept, or suspend 
the caller. (Control is transferred using a CALL 
instruction which saves the current PC and the 
OLD window pointer in the MW.)  

4. The i 'SWs are pushed onto the M W  (preparing for 
a suspend) .  

5. If the az:cept i.s open, the called task's  M W  is lo- 
cated and its PSW loaded. The accept executes, 
and parameters  are dequeued. 

6. If the accept is closed, the queue pointers are saved, 
and another task scheduled. 

Although this is more expensive than a procedure 
call (in this architecture) the overhead is minimal and 
involves in most cases register to register moves. Ma- 
chines with small register sets usually copy all registers 
to memory at a procedure call. This rendezvous is less 
expensive than that .  The t ime would be further re- 
duced by using the Haberman Nassi [9] optimization 
(if appropriate) ,  which could be implemented easily. 

4 C o n c l u s i o n  

Register Window Threads  are capable of handling the 
dynamically created da ta  of multiple tasks in on-chip 
storage. This abili ty enables tasking languages such as 
Ads, Occarn, and Modula to benefit from RISC tech- 
nologies which use large on-board memories. This is 
of special impor tance  since these languages encourage 
programmers  to use many centers of control and fre- 
quent context switches. These languages are often sug- 
gested for use in real-time applications, if task context 
switches cannot be executed efficiently, they will not be 
effective. 

We believe that  the same features of the architecture 
which supports  mult i tasking can also be used to save 
the environments of multiple object states, as is found 
in object oriented languages such as Smalltalk. This 
is due to the fact that  tasking languages and object 
oriented languages have one sinfilarity. In both types 
of languages control transfers from one environment to 
another fre,lucntly. This control transfer should be op- 
timite,t, just a.~ procedure control transfer has been op- 
timited in block s tructured languages such as C and 
Pascal  In addition these languages should also be able 
to execute a procedure call with the same low overhead 
as l,h),k structured programs. 

The technique developed here offers these capahil- 
itic~ and also allows communicat ion queues and tra- 
,litional push /pop  stacks to reside in registers; thus 
cltcn,l ing the benefits of the activation record stack 
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(A): Procedure C calls Scheduler (or is 
interrupted) to suspend. The window 
pointer for procedure B is saved in MW 
along with PC. 
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MAP WINDOW 

(PSW1) 

(PSW2) 

W-  B P C - C  

W-A PC - B 

W-main PC - A 

PC - main 

Image Pointer 

CUR 

I w-c Iv-  Schedu'er I I 
PSW2 

(B): Scheduler pushes PSW2 and PSWl on 
the Map Window and records MW and 
MWI so that the task can be resumed later. 

Figure 6 - Task Suspension 

to these classes of shortlived heavily access dynami- 
cally allocated data. Our technique differs from other 
techniques that support multitasking in two important 
ways. Other techniques segment the on-board storage. 
This means that the number and size of on-chip en- 
vironments is statically set. Our system dynamically 
creates, and sizes, new environments. In our system, 
any number of environments may exist at one time, 
and this number may vary freely. 

The development of this approach is still in its for- 
mative stages. A simulator and compiler for the pro- 
posed machine are currently under development. The 
completion of these projects should permit extensive 
quantitative measurements of the effectiveness of this 
architecture. At this time, we feel that it is impor- 
tant to explore the degree to which the register window 
concept can be exploited to make the organization of 
on-chip memory banks more general. 
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