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ABSTRACT
In embedded systems, memory is a scarce resource and great
attention must be given to memory management. A novel
approach of applying priorities to memory allocation is pre-
sented and it is shown how this can be used to enhance the
robustness of real-time applications. Focus is on systems
with automatic memory management, but the ideas are also
applicable to manually managed memory. In systems with
automatic memory management, the proposed mechanisms
can also be used to increase performance by limiting the
amount of garbage collection work. Furthermore, a way of
introducing priorities for memory allocation in a Java sys-
tem without making any changes to the syntax of the Java
language is proposed. This has been implemented in an ex-
perimental Java virtual machine.

*This is a shorter version of a paper to appear at the In-
ternational Symposium on Memory Management (ISMM),
Berlin, Germany, June 20-21, 2002.

1. INTRODUCTION
With the recent development in small, cheap and fast proces-
sors for embedded systems and the emerging trend of writ-
ing embedded applications in high level object oriented lan-
guages, the performance limiting bottleneck may no longer
be CPU time but rather memory and memory management.
This is accentuated by the high relative cost of memory in
embedded systems and systems on chip.

Memory management is a system-global problem and cur-
rently puts a great responsibility on programmers. For in-
stance, a memory leak or excessive memory allocation in one
module of a system will eventually cause the entire system
to run out of memory and fail. Therefore it is interesting to
study whether it is possible to apply priorities to memory as
well as CPU time allocation; just as we don’t want an im-
portant process to be delayed because a less important one
is executing we don’t want an unimportant memory alloca-
tion to cause a critical process to fail or be delayed, because

the system runs out of memory or has to do a large amount
of garbage collection work to satisfy its allocation needs.

We propose a novel approach which addresses two problems:
firstly, how to increase program robustness by avoiding out-
of-memory problems and secondly, to increase application
performance in systems with automatic memory manage-
ment by reducing the garbage collection (GC) workload.
Section 3 briefly describes both aspects, whereas the rest
of the paper will focus on the robustness issue.

While this paper focuses on object oriented systems with
garbage collection, especially Java, the robustness issues
should be equally applicable to any memory allocator.

A note on terminology; in order to avoid confusion we will
use the terms high priority (HP) and low priority (LP) to
denote the CPU time priority of a process and the terms
critical and non-critical for our new notion of priorities for
memory allocations.

2. BACKGROUND
It has been shown that it is possible to schedule GC work
in such a way that high priority processes are not disturbed
by using a technique called semi-concurrent garbage collec-
tion scheduling [3]. The fundamental idea of this technique
is that since we don’t want the high priority processes to
be delayed by garbage collection, we suspend the garbage
collector when they are executing. The GC work neglected
during the execution of the high priority processes is then
performed in the pauses between the activations of high pri-
ority processes. The remaining CPU time will be divided be-
tween executing low priority processes and performing GC
work motivated by the actions of the LP processes, using
traditional incremental techniques [5].

Basically, a system using this strategy can be described as
having three levels of priority:

1. High priority processes

2. Garbage collection required to satisfy the high priority
process

3. Low priority processes and traditional incremental garbage
collection

Figure 1 shows how the CPU time will be used in a system



with one periodic high priority process and one low priority
process.

Coupled with good worst case execution time and memory
requirements estimates and a good garbage collection work
metric, semi-concurrent garbage collection scheduling allows
us to make hard real-time guarantees for the high-priority
threads by using traditional schedulability analysis.
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Figure 1: Dividing the CPU time between processes.
The system consists of one periodic high priority
process (HP) and one low priority process (LP).
Whenever a high priority process is suspended, and
no other HP process is eligible for execution, the
garbage collector (GC ) is run. GC work is also in-
terleaved with the low priority process using tradi-
tional incremental garbage collection.

3. APPLYING PRIORITIES TO MEMORY
ALLOCATIONS

We like to view memory allocation as any other resource al-
location. Our goal is to provide run-time system support for
doing the most important memory allocation if the system
has limited memory in analogy with how the process sched-
uler makes sure that the most important process is run and
less important ones are delayed if CPU time is scarce.

3.1 Avoiding out-of-memory situations
A high priority process in an embedded system may per-
form other tasks1 in addition to its core functionality. For
example, a digital controller process may produce log data
in addition to calculating and outputting its control signal.
In such a process, memory allocations by the less important
tasks (e.g., producing log data) must never interfere with
the core functionality (calculating the control signal).

This can, of course, be achieved by manually ensuring that
the amount of log data never exceeds a certain value, e.g., by
using a bounded buffer for delivering it to the logger process.
Doing this manually has the drawback that the size of the
buffer has to be calculated and this calculation is highly plat-
form and application dependent. (I.e., each time a change
that affects the application’s memory allocation behaviour
is made, the maximum amount of non-critical memory has
to be recalculated.) If more than one process does unrelated
non-critical memory allocations, the complexity of manag-
ing this increases rapidly. Thus, manual solutions require a
1The word task is used in the sense “a piece of work to be
done” and not in the real-time programming sense. For the
latter, the words process and thread are used.

lot of work and risk beeing unnecessarily conservative, error
prone, or both.

Our approach to this problem is to transfer the responsibility
for making the decisions about when to allow non-critical
memory allocations from the programmer to the run time
system. Then, the only a priori calculation that has to be
done is to calculate the amount of critical allocations done
by each (high priority) process during its period and this
depends only on the application and not on any properties
of the target platform.

This approach can also be used to provide a “limp home”
mode, i.e., a mode of operation with lesser performance but
radically lower memory consumption that will allow the ap-
plication to continue executing in an out of memory situa-
tion, facilitating a more graceful degradation. This may be
useful for adding some amount of predictability to applica-
tions with non-predictable memory allocation behaviour.

Finally, non-critical memory allocation gives programmers
the possibility to add more features to a system without
risking that these additions cause the system to run out of
memory and jepoardise the core functionality of the system
even if it is moved to a smaller platform. E.g., a low priority
process with only non-critical memory allocations cannot
cause a system to fail since, if the CPU load is dangerously
high it will not get any CPU time and if the amount of
memory is too low, it will not be allowed to allocate any
memory.

This also has the advantage that it makes it easier to make
hard real-time guarantees since worst case and schedulabil-
ity analysis only has to be done on the critical parts of the
system. Such analysis still has to be done using existing
techniques [6, 10, 7].

3.2 Improving performance by reducing the
GC workload

Another reason to limit non-critical memory allocations is
to reduce the amount of garbage collection work needed and
thereby increaseing the amount of CPU time available to the
application. This can, in turn, improve the application’s
performance by e.g., allowing more accurate calculations or
a higher sampling rate.

Furthermore, in a real-time GC system, such as the one de-
vised by Henriksson [3], additional memory allocations done
by a high priority process may cause starvation of low pri-
ority processes; either directly, through increased execution
time, or indirectly, due to the increase in GC work caused
by these allocations (since the garbage collector for the high
priority processes run at a higher priority than the system’s
low priority processes). In complex systems, however, the
LP process may be more important for good system perfor-
mance than a secondary task of the high priority process.
By using priorities for memory allocations, the application
may be written so that, if the system runs low on memory,
the primary tasks of both the HP and the LP processes are
executed, but the less important task of the HP process is
not.



4. NON-CRITICAL MEMORY ALLOCATIONS
The semi-concurrent garbage collection scheduling model in-
troduces a special garbage collection scheduling for the high
priority processes in order to guarantee that they are never
delayed. In this work we take this a step further by also con-
sidering the behaviour of the memory allocator and the risk
of running out of memory, due to, for instance, unpredictable
application behaviour or even wrong worst case estimates.
This is done by introducing the notion of non-critical mem-
ory allocation requests, i.e., requests for memory that the
run-time system may choose to deny without causing the
program to fail.

Ultimately, what we want to do is to keep the amount of
live non-critically allocated memory below a certain limit in
order to make guarantees that critical allocations never will
fail. Unfortunately, live memory amount is not a very suit-
able measurement, since keeping track of this is not always
practically possible 2. In automatically managed memory
systems, where we have the problem with floating garbage3,
there is no real way of knowing how much live memory there
is in the system. The only factor we can be sure of is the
amount of memory available for allocation, so we need to
base our decisions on this.

4.1 Non-critical allocation limit
The decision whether to grant or deny a non-critical memory
allocation request has to be as simple as possible if it is to
be used in high performance applications. We do this by
introducing an allocation limit for non-critical allocations;
if there is less free, or allocatable4, memory than this limit,
no non-critical allocations may be done. This limit will vary
over time; at the start of a GC cycle, we have to reserve
memory for all the HP memory allocations needed during
this GC cycle and then, as the HP process runs and does
its allocations, the amount of reserved memory is reduced
accordingly. Figure 2 shows schematically how the amount
of allocated, reserved and free memory varies over a GC
cycle.

When deciding whether to grant or deny a non-critical mem-
ory request, we look at how much allocatable memory there
is, and how much memory we need to reserve for the HP pro-
cess so that all its remaining memory allocations during this
GC cycle will succeed. Let n be the number of HP periods
in a GC cycle, and mHP the amount of memory allocated
during each period by the HP process. Then, i HP periods
into a GC cycle we need to reserve RHPi = (n − i) mHP

bytes for the remaining HP periods during this GC cycle.

2In systems with manual memory management it would be
trivial to keep track of the amount of live non-critical mem-
ory, since objects are explicitly deallocated. The only prob-
lem here is the possibility of fragmentation.
3Floating garbage is memory that is no longer reachable
from the application but has not yet been reclaimed by the
garbage collector.
4Allocatable memory is memory that is immediately avail-
able for allocation. We prefer the term allocatable memory
to free memory since, depending on the memory allocator
or garbage collection algorithm used, the term free mem-
ory may be difficult to define or even irrelevant. E.g., in a
non-compacting system, the amount of free memory may be
much larger than the amount of allocatable memory due to
fragmentation.
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Figure 2: A schematic figure showing the limit for
non-critical allocations. The dotted lines indicate
the times where the non-critical limit is equal to the
amount of allocatable memory, i.e., when the system
starts to deny non-critical allocation requests.

Non-critical memory allocations should only be allowed if
they won’t cause the amount of allocatable memory to drop
below RHP .

4.2 Fixed GC cycle length
In order to be able to guarantee that the HP process always
will get the memory it requests, we need to make sure that
the GC always keeps up with the application. I.e., after
each invocation of the HP process, the GC must do enough
GC work so that all the allocations during the next HP pro-
cess invocation will succeed. Given the amount of memory
allocated by the HP process each period and the amount
of memory reserved for HP allocations we can calculate the
GC cycle time expressed in number of HP process periods.
We call this time the nominal GC cycle time.

To ensure that no HP allocation fails, we need to complete
each GC cycle within this time, even if the actual amount of
allocations done during the current GC cycle are less than
the worst case. Otherwise, the situation may arise that there
is allocatable memory left, but not enough for another com-
plete HP process invocation. If a HP process is started at
that time, it will require more memory than currently avail-
able and thus, that HP process will be delayed by panic
garbage collection.

5. NON-CRITICAL MEMORY IN JAVA
The main objective when implementing these ideas in a Java
environment was that no changes to the syntax of the Java
language should be made, and that programs written for our
system should work on any Java platform (but, of course,
without the added sematics of non-critical memory alloca-
tions.)

Our proposed approach is to use the exception mechanism
of Java, so we define a special exception class,
NoNonCriticalMemoryException, with the added semantics
that all allocations that are done in a block which catches



that exception are non-critical. Figure 3 shows a simple
program which does both critical and non-critical memory
allocations. This program will run on any Java platform
with the only addition of an (empty) exception class.

void example(){
Object aCriticalObject = new Object();
foo(aCriticalObject); // do something important
try{

Object aNonCriticalObject = new Object();
foo(aNonCriticalObject);
doSomething();

// do something
// if the non-critical
// allocation was successful

} catch(NoNonCriticalMemoryException e){
// non-critical allocation failed

}
}

Figure 3: Small example program. The allocation of
aCriticalObject is always done, but the allocation of
aNonCriticalObject may be denied. If the allocation
fails, a NoNonCriticalMemoryException is thrown and
may be handled in the catch-clause.

Non-criticality is transitive, i.e., memory allocations done in
a method that is called from a non-critical region, like the
calls foo(aNonCriticalObject) and doSomething() in Fig-
ure 3, are also non-critical. Note, however, that the first call
to foo(), foo(aCriticalObject) is not non-critical since
the call is not made from a non-critical block. This be-
haviour is preferable since an auxilliary function could be
called both from critical and non-critical regions of the same
program.

The exception class NoNonCriticalMemoryException is an
unchecked exception in order to make such transitivity pos-
sible without having to litter the code with try and catch

clauses. An instance of this class can be statically allocated
to avoid wasting memory.

We have made an experimental implementation using the
IVM (Infinitesimal Virtual Machine) [4], a very compact
real-time Java virtual machine currently being developed
at the Department of Computer Science, Lund University.
Currently, we explicitly turn non-critical allocations on and
off using a native method IVM.setMemoryPriority(). This
is not fundamentally different from our proposed approach
since the setMemoryPriority() calls could be inserted au-
tomatically by the class loader as the exception catching
table is set up (much in the same way as monitorenter and
monitorexit are generated for synchronized blocks). This
is, we believe, a better approach than dynamically check-
ing whether NoNonCriticalMemoryException is caught at
each allocation, since such a run-time check would be more
expensive.

6. EXPERIMENTAL RESULTS
We have implemented these ideas in a simple control system.
For the experiments, we used a lab process with a ball on a
beam. The angle of the beam is controlled in order to roll
the ball to a given position on the beam, see Figure 4.

100-10

Figure 4: The ball-on-beam process. The beam can
be rotated to roll the ball to the desired position.
The position of the ball is in the interval [−10, 10].

The control was done by a Java application consisting of
three threads; a user interface (low priority), a reference
generator (high priority) and a controller (high priority). In
addition to doing the actual control, the controller thread
sends log data back to the user interface thread.

6.1 Avoiding out-of-memory situations
We have encountered two scenarios where non-critical mem-
ory allocations can help making sure that a change to a pre-
viously working system doesn’t risk breaking it: increasing
the sampling rate of the controller and reducing the amount
of memory available to the application.

When the sampling rate is increased, the controller both uses
a greater part of the CPU time and allocates log data at a
higher rate until we get to a point where the user interface
thread doesn’t get the CPU time needed for consuming all
the log data and the application runs out of memory and
fails. By making the log data allocations non-critical, this
cannot happen and the control is not affected.

Reducing the available memory5 will, obviously, at some
point cause the application to fail. However, by making the
allocation of log data non-critical, the minimum memory
requirement for the application may be significanty reduced
compared to the original version.

The following traces illustrate the first scenario. In these
experiments, the period of the reference generator and the
controller was both 20 ms, and a log data object about
60 bytes. Figure 5 shows a run of the ball-on-beam sys-
tem without non-critical memory. The high allocation rate
causes a large GC workload and the UI process is starved,
eventually leading to failure. Figure 6 shows the same sys-
tem where the allocation of log data has been made non-
critical. The majority of the log data allocations are still
made, but the allocation is kept at a sustainable level. Fig-
ure 7 shows a close-up of Figure 6 where you can see the
non-critical behaviour more clearly.

6.2 Improving performance
Our experiments also indicate that it is possible to achieve
better control performance by limiting the amount of non-
critical memory allocations. The plots in Figure 8 show two
runs of the ball-on-beam application without and with non-
critical memory allocations enabled, respectively.

In the version without non-critical allocations, the high al-

5This could occur either by actually running the system on
a smaller platform or, perhaps more likely, by adding more
threads to the system.
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Figure 6: A run of the ball-on-beam system with log-data allocations made non-critical. In the thread plot
you see that the UI thread gets CPU time throughout the run. The third plot shows the amount of memory
allocated by low priority processes during this cycle. The fourth plot shows if non-critical allocations succeed
or not; high level means success and low level is deny.
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Figure 7: Closeup to show the non-critical memory behaviour.The dotted line in the freemem plot is the
non-critical limit.
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Figure 5: A sample run of the ball-on-beam sys-
tem without non-critical memory. The UI thread
(3) doesn’t get enough CPU time to consume all
plot data that is produced. After t = 75 it is to-
tally starved by the GC. Then, less and less mem-
ory is available and more and more CPU time is
spent doing (panic) GC. In the first half of the run
the controller(1) and reference generator(2) threads
run unimpeded, and the control was OK until t = 90.
After that the amount of panic stop-the-world GC
caused so long delays that the controller dropped
the ball. The CPU load is almost 100% and the idle
thread (0) is not run except in the very beginning.
The reason that the maximum amount of allocatable
memory increases in the middle is that when the GC
cycles get shorter there is less floating garbage.

location rate occasionally forces the garbage collector to do
a full garbage collection cycle in order to reclaim enough
memory to satisfy the allocation needs. This delays the
high priority controller process so that it misses its deadline
which, in turn, degrades the control performance.

When the allocation of log data is made non-critical, the
allocation is kept below the safe limit and the system runs
as designed, with more consistent control performance.

7. RELATED WORK
7.1 Memory Management in Real-Time Java
There are two specifications for real-time Java; The Real-
Time Specification for Java (RTSJ) [2] and the Real-Time
Core Extensions (RTCE) [1]. They both try to solve the
real-time garbage problem by avoiding it, using region based
approaches to memory management for the real-time threads.
The non-real-time threads do their memory allocation on a
heap with traditional garbage collection.

RTSJ uses scoped memory areas for the high priority threads.
Objects allocated in scoped memory areas are not garbage
collected but instead the whole memory area is reclaimed
when the program exits the scope in which the memory area
was allocated.

The access restrictions associated with scoped memory (e.g.,
objects allocated on the heap may not reference objects in
scoped memory, and real time threads aren’t allowed to ac-
cess the heap6) make inter-thread communication more diffi-

6Since the heap is garbage collected, real-time threads with
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Figure 8: Plots showing the reference value and
the measured position for the ball-on-beam pro-
cess. The upper plot shows the system without
non-critical memory allocations and the lower plot
shows the system where the allocation of plot data
is non-critical. The irregular behaviour in the upper
plot, around samples 2500, 4000, 6000, and 8500, is
caused by the controller process being delayed by
the garbage collector due to the program running
out of allocatable memory and forcing a complete
garbage collection cycle.

cult. Real-time threads, however, may share scoped memory
areas.

In RTCE, real-time objects are allocated in core memory,
and may not access objects on the garbage collected baseline
heap. Objects on the heap may, with some restrictions, ac-
cess core objects through special method calls. Core objects
are allocated in an allocation context. When an allocation
context is released, all objects in it may be eligible for recla-
mation but, since there might be references from the baseline
heap, the actual reclamation is done by the baseline garbage
collector when all of the objects in the allocation context are
unreachable. Thus, a non-real-time garbage collector is used
to reclaim the memory used by the real-time processes.

In RTCE, there are no limitations on which allocation con-
texts objects may reference so it is up to the programmer not
to release an allocation context when it is still referenced.

RTCE also specifies stack allocation of real-time objects,
which are to be automatically reclaimed as the scope is ex-
ited. To allocate stack objects, a set of restrictions apply
and the reference must explicitly be declared stackable.

Under both of these specifications, the same behaviour as
our system can be achieved by using one memory area (or

hard time constraints must be of the type NoHeapReal-
TimeThread in order to avoid interference from the garbage
collector.



allocation context) for critical memory and another (or the
heap) for the non-critical objects. The drawbacks of these
approaches compared to ours are firstly that a much higher
responsibility is placed on the programmer and that garbage
collection cannot be used for the real-time threads and sec-
ondly that the access restrictions make communications be-
tween e.g. low and high priority threads more complicated.

7.2 Worst case analysis
Good worst case estimates for execution time[8] and memory
usage[7] are crucial for making any kind of real-time guaran-
tees. The experimental tool Sk̊anerost[9] developed at our
department provides interactive worst case execution time
and memory consumption analysis based on timing schema
and source code annotations for (currently a subset of) the
Java language.

8. CONCLUSIONS
We have introduced the idea of applying priorities to mem-
ory allocation and shown how this can be used to enhance
the robustness of real-time applications. The advantage
this approach gives is twofold; firstly, it provides run-time
support for prioritizing memory allocations if there is not
enough memory for all allocation requests. Secondly, but
equally important, it makes it easier to provide hard guaran-
tees since the worst case memory usage calculations only has
to be done for the critical parts of the system as non-critical
allocations cannot cause the system to fail. Furthermore,
we also suggest that the same mechanisms could be used
to increase performance by limiting the amount of memory
allocation and, consequentially, GC work.

Our approach is based on the notion of non-critical memory
allocation requests, which can be used by the programmer
to indicate that the memory allocations done in a certain
part of the program are less important than the rest. Such
non-critical allocations may be allowed to fail if the run-
time system decides that that memory could be of better
use elsewhere or that the increased garbage collection work
would degrade system performance.

We also propose a way of introducing non-critical memory
allocation in a Java system without making any changes to
the syntax of the Java language and we have implemented
this in an experimental Java virtual machine.

Preliminary experiments show that this mechanism is fairly
easy to implement and can improve the robustness and per-
formance of a control application by restricting its operation
to the critical tasks if the system runs low on memory. It
allows the programmer to write a system that performs bet-
ter if run on a faster and larger system but whose critical
tasks won’t fail if it is run on a system with less than ideal
amount of memory. Instead, the non-critical features of the
system will automatically be turned off if there isn’t enough
memory for them to be safely executed.
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