Materializing Views with Minimal Size
To Answer Queries

Rada Chirkova
Computer Science Department
North Carolina State University
Campus Box 7535, Raleigh, NC 27695-7535
chirkova@csc.ncsu.edu

ABSTRACT

In this paper we study the following problem. Given a
database and a set of queries, we want to find, in advance,
a set of views that can compute the answers to the queries,
such that the size of the viewset (i.e., the amount of space, in
bytes, required to store the viewset) is minimal on the given
database. This problem is important for many applications
such as distributed databases, data warehousing, and data
integration. We explore the decidability and complexity of
the problem for workloads of conjunctive queries. We show
that results differ significantly depending on whether the
workload queries have self-joins. If queries can have self-
joins, then a disjunctive viewset can be a better solution
than any set of conjunctive views. We show that the prob-
lem of finding a minimal-size disjunctive viewset is decid-
able, and give an upper bound on its complexity. If workload
queries cannot have self-joins, there is no need to consider
disjunctive viewsets, and we show that the problem is in
NP. We describe a very compact search space of conjunc-
tive views, which contains all views in at least one opti-
mal disjunctive viewset. We give a dynamic-programming
algorithm for finding minimal-size disjunctive viewsets for
queries without self-joins, and discuss heuristics to make the
algorithm efficient.

1. INTRODUCTION

In this paper we study the following problem: given a set
of queries, how to choose views to compute the answers to
the queries, such that the total size of the viewset (i.e., the
amount of space, in bytes, required to store the viewset) is
minimal. This problem exists in many environments, such
as distributed databases [5, 8, 26], data integration [22], and
the recent “database-as-a-service” model [19]. For example,
mediators in data-integration systems support seamless ac-
cess to autonomous, heterogeneous information sources [34].
A mediator translates a given user query to a sequence of
queries on the sources, and then uses the answers from the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PODS 2003, June 9-12, 2003, San Diego, CA.

Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00.

Chen Li
Information and Computer Science
University of California, Irvine
Irvine, CA 92697
chenli@ics.uci.edu

sources to compute the final answer to the user query [17].
After receiving many user queries, the mediator can send
multiple queries to the same source to receive data. As an-
other example, “database as a service” is a new model for
enterprise computing [18], in which companies and organi-
zations choose storing their data on a server over having to
maintain local databases. The server provides client users
with the power to create, store, modify, and query data on
the server. When a client issues a query, the server uses the
stored data to compute the answer and sends the results to
the user over the network.

These applications share the following characteristics. (1)
Both the client and the server are able to do computation.
Notice that the client might prefer computing some part
of the query answer to receiving excessively large amounts
of data from the server, as in the database-as-a-service sce-
nario; in the mediation scenario, the client (mediator) might
have to do computation anyway. (2) The computation is
data driven; the data resides on the server that is different
from the client where a query is issued — either by client’s
choice, as in the database-as-a-service scenario, or by design,
as in the mediation scenario. (3) The server needs to send
data to the client over a network. When query results are
large, the network could become a bottleneck, and the client
may want to minimize the costs of transferring the data over
the network.

For instance, consider the following simplified versions of
three relation schemas in the TPC-H benchmark [32]:

customer (ckey, name, mktsegment)
order (okey, ckey, priority, comment)
lineitem(okey, partkey, quantity)

Suppose the relations are stored on a server. A client user
issues the query @ in Figure 1. This query is the natural
join of the three stored relations, with the selection con-
dition customer.mktsegment=’building’. The server then
computes the answer to (Q and sends it back to the client.
Notice that the query answer could have a lot of redundancy;
for example, an order may have many lineitems, thus the or-
der information will appear many times in the answer.

To reduce the redundancy, we can instead decompose the
answer into intermediate results — views Vi and V2, shown
in Figure 1. The views have the same subgoals as the query,
but have different output attributes. After receiving the
results of the views, the client can compute the answer using
the rewriting in Figure 1. One advantage of sending the view
results is that their total size could be much smaller than
that of the query answer. Another advantage is that if the

ans(name, okey, priority, comment, partkey, quantity) :- customer(ckey,name, 'building’),

order(okey, ckey, priority, comment), lineitem(okey, partkey, quantity).

order(okey, ckey, priority, comment), lineitem(okey, partkey, quantity).

order(okey, ckey, priority, comment), lineitem(okey, partkey, quantity).

Query Q:

View Vi: Vi(name, okey, priority, comment) :- customer(ckey, name, building’),
View Va: Va(okey, partkey, quantity) - customer(ckey,name, building’),
Rewriting: ans(name, okey, priority, comment, partkey, quantity) :-

Vi(name, okey, priority, comment), Va(okey, partkey, quantity).

Figure 1: Using views to answer a query.

client has cached the answers to previously asked queries,
which can be used to compute the results of a view, say Vi,
then we do not need to send the results of V;. In this way, we
can further reduce the communication costs. Clearly there
are other ways to decompose the query answer into views,
and which viewset has the smallest total size depends on the
database instance.

In general, given a set of queries (a query workload) and
a fixed database instance, we want to define and precom-
pute offline a set of intermediate results (views), such that
these view results can be used to compute the answer to
each query in the workload. In addition, we want to choose
the views in such a way that their total size is minimal on
the given database. In this paper we study this problem
for select-project-join queries with equality selections, also
known as conjunctive queries [33]. We explore the decid-
ability and complexity of the problem. We show that the
results differ significantly depending on whether the queries
have self-joins.

After formulating the problem in Section 2, we present
the following contributions.

1. In Section 3 we study the decidability and complex-
ity of the problem. We show that if workload queries
have self-joins, nontrivial disjunctive views can give
rise to smaller viewsets than purely conjunctive views.
We establish that the problem of finding a minimal-
size viewset in the space of disjunctive views is de-
cidable, and give an upper bound on the complexity
of the problem. Further, we show that for arbitrary
conjunctive query workloads, to find rewritings of the
workload queries in terms of a minimal-size viewset,
it is not necessary to consider nontrivial disjunctive
rewritings.

2. In Section 4 we study workloads of conjunctive queries
without self-joins, and show that disjunctive views can-
not provide smaller viewsets than purely conjunctive
views. Thus it is enough to consider purely conjunc-
tive views when looking for a minimal-size disjunctive
viewset. Moreover, it is enough to explore a very re-
stricted search space of such views, and the problem
of finding a minimal-size viewset is in NP.

3. In Section 5 we present a dynamic-programming algo-
rithm for finding minimal-size disjunctive viewsets for
conjunctive queries without self-joins, and give heuris-
tics to improve the algorithm.

1.1 Reated work

The problem of finding views to materialize to answer
queries has traditionally been studied under the name of

view selection. Its original motivation comes up in the con-
text of data warehousing. The problem is to decide which
views to store in the warehouse to obtain optimal perfor-
mance [15, 30, 31, 35]; one direction is to materialize views
and indexes for data cubes in online analytic processing
(OLAP) [3, 16, 21]. Another motivation for view selec-
tion is provided by recent versions of several commercial
database systems. These systems support incremental up-
dates of materialized views and are able to use materialized
views to speed up query evaluation [4, 14, 37]. Choosing
an appropriate set of views to materialize in the database is
crucial in order to obtain performance benefits from these
new features [2].

Traditional work on view selection uses certain critical
tacit assumptions. The first assumption is that the only
views to be considered to materialize are those that are
subexpressions of the given queries, or are given in the input
to the problem in some other way. The second assumption
is that there is some low upper bound on the number of
views in an optimal viewset. These assumptions have been
questioned in recent work on database restructuring [11, 12,
13], which considers all possible views that can be invented
to optimize a given metric of database performance.

Other related topics include answering queries using views
(e.g., [1, 23, 20]), view-based query answering (e.g., [6, 7]),
minimizing viewsets without losing query-answering
power [24], and using compression techniques to reduce query-
result size [10].

2. PROBLEM FORMULATION

Given a set, or workload, Q of queries on stored relations
Ri,...,R, and a fixed database instance, we want to find
and precompute offline a set of intermediate results, defined
as views Vi,..., Vs on these relations. These views can be
used to compute the answers to all queries in the workload
Q. Our goal is to find an optimal solution — to choose a
set of views V), such that their total size Yy, ey size(V;) is
minimal on the given database instance. The size of a view
Vi is the amount of space, in bytes, required to store the
view V;. In addition to finding the views, we also find a
plan to compute the answer to each query in the workload
Q using the views in V.

We focus on conjunctive queries (i.e., select-project-join
queries with equality selections). Each query is of the form

ans(X) - R1(X1),...,Rn(Xy).

Predicate R; in a subgoal Ri()zi) corresponds to a base
(stored) relation, and each argument in the subgoal is ei-
ther a variable or a constant. We consider views defined on
the base relations by safe conjunctive or disjunctive queries.
A disjunctive query is a union of conjunctive queries. A

query is safe if each variable in the query’s head appears in
the body. A query variable is called distinguished if it ap-
pears in the query’s head. We consider query rewritings that
are either conjunctions of views (conjunctive query rewrit-
ings) or unions of conjunctions of views (disjunctive query
rewritings), under set semantics.

2.1 Answering queriesusing views

We briefly review some important concepts of answering
queries using views. (See [23] for details.) A query Q1 is con-
tained in a query @2, denoted Q1 C @2, if for any database
D of the base relations, the answer computed by Q1 is a
subset of the answer by Q2. The two queries are equiva-
lent if Q1 C Q2 and Q2 C Q1. A conjunctive query Q1 is
contained in a conjunctive query @2 if and only if there is a
containment mapping from Q2 to Q1 [9]. The ezpansion of a
query P on a set of views V, denoted PP, is obtained from
P by replacing all views in P by their definitions in terms
of the base relations. Given a query) and a set of views
V, a query P is an equivalent rewriting of @ using V if P
uses only the views in V and P**? is equivalent to Q. In the
rest of the paper, we use “rewriting” to mean “equivalent
rewriting.”

EXAMPLE 2.1. Consider two relations: r(Dealer,
Make) and s(Dealer,City). A tuple r(d,m) means that
dealer 4 sells a car of make m. A tuple s(d,c) means that
dealer d is located in city c. Consider the following query Q
and three views Vi, Va, and V3. The query asks for all pairs
(m,c), such that there is a dealer in city c selling cars of
make m.

Q: ans(M,C) :-r(D,M),s(D,C).
Vi: ans(D,M) :-r(D,M).

Va: ans(D,C) :-r(D,M),s(D,C).
Vs : ans(D) -r(D,M),s(D,C).

P is an equivalent rewriting of QQ using the three views:
P :ans(M,C) :- V3(D),Vi(D, M), V2(D, C).

We can show there are two containment mappings: one from
Q to the expansion P¢*P of P — this mapping is an identity
mapping — and another from PP to Q. O

2.2 Twotypesof viewsin rewritings

There are two types of views in a rewriting of a query: (1)
containment-target views, and (2) filtering views. They can
be distinguished by examining containment mappings from
the query to the expansion of the rewriting. Intuitively, in
a rewriting, a containment-target view “covers” at least one
query subgoal. That is, in the computation of the query
using the rewriting, the view provides at least one query
subgoal. Covering all query subgoals is enough to produce
a rewriting of the query. For instance, in Example 2.1, view
Vi(D, M) covers the query subgoal r(D, M), whereas view
Va(D, C) covers the query subgoal s(D,C). Thus views Vi
and V> are containment-target views for the query.

DEFINITION 2.1. (Containment-target view) A con-
junctive view V is a containment-target view for a query Q
if the following is true. There exists a rewriting P of Q (P
uses V'), and there is a containment mapping from Q to the
expansion P¢*P of P, such that V provides the image of at
least one subgoal of Q under the mapping. a

A view is a filtering view for a query if it is not a contain-
ment-target view. Filtering views are not necessary in con-
structing query rewritings, in the sense that those views do
not cover query subgoals. However, there could exist some
query plan in which a filtering view removes, or filters out,
dangling tuples from some join input(s) in the plan, which
may reduce the cost of evaluating the query. For instance,
view V3 in Example 2.1 is a filtering view, which removes
from the view V; all tuples that are dangling with respect
to the view V5. We will show that to solve the problem of
minimizing the size of a viewset that gives a rewriting of a
query workload, we do not need to consider filtering views.

3. DECIDABILITY AND COMPLEXITY

In this section we study the decidability and complexity of
the problem of finding a minimal-size viewset for a workload
of conjunctive queries.

3.1 Minimal-size setsof conjunctive views:
The problem isdecidable

We start by obtaining results on the decidability and com-
plexity of finding a minimal-size conjunctive viewset for a set
of conjunctive queries, assuming conjunctive rewritings.

THEOREM 3.1. For any finite workload of conjunctive
queries and a database instance, it is possible to construct
a finite search space of views, which includes all views in
all minimal-size conjunctive viewsets for the workload. The
number of views in the search space is at most doubly-
exponential in the length of the longest query definition in
the workload. O

The idea of the proof is as follows. Suppose a viewset V
is a minimal-size viewset for a workload Q on a database
instance D, and suppose some views in V have definitions
whose length is more than exponential in the length of the
longest query definition in the workload Q. Let size(V) be
the total size of the views in V. By Theorem 3.1 in [13], using
the query workload Q and the storage limit equal to size(V),
we can construct another viewset W with two properties:
(1) each view in W has a definition whose length is at most
exponential in the length of the longest query definition in
the workload Q; (2) the viewset W satisfies the storage limit
size(V) on the database D. By construction, the viewset W
is also a minimal-size viewset for the query workload Q on
the database D. Because the length of each view definition
in any such viewset W is at most exponential in the length
of the longest query definition in @, the total number of
views in all viewsets W is at most doubly-exponential in the
length of the longest query definition in the workload.

From Theorem 3.1 we obtain a decidability result:

COROLLARY 3.1. Given a database instance, the problem
of finding a minimal-size conjunctive viewset is decidable for
finite workloads of conjunctive queries, assuming all rewrit-
ings are conjunctive. O

We also observe that the problem has a triply-exponential
upper bound: A naive algorithm will find a minimal-size
viewset for a given query workload by exploring all subsets
of the at most doubly-exponential search space of views.

3.2 Containment-target views are enough

‘We now show that when looking for a minimal-size viewset
(either conjunctive or disjunctive) for a conjunctive query
workload, we only need to consider containment-target views,
assuming all rewritings are conjunctive. In addition, there
is a linear upper bound on the number of views in any such
minimal-size viewset.

LEMMA 3.1. Given a database instance, for any conjunc-
tive query workload Q and for any minimal-size disjunc-
tive viewset V for Q (assuming conjunctive rewritings), each
view in V is a containment-target view for at least one query
in the workload Q. O

Intuitively, in looking for a viewset that is a solution for a
query workload, we want to minimize the number of views
as a way to minimize the total size of the viewset. In partic-
ular, we want to minimize the number of containment-target
views. They are the only type of views needed to produce
rewritings of each workload query by covering subsets of
the query subgoals. We also observe that in a minimal-size
viewset, there is no need to cover any query subgoal by more
than one containment-target view. From these observations
we obtain the following result.

THEOREM 3.2. Given a database instance, for any con-
junctive query workload Q and for any minimal-size dis-
Junctive viewset V for Q (assuming conjunctive rewritings),
if the queries in the workload Q have a total of n subgoals,
then the viewset V has at most n views.]

It has been shown [23] that for any conjunctive query with
n subgoals, if the query has a rewriting using views, then
there exists a rewriting with at most n views. At the same
time, that result did not provide any optimality guarantees
for the views in the rewriting.

Even though Lemma 3.1 says that in searching for a mini-
mal-size viewset, we can restrict our consideration to
containment-target views only, the search space of views for
a query workload can still be very large, even if we examine
conjunctive views only. There are mainly two reasons: (1)
there are many ways to choose subsets of the query subgoals;
and (2) there are many ways to project out variables in a
view definition. The following example illustrates the point.

EXAMPLE 3.1. For an integer value k > 1, consider a
query workload {Qr}, where:

Qr:ans(X,Y1,...,Yy) - pi(X,Y1),... ,p(X, Y%).

We can define at least the following containment-target views
for {Qr}. FEach view is defined as a subset of the subgoals
of Qr, and all variables in each view are distinguished. It
is easy to see that by taking conjunctions of some of these
views, we can obtain many different rewritings of Q. Fur-
ther, the total number N of these containment-target views
is N = 2% — 1. Notice that the space can be larger if we also
consider views with nondistinguished variables.]

OBSERVATION 1. Given a database instance, for the prob-
lem of finding a minimal-size viewset for a workload of con-
junctive queries, the size of the search space of views can be
(at least) expomential in the length of the definitions of the
queries. O

3.3 Digunctive views can provide better
solutions
A query has a self-join if the minimized query defini-
tion [9] has at least two subgoals with the same relation
name. When workload queries have self-joins, we show that
it might be better to materialize disjunctive views than con-
junctive views.

PROPOSITION 3.1. There exists a query workload and a
database instance, such that a solution with disjunctive views
requires strictly less storage space than any solution using
conjunctive views only. O

We give the proof by constructing such an example. Let
flight(source,destination) be a base table, in which a tuple
flight(s,t) means that there is a direct flight from city s to
city t. A query workload {@Q} has a single query @) that asks
for all sequences of airports that give one-stop flights:

Q :ans(X,Y, Z) - flight(X,Y), flight(Y, Z).
We define a disjunctive view V = V; U Va, where

Vi: ans(X,Y) - flight(X,Y), flight(Y, Z).
Va: ans(Y, Z) - flight(X,Y), flight(Y, Z).

Figure 2: A database of the “flight” relation.

For the database in Figure 2, we show that the disjunc-
tive viewset {V'} is smaller than any conjunctive viewset.
Let W be any optimal conjunctive solution for the work-
load. By Lemma 3.1, the viewset W consists of conjunctive
containment-target views only. We show that for the given
database instance, the solution W has more data values than
the disjunctive solution {V'}.

Let P be an equivalent rewriting of the query) using the
views in W.

P:ans(A,B,C) - wi(X1),...,wi(X).

By Lemma 3.1, P has no more than two view literals, i.e.,
k =1 or 2. There are two cases: (1) each view w; is used
exactly once in the rewriting P; (2) some view w; is used
more than once in P. We consider the two cases separately.

Case (1): each view w; is used exactly once in rewriting
P. From Theorem 3 in [12], each view in P can be de-
fined as a subexpression of the query Q. It follows that all
views in the rewriting P come from a set .S of all conjunctive
containment-target views that can be defined as subexpres-
sions of the query). The set S for the given @ has just
four views. By considering all combinations W of the views
in the set S that produce equivalent rewritings and by com-
puting the sizes of the resulting viewsets, we can show that
the disjunctive solution {V'} has fewer data values than any
such viewset W.

Case (2): some conjunctive view w; can be used more
than once in the rewriting P. Because P has at most two
subgoals, the only possibility in this case is that P is a self-
join of a single conjunctive view:

P:ans(A,B,C) - w(X1), w(X2).

By Theorem 3.1 in [13], in this case views can have more
subgoals than the query). Suppose there exists a conjunc-
tive view w that has more subgoals (after minimization)
than query Q). Then the minimized definition of w has at
least three subgoals of the flight relation. In addition, the
definition of w cannot have cross-products (otherwise the so-
lution {w} would be suboptimal). By considering all possi-
ble combinations of nontrivial join predicates on three flight
subgoals, we verify that the three subgoals in w cannot con-
tain any subset of subgoals of the query). In assuming that
a view can be used in the rewriting P and have more sub-
goals than @, we have arrived at a contradiction. On the
other hand, suppose the view w is a subexpression of the
query @Q (i.e., w € S). Then for any nontrivial equivalent
rewriting of the query @ that is a self-join of w, the viewset
{w}, on the given database instance, has more data values
than the disjunctive solution {V'}.

In summary, for both cases we have shown that on the
given instance of relation flight, an optimal conjunctive view-
set requires strictly more storage space than the disjunc-
tive viewset {V'}. Therefore, the disjunctive viewset {V'} is
smaller than any conjunctive viewset.

3.4 Digunctiveviewsand rewritings:
The problem isdecidable

In this section we show that if we allow disjunctive views
in viewsets, then the problem of finding an optimal solu-
tion for a workload of conjunctive queries is still decidable,
even if we also allow disjunctions in query rewritings. Let a
minimal-size disjunctive viewset for a workload of conjunc-
tive queries be a minimal-size viewset for the workload in
the space of disjunctive views. Any or all of its disjunctive
views can be purely conjunctive.

THEOREM 3.3. Given a database instance and a finite
workload of conjunctive queries (assuming conjunctive rewrit-
ings only), we can construct a finite search space of views
that includes all views in all minimal-size disjunctive viewsets
for the query. The number of views in the search space is at
most triply-exponential in the sum of sizes of the definitions
of the workload queries. a

The main idea of the proof is as follows. For any conjunc-
tive query, to obtain all nontrivial disjunctive views in all
minimal-size disjunctive viewsets, it is enough to consider all
minimal-size conjunctive rewritings of the query. For each
such rewriting, it is enough to generate all disjunctive views
whose conjuncts are subsets of subgoals in the expansion of
the rewriting. From Theorem 3.1, we know that the prob-
lem of generating all minimal-size conjunctive rewritings of
a conjunctive query is decidable. Thus the problem of find-
ing all minimal-size disjunctive viewsets for a conjunctive
query is also decidable. We then generalize our observations
to finite workloads of conjunctive queries. The upper bound
on the complexity of the problem follows from the fact that
to find all optimal disjunctive views, it is enough to consider
unions of optimal conjunctive views.

We now give the details of the proof. Consider a conjunc-
tive query workload Q and a disjunctive viewset V that is
a solution for the workload. In this proof, we look at two
cases: we first consider all singleton query workloads Q, and
then look at all other query workloads Q.

Case 1: Suppose the query workload O has just one query
q,i.e., @ ={Q}, and V is a (not necessarily optimal) disjunc-
tive solution for Q. Consider a rewriting of the query @ us-
ing V, and consider the expansion of the rewriting, which is
a union of several conjunctive queries. One of these queries,
P, is equivalent to the query @ [28]. We call P the equivalent
congunct of Q@ in terms of V.

Suppose the viewset V contains a nontrivial disjunctive

view V. Let V be a union of conjunctive views Vi,... V.
Consider an alternative solution V' that is obtained by re-
placing, in V, this disjunctive view V by Vi,...,V;. The

viewset V' is a solution for the query Q because of the con-
junct P. We say the viewset V is a better solution for the
query @ than V' if size(V) < size(V').

size(V) can be less than size(V') only when the equivalent
conjunct P (of @ in terms of V) has a self-join of (at least)
two different conjuncts, V; and Vj, of the disjunctive view
V. (If P has either just one conjunct Vj of the disjunctive
view V, or if P has a self-join of just one conjunct V,, of V|
we could obtain a solution for the query @ that is at least
as good as V, by replacing, in the viewset V, the view V by
just one of its conjuncts — Vi or Vi, respectively.) Note
that each of V, and V., is a purely conjunctive view.

Next, we show that we can reconstruct the disjunctive
view V using just the equivalent conjunctive rewriting P
of @, without having access to the disjunctive viewset V.
In the first step, consider any viewset VW that consists of
purely conjunctive views and such that P is an expansion of
an equivalent rewriting P’ of the query Q using the viewset
W. All such viewsets W can be generated just from P, for
the following reason. Each view W in W is defined from a
subset of subgoals of P; the head arguments of W are any
subset of the set of all arguments of W that also occur either
in other views in the rewriting P’ or in the head of P’. Once
we have all subgoals of P partitioned into the bodies of views
W, a conjunction of the views is an equivalent rewriting of
the query @, and P is the expansion of the rewriting. We
conclude that given an expansion P of the query @, we can
generate all purely conjunctive viewsets that are solutions
for @ and have the expansion P.

In the second step, we notice that for any conjunctive
query @, we can construct all expansions P of all optimal
equivalent conjunctive rewritings of the query. (This result
follows immediately from Theorem 3.1.) Notice that for
each optimal equivalent conjunctive rewriting of the query,
the length of the expansion of the rewriting is at most ex-
ponential in the length of the query. (From Lemma 3.1, the
rewriting has at most as many views as the query has sub-
goals; the length of the definition of each view is at most
exponential in the length of the query definition.)

To summarize, we have looked at a conjunctive query @, a
nontrivial disjunctive view V in a solution for), an equiva-
lent conjunct P in the expansion of the equivalent rewriting
of @, and a set of conjunctive views Vi,...,V, which are
all conjuncts of the view V. We have seen that the view
V requires less storage space than Vi,...,V; only when P
has a self-join of at least two different conjuncts, V;, and Vj,
of the view V. Now we are ready to make the third and

last step of the proof. For an arbitrary conjunctive query
Q, we can generate all optimal equivalent conjuncts P and
all conjunctive views for those conjuncts; there are a finite
number of such conjuncts and of such views. It follows that
we can generate all conjuncts Vi, ...,V of all nontrivial dis-
junctive views V that give rise to the equivalent rewriting
P of the query Q. Observe that each such view V can be
generated by taking a union of two or more such conjuncts,
and that the process of generating all such views V' is finite
because the number of views Vi,...,V] is finite. From this
observation, we obtain the claim for Case 1 of the theorem.

Case 2. Suppose the query workload Q has at least two
queries: Q = {Q1,...,Qn}, n > 2. In addition to finding
all disjunctive views that can be used to rewrite individual
queries in the workload Q, we now want to account for each
nontrivial disjunctive view that can be used to equivalently
rewrite more than one query in Q. To achieve this goal,
all we have to do is to replace, in the reasoning for Case 1
above, P (the equivalent conjunct of the only query @ in the
workload in Case 1) by a conjunction P, which we obtain as
follows:

e we take an equivalent conjunct P; of each query Q;
(i €{1,...,n}) in the workload Q,

e if necessary, we rename the variables in the conjuncts
Pi,...,P,, to avoid using any variable name in more
than one conjunct,

e finally, we take a conjunction P of all these conjuncts:
the body of P is P &...& P,, and the head of P
comprises all head variables of P, ..., Py.

By applying the reasoning in Case 1 to the individual
conjuncts P; in P, we can easily show that the number of
subgoals in P is at most singly-exponential in the size of the
query workload Q.

For any minimal-size disjunctive viewset V for the work-
load Q (assuming conjunctive rewritings only), it is easy to
see that V is also a minimal-size disjunctive viewset for the
conjunction P. Using the reasoning in Case 1 above, we can
find all disjunctive viewsets W that can equivalently rewrite
the conjunction P; the complexity bounds are the same as
in Case 1. All that remains to be done is to find those
viewsets among W that can be used to equivalently rewrite
all individual queries in the workload Q. This observation
concludes the proof of case 2 and the proof of the theorem.

3.5 Digunctiverewritings are not needed

We now show that it is not necessary to consider non-
trivial disjunctive rewritings of query workloads in terms of
minimal-size disjunctive viewsets. Purely conjunctive rewrit-
ings are all we need to examine.

THEOREM 3.4. Given a database instance, let Q be an
arbitrary finite workload of conjunctive queries, and let V be
any minimal-size disjunctive viewset, such that V gives an
equivalent disjunctive rewriting of each query in the workload
Q. Then for each query in the workload Q, there exists an
equivalent conjunctive rewriting of the query in terms of the
views in V.]

ProOOF. Consider an arbitrary finite workload Q of con-
junctive queries. Let V be any minimal-size disjunctive
viewset, such that V gives an equivalent disjunctive rewrit-
ing of each query in the workload Q. For each query @ in

Q, consider an equivalent disjunctive rewriting P of @Q in
terms of the views V. The query P is a union of conjunctive
queries P, ..., P,, where:

Pl(X) - V11(X11),... 7V1m1 (lel)'

Pa(X) - Var(Xa1), -, Vomy (Xoms)-

Po(X) = Va1 (Xn1), -, Vo (X,)-

Here, each view V;;, belongs to the viewset V.

By definition, the conjunctive query @ is equivalent to
the union of the expansions of these queries P;. Each ex-
pansion is a union of conjunctive queries, because each view
Vij, may be a disjunctive view. From [28], the query Q is
equivalent to one of the expanded queries, denoted Fj, and
the remaining expanded queries are contained in Q. Let this
expanded query Ej come from the query P; in Pi,..., P,.
We can keep all the views V' used in P;. Notice that P; is an
equivalent conjunctive rewriting of @ using V’. In addition,
size(V') < size(V). O

COROLLARY 3.2. For any finite workload of conjunctive
queries and a database instance, assuming disjunctive rewrit-
ings, the problem of finding a minimal-size disjunctive viewset
for the workload on the database instance is decidable. O

4. QUERIESWITHOUT SELF-JOINS:
THE PROBLEM ISIN NP

In this section we study workloads of conjunctive queries
without self-joins. Figure 3 shows the view spaces we con-
sider to find a minimal-size set of disjunctive views. We first
show that if the workload queries do not have self-joins,
then we need to consider only conjunctive views, because
nontrivial disjunctive views do not add any new solutions
(Section 4.1). We then further restrict our consideration
to subexpression-type views (Section 4.2), and then to full-
reducer views (Section 4.3). We show that by considering
just these types of views we will always find at least one
set of views that is globally optimal, for the given query
workload and database instance, in the full search space of
nontrivial disjunctive views. We show that the problem of
finding an optimal disjunctive viewset for queries without
self-joins is in NP, precisely because we can always find a
minimal-size viewset in an extremely restricted search space
of views.

disjunctive views

Figure 3: View space.

4.1 Conjunctive views are enough
We first give the following result.

THEOREM 4.1. Suppose a set V of disjunctive views is a
solution for a given database instance D and workload Q
of conjunctive queries without self-joins. Then there exists
another solution V' for D and Q, such that all views in V'
are conjunctive, and size(V') < size(V). O

PrOOF. We first look at singleton query workloads and
then extend our observations to arbitrary query workloads.

Case 1 (singleton query workloads only). Let Q be any
singleton query workload, Q = {Q}, where the query

Q:ans(Z) - Ri(),...,Rn().

is conjunctive and does not have self-joins. Let D be an
arbitrary database instance, and let a set V of disjunctive
views be a solution for Q@ and D. Then there exists an
equivalent rewriting P of) using the views in V. Without
loss of generality, we assume that all views in V are used
in P. (Those views that are not used in P can be removed
from V to save on storage space.) Consider each nontrivial
disjunctive view

V =ViuVaU- - - UV,

k > 1, that is used in P; Vi,..., V) are conjunctive views.
The main idea of the proof is that there exists a transfor-
mation v of the view V that produces a new disjunctive
view:
V' =V/UWu- - UV,

where V/ = v(V;),i=1,... ,k, and each V; is a conjunctive
view. The new disjunctive view V' is used in a new equiv-
alent rewriting P’ of the query Q. We show that for any
conjunctive component V; of the view V', V; can replace
the view V in the equivalent rewriting P’. Therefore, we
can replace the disjunctive view V with a conjunctive view
Vi, where |V/| < |V'| < |V].

Now we give the details of the proof. Assume there are m
occurrences of V' in P:

P:ans(X) - V(X1),...,V(Xn),G

where each of X, X1, ..., X, is a list of arguments, and
G represents the instances of other views that are not V.
Using the disjunctive definitions of all the disjunctive views
to replace the instances in P, we get a union of conjunctive
queries, which is equivalent to the query (Q as expansions.
From [28], at least one of these queries — we denote it by
P — is equivalent to @ as expansion: P®*? = Q. Let u be
a containment mapping from P**? to Q. By applying p on
P, we get another equivalent rewriting:

P ans(X) - V(XY),... ,V(X),),G

where X' = u(X) and X} = u(X;),i=1,... ,m. G’ repre-
sents the subgoals in P’ that are not using the conjunctive
components in V. In the definition of V:

V =ViuWLU---UVy
we remove all the V;’s that do not appear in P’. Without
loss of generality, P’ = p(P) can be represented as:

P’ ans(X') - Vi(X1D), ..., Vin(X), G’

where each V; is a conjunctive component of the view V.

Consider the conjunctive view Vi and its corresponding
contained rewriting (in P’) that does not use other conjunc-
tive components in V:

H:ans(X') - V1(1, .,Vl(X;n),G

Let B be a containment mapping from @ to H*?. For
any j > 2, we show that for all the local mappings (of B)
from @Q to the subgoals/arguments in Vi (X 7)°7P, we can

“redirect” them to the corresponding subgoals / arguments in
the expansion of V3 (X1), and thus get another containment
mapping 3’ from Q to H**?, where the images of Q do not

come from the expansion of any V1(PG> 2
Q:ans(Z):—...R(..W..)...
AN
He? rans(X'): —. .. R(...Y'..)...R(...Y ..)) ...

H :ans(X') : =Vi(X]),.... Vi(X)),..., Vi(X},). G

Figure 4: Redirecting the mapping 3 to 3.

Here are the details on redirecting the mappings. Con-
sider each subgoal R(...Y ...) in V;(X 1)*P, where j > 2.
Let R(...W ...) be the corresponding query subgoal in Q.
Because Q does not have self-joins, it has only one instance
of relation R. Here both Y and W are the [-th argument for
relation R. There are two possible cases.

1. Y is a distinguished variable of Vi. That is, in the def-
inition of Vl, there is at least one R-subgoal that “ex-
ports” its [-th attribute, which appears in the head.
Since R(...W...) is the only R-subgoal in @, the
mapping u guarantees that Y = W. In addition, the
expansion of V;(X]) has a subgoal R(...W...) be-
cause of the mapping . We then redirect the rqapping
from W in Q (to the W in the expansion of V1(X}))

to the W in the expansion of Vi (X1).!

2. Y is a nondistinguished variable of Vi, i.e., Y is “fresh”
in the expansion of Vi(X5). Then W must also be
a nondistinguished variable of Q. The expansion of
Vi (X}) also provides a corresponding fresh variable Y’
that can be used as the i 1mage of W. Notice that in this
case, Vi(X7)*? and V1 (X 7)°7P provide all instances of
Y’ and Y, respectively. (The reason is as follows: as
observed in [1, 27], if a nondistinguished query variable
A is mapped to a nondistinguished variable B in the
expansion of a rewriting, then all instances of A should
be mapped the corresponding instances of B in the
expansion.) So we can redirect the mappings (to the
Y instances in the expansion of V(X 1), § > 2) to the

Y’ instances in the expansion of Vi (X}).

By redirecting all the local mappings from the expansion
of Vi1(X}) to the subgoals in the expansion of Vi(X7), we
have obtained, from the containment mapping (3, another
containment mapping 3, from @ to the expansion of the

following rewriting;:

Hpew : ans(X") - Vl(X{),G.

The conjunctive mapping 8" implies that HSZE C Q. Since
P’ is an equivalent rewriting of @), we obtain that @ is con-

tained in the expansion of P’. In addition, the expansion

Note that this claim is not correct if the relation R appears
more than once in @; see the flight example in Section 3.3.

of P’ is also contained in HS%E , since the subgoals in Hew

are a subset of those in P’. Thus Q C HS*E. So Hyew is
also an equivalent rewriting of (). Notice that in Hpew, of
all the conjunctive components of V' we use only one com-
ponent Vi. Thus we can replace the disjunctive view V with
a conjunctive view Vl.

By doing this replacement for all the disjunctive views
in V, we get a set V' of purely conjunctive views that can
answer the query Q. By construction, V' does not require
more storage space than V.

Case 2 (arbitrary query workloads). Let Q be a query
workload, such that Q has at least two conjunctive queries,
Q = {Qi,...,Qn}, n > 2, and such that all queries in
Q are queries without self-joins. Let V be a disjunctive
viewset that is a solution for Q and for an arbitrary database
instance D. If, for any nontrivial disjunctive view V in V),
there exists at most one query in Q, such that the rewriting
of the query (in terms of V) uses the view V, then this case
reduces to Case 1 above. In the remainder of the proof we
assume that in the viewset V), there is a nontrivial disjunctive
view V. =Vi1U...UV,, (each V; is purely conjunctive), such
that V' is used in the the rewritings of at least two queries
in the workload Q.

Without loss of generality, let Q1 and Q2 be two such
queries. Using the reasoning in Case 1 above, we find that
there are two conjuncts, V4 and Va, of the view V', such that
the query Q1 (resp. Q2) has a conjunctive rewriting that uses
just the conjunct Vi (resp. V2) of V. (We assume here that V'
is the only nontrivial disjunctive view used in the rewritings
of the queries Q1 and Q2. It is easy to generalize the proof to
the case of multiple disjunctive views used in the rewritings
of multiple queries in the workload Q.) In the remainder
of the proof, we show that V17 = V2. It follows that if a
nontrivial disjunctive view V is used to rewrite more than
one query in the workload @, then there exists a conjunct
V' of the view V, such that V can be used to construct
equivalent conjunctive rewritings of all those queries. This
observation concludes our proof.

We now show that Vi = Va. Using the reasoning in
Case 1, we can show that the conjunct Vi contains the self-
join Vo M ... X V5 in the expansion of the rewriting of
the query @1 (this rewriting uses the view V). Similarly,
we can observe that the conjunct V2 contains the self-join
Vi X ... X V; in the expansion of the rewriting of the query
Q2. Using these self-joins and using again the reasoning in
Case 1, we construct two containment mappings: (1) a map-
ping p1 from Vi to just one occurrence of V5 in the self-join
Vo X ... X Vs, and (2) a mapping p2 from V2 to just one oc-
currence of Vi in the self-join V4 X ... X Vj. Because both
Vi and V2 are conjunctive views, we conclude that in the
disjunctive view V', the conjuncts Vi and V5 are equivalent.
This observation concludes the proof of the theorem. [

4.2 Subexpression-type views are enough

We saw in Section 3 that to find a minimal-size con-
junctive viewset for a workload of conjunctive queries, it
is enough to consider views whose definition is at most ex-
ponential in the length of the longest query definition in the
workload. Now we show that for workloads of queries with-
out self-joins, we can further reduce the size of the search
space of views by considering only those conjunctive views
that are defined as subexpressions of the workload queries.
By considering such views only, we can still find a conjunc-

tive viewset that is an optimal solution for the given problem
input in the space of disjunctive views. We begin by showing
the following result.

THEOREM 4.2. Given a database instance, for any con-
junctive query @ without self-joins, there is a minimal-size
conjunctive viewset U, such that each view in U is a subex-
pression of Q, with possibly attributes projected. O

We prove the theorem by using a modification of the proof
of Theorem 3 in [12]. Suppose a viewset V is some (not
necessarily minimal-size) conjunctive viewset, such that the
query @ has a rewriting using V. From the viewset V we
construct another viewset, YW, such that W also provides a
rewriting of the query @ and has the following properties.
The amount of space required to store YW does not exceed
the space required to store V, on any database, and each
view in W is defined as a subexpression of the query @,
with possibly attributes projected.

Theorems 4.1 and 4.2 and the results in Section 3 imply
that to find a minimal-size disjunctive viewset for a work-
load of conjunctive queries without self-joins, it is enough to
consider conjunctive containment-target views whose body
is a subexpression of at least one query in the workload.
As a result, we have reduced the size of the search space
of views that includes all views in all minimal-size disjunc-
tive viewsets, from triply-exponential to singly-exponential
in the size of the query workload.

COROLLARY 4.1. For any database instance and any sin-
gle conjunctive query without self-joins, we can construct a
finite search space of views that includes all views in at least
one minimal-size disjunctive viewset for the query, such that
the number of views in the search space is at most exponen-
tial in the size of the query definition. O

4.3 Full-reducer views are enough

Now we further reduce the size of the search space of views
for a single conjunctive query without self-joins, by consid-
ering only full-reducer views. A full-reducer view is a view
whose body is the query body [36]. Consider Example 3.1
again. In that example, the body of each view can be re-
placed by the full body of the query Q. After the replace-
ment, the number of tuples in each view cannot increase.
More precisely, none of the views will have any dangling tu-
ples after the replacement. At the same time, for each such
view, there exists a database where the view is part of some
minimal-size viewset for the query Q. We formalize these
observations in the following result.

LEMMA 4.1. Given a database instance, consider any con-
junctive query Q without self-joins; let V be any solution for
Q. For each view V €V that is not a full-reducer view, we
can construct from the view V a new view W, by replacing
the body of V' with the body of Q. Then the resulting viewset
V' is also a solution for Q, and size(V') < size(V). O

We prove the lemma as follows. For any conjunctive query
Q@ without self-joins and for its conjunctive solution V, con-
sider any containment-target view V' € V), such that V is de-
fined as a proper subexpression of the query. From each such
view V| we can construct a full-reducer containment-target
view W, by simply adding to the definition of V' the missing
subgoals of the query). We can show that W is contained in

V. Therefore, on any database we have size(W) < size(V).
Now consider an equivalent rewriting P of @ in terms of the
viewset V. If, in the rewriting P, we replace V by W the
resulting rewriting P’ will still be equivalent to @, for the
following reason. Consider an expansion PP of P.

1. Consider a containment mapping p from @ to P®*P.
In constructing W from V, all we do is add subgoals
to V. Thus p will also be a containment mapping from
Q to the expansion of P’.

2. Consider a containment mapping v from P“? to Q.
Because the body of the view W is the body of the
query @, the containment mapping v can be extended
to map the expansion of P’ to query Q.

We conclude that for any conjunctive query @ without
self-joins, by replacing, in a solution V for a query @, any
view V by a corresponding full-reducer view W, we obtain
another solution V', such that size(V’) < size(V).

COROLLARY 4.2. Given a database instance, for any con-
junctive query without self-joins, there exists a minimal-size
disjunctive viewset V, such that each view in V is a conjunc-
tive full-reducer containment-target view. a

‘We now consider the problem of finding minimal-size views
for a query workload that may have more than one query.
We first obtain a minimal-size set of full-reducer views for
each individual workload query. Because each view is a
containment-target view for the query, the number of views
in each rewriting does not exceed the number of query sub-
goals. We can then merge some of the views across the
viewsets, to obtain a (possibly smaller-size) viewset for the
entire query workload. Each merged view can replace, in
the query rewritings, any of the views it was obtained from.
Because we merge views without self-joins by removing view
subgoals, each merged view has at most as many subgoals
as the longest query in the workload. It follows that for a
rewriting of the query using any such viewset, the expansion
of the rewriting is polynomial in the size of the query.

4.4 Workloads of queries without self-joins:
The problem isin NP

Notice that, from the update to Example 3.1 that we sug-
gested in Section 4.3, it follows that the search space of
conjunctive full-reducer containment-target views can still
be exponential in the length of the query definition. At the
same time, we have the following powerful result.

THEOREM 4.3. Given a database instance, for any finite
workload of conjunctive queries without self-joins, the prob-
lem of finding a minimal-size disjunctive viewset is in NP.
O

Here is an intuition for the proof. Consider a query Q
with n subgoals, a database D, and an integer K. To check
whether a conjunctive viewset V is a solution for the query
Q, such that storing the views in the database D will require
at most K bytes, we can do two things. First, to see whether
the viewset V gives an equivalent rewriting of query @, we
need to check a witness that provides (1) a rewriting of the
query in terms of the views, and (2) the containment map-
pings between the query and the rewriting. Second, to check
whether storing the views in the database D will require at

most K bytes, it is enough to add up the sizes of the views
in V on the database D. From the results in Sections 3 and 4
it follows that the sizes of the structures we need to exam-
ine (and, therefore, the time required to examine them) are
polynomial in the size of the query Q.

5. A DYNAMIC-PROGRAMMING
ALGORITHM

In this section we study how to find a set of conjunctive
views that is a minimal-size viewset, in the space of disjunc-
tive views, for a single conjunctive query without self-joins.
As we saw in Section 4, it is enough to consider conjunctive
full-reducer containment-target views for the query. We de-
scribe a system-R-like dynamic-programming algorithm [29]
for finding a minimal-size viewset by searching in the space
of these views.

One way to find a disjunctive solution for a non-singleton
workload of conjunctive queries without self-joins is as fol-
lows. In the first step, we use the dynamic-programming
algorithm described in this section to obtain an optimal
viewset for each workload query separately. We then use
a view-merging algorithm (see Section 4.3) to obtain a solu-
tion for the entire workload.

5.1 Thealgorithm

In the remainder of this section, we consider a single con-
junctive query @ without self-joins. We assume that @ is a
join of n subgoals Ri,... , R, where all R;’s are different:

Q:ans(X) - Ri(X1),...,Ru(Xy).

The algorithm considers the search space of full-reducer views
for the query @, where all views are of the form:

Wi . ans(Yi) - Rl(Xl), e ,Rn(Xn)

That is, each view W; is defined as the set of all subgoals
of the query). Some view variables could be nondistin-
guished. To ensure that each W; is a containment-target
view for the query, we need to make sure that W; covers a
nonempty subset of the query’s subgoals. A view W, covers
asubset {R;,,..., R, } of subgoals of the query Q if the set
of distinguished variables of the view W; includes all vari-
ables of the set {R;,, ... , R;, } that also occur “outside” the
set. That is, these variables occur either in the query’s head,
or in the subgoals of @ that are not among {R;,, ..., Ri, }.
It is easy to see that it is enough to consider just those
views W, whose distinguished variables are exactly the set
of variables that occur outside the set {R;,,..., Ri }-

Formally, the algorithm finds an optimal solution for a
conjunctive query @ without self-joins by searching in the
space W of all views W, described above. It constructs a
table with an entry for each nonempty subset of the set
R = {Ri,...,Ry}. For each subset R' = {R;,,...,Ri, }
of R, ki < n, the algorithm constructs a table entry with
the following information:

1. The total size S of the optimal (i.e., minimum-size) set
of views in W that allows us to compute the join of
the subgoals R’. To compute S, we take the minimum
of the following;:

(a) The size of the minimum-size full-reducer contain-
ment-target view that covers the set R’; the view

is a join of all relations in R’, with just the nec-
essary variables of R’ projected out (a variable is
necessary for the set R’ if it is used in future joins
or is in the head of the query Q), and

(b) For each partition of R’ into two subsets R} and
R5, the sum of the total sizes of the optimal
viewsets that cover each of R} and R5.

2. The expression to compute the join of the subgoals R’
of @, using the optimal set of views.

The construction of the table is by induction on the subset
size. The table entry for the full set R = {Ri1, ... ,Rn}
contains a viewset that allows us to compute the query @Q =
w5 (R1 ™ --- X R,). For instance, suppose the query

Q(X,Y,Z) - Ri(X,T),R2(Y,T),R3(Z,T).

has an optimal viewset { Wi, Wy }:

Wi(X,Y,T)
Wa(Z,T)

- Ri(X,T), Ra(Y,T), Rs(Z, T).
- Ri(X,T),R(Y,T),R3(Z,T).

The view Wi covers the first two subgoals of the query,
whereas the view W5 covers the third. Thus in the table en-
try for the set R = {R1, Rz, R3}, the expression to compute
the query @ will be Wy X Wa.

PROPOSITION 5.1. For a conjunctive query without self-
joins, the algorithm described above always returns a minimal-
size viewset for the query in the space of disjunctive views.
The algorithm constructs a table whose size is exponential
in the number of the query subgoals. a

PrOOF. We prove the claim by induction. Let n be the
number of subgoals of the query: Q@ = w5 (R1 X ... X R,).

Basis 1. n = 1: any single relation R;, with just the neces-
sary variables projected out, always constitutes an optimal
viewset for covering the subgoal R; of the query Q.

Basis 2. n = 2: for any ¢ < n and 7 < n, to find a
minimum-size viewset that covers the subgoals R; and R;
in the query @, it is enough to compare the the sizes of the
following views:

e A minimume-size full-reducer containment-target view
that covers both subgoals. This view is computed by
taking a join of all relations in the definition of the
query @, and then projecting out just the variables of
R; and R; that are used outside the two subgoals.

e The two views that cover the two subgoals separately.

Induction. Suppose the induction assumption is true for
all sets of subgoals of the query @, such that the number
of subgoals (relations) in each set is between 1 and k — 1.
Consider a set R’ of subgoals of the query Q, such that R’
has k relations. For each way of partitioning the set R’ into
two nonempty subsets, the algorithm computes the sum of
sizes of two optimal viewsets, where each viewset covers one
partition. (Each partition is a set of subgoals of the query
that has between 1 and k — 1 relations.) Then the algorithm
takes the minimum among these sums and compares the
result to the size of the view that covers all k relations in
the set R'. Notice that the algorithm considers all ways of
covering the k relations in the set R’. Therefore, it returns

an optimal viewset that covers the k relations. By induction,
the reasoning is true for the case k = n.

To finalize the proof, we observe that in a globally opti-
mal viewset for the query @, each subgoal of the query Q
is covered by exactly one view. It is easy to see that the
algorithm considers all such viewsets. [l

The algorithm can be modified to consider only those
subsets of query subgoals that do not have cross-products.
This modification does not sacrifice completeness of the al-
gorithm. For some queries (e.g., chain queries), the modi-
fied algorithm has to construct only a polynomial number of
table entries and still produces an optimal solution. Mean-
while, to find an optimal solution for query @) in Exam-
ple 3.1, the modified algorithm has to construct all 2% — 1
table entries.

5.2 Reducing the size of the search space

In the space searched by the algorithm, there can be an
exponential number of solutions. In this section we propose
heuristics for reducing the size of the search space. The main
idea is to explore the strategy of reducing the arity (the num-
ber of attributes) of each view in a solution. Intuitively, the
strategy allows us to keep the views small by reducing the
number of their attributes. (Recall that this work has been
done under the set-semantics assumption, where a nontrivial
projection on a table can have fewer tuples than the table
itself. At the same time, the strategy also makes sense under
the bag-semantics assumption, because it strives to reduce
the total number of attributes in a solution and therefore to
reduce the disk space that is required to store the solution.)
Here are three heuristics to reduce the arity of the views in
a solution.

1. Consider only those subsets of query subgoals that
have no more than a certain number of subgoals (e.g.,
up to 3 subgoals).

2. Consider only those subsets of query subgoals that
have up to a certain total number of attributes (e.g.,
no more than 10 attributes).

3. Partition the subgoals of the query @ into several sub-
sets of subgoals, and then apply the dynamic-
programming algorithm separately to each subset. By
taking the union of the resulting partial viewsets, we
obtain a solution for the entire query Q.

In [25] we describe more techniques for reducing the size
of the search space of views and for computing efficiently
the view relations in a minimal-size viewset. In that paper
we also discuss how to efficiently compute the answer to a
query using the views.

6. CONCLUSIONS

In this paper we studied the problem of finding viewsets
to answer a workload of conjunctive queries, such that the
total size of the views is minimal. We gave decidability and
complexity results for workloads of conjunctive queries; the
results differ significantly depending on whether the queries
have self-joins. We developed an algorithm for finding an
optimal solution, and discussed heuristics to make the algo-
rithm efficient.

7.
1]
2]

3]

[4

[5]

[7]

8]

[9]

(10]

(12]

(13]

(14]

REFERENCES

F. Afrati, C. Li, and J. D. Ullman. Generating efficient
plans using views. In SIGMOD, pages 319-330, 2001.
S. Agrawal, S. Chaudhuri, and V. Narasayya.
Automated selection of materialized views and indexes
in Microsoft SQL Server. In Proc. of VLDB, pages
496-505, Cairo, Egypt, 2000.

E. Baralis, S. Paraboschi, and E. Teniente.
Materialized view selection in a multidimensional
database. In Proc. of VLDB, 1997.

R. Bello, K. Dias, A. Downing, J. Feenan, J. Finnerty,
W. Norcott, H. Sun, A. Witkowski, and M. Ziauddin.
Materialized views in Oracle. In Proc. of VLDB, pages
659-664, 1998.

P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve,
and J. B. R. Jr. Query processing in a system for
distributed databases (SDD-1). ACM Transactions on
Database Systems (TODS), 6(4):602-625, 1981.

D. Calvanese, G. D. Giacomo, and M. Lenzerini.
Answering queries using views over description logics
knowledge bases. In PODS, pages 386-391, July -
August 2000.

D. Calvanese, G. D. Giacomo, M. Lenzerini, and

M. Y. Vardi. Answering regular path queries using
views. In ICDE, pages 389-398, 2000.

S. Ceri and G. Pelagatti. Distributed Databases:
Principles and Systems. McGraw-Hill Book Company,
1984.

A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. STOC, pages 77-90, 1977.

Z. Chen and P. Seshadri. An algebraic compression
framework for query results. In ICDE, pages 177-188,
2000.

R. Chirkova. The view-selection problem has an
exponential-time lower bound for conjunctive queries
and views. PODS, pages 159-168, 2002.

R. Chirkova and M. R. Genesereth. Linearly bounded
reformulations of conjunctive databases. DOOD, 2000.
R. Chirkova, A. Y. Halevy, and D. Suciu. A formal
perspective on the view selection problem. Proc. of
VLDB, pages 59-68, 2001.

J. Goldstein and P.-A. Larson. Optimizing queries
using materialized views: a practical, scalable
solution. In SIGMOD, pages 331-342, 2001.

H. Gupta. Selection of views to materialize in a data
warehouse. In ICDT, 1997.

H. Gupta, V. Harinarayan, A. Rajaraman, and

J. Ullman. Index selection in olap. In ICDFE, 1997.

L. M. Haas, D. Kossmann, E. L. Wimmers, and

J. Yang. Optimizing queries across diverse data
sources. In Proc. of VLDB, pages 276-285, 1997.

H. Hacigiimiig, B. Iyer, C. Li, and S. Mehrotra.
Executing SQL over encrypted data in the
database-service-provider model. In SIGMOD, 2002.
H. Hacigiimiig, B. Iyer, and S. Mehrotra. Providing
database as a service. In ICDE, 2002.

A. Halevy. Answering queries using views: A survey.
In Very Large Database Journal, 2001.

V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes efficiently. In SIGMOD,

1996.

M. Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233-246, 2002.

A. Levy, A. O. Mendelzon, Y. Sagiv, and

D. Srivastava. Answering queries using views. In
PODS, pages 95-104, 1995.

C. Li, M. Bawa, and J. D. Ullman. Minimizing view
sets without losing query-answering power. In ICDT,
pages 99-113, 2001.

J. Li, R. Chirkova, and C. Li. Minimizing
data-communication costs by decomposing query
results in client-server environments. Technical report,
Information and Computer Science, UC Irvine, 2003.
M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice-Hall, 1999.

R. Pottinger and A. Levy. A scalable algorithm for
answering queries using views. In Proc. of VLDB,
2000.

Y. Sagiv and M. Yannakakis. Equivalences among
relational expressions with the union and difference
operators. Journal of the ACM, 27(4):633-655, 1980.
P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
SIGMOD, pages 23-34, 1979.

D. Theodoratos, S. Ligoudistianos, and T. Sellis.
Designing the global data warehouse with spj views.
In CAiSE, 1999.

D. Theodoratos and T. Sellis. Data warehouse
configuration. In Proc. of VLDB, 1997.

TPC-H. http://www.tpc.org/tpch/.

J. D. Ullman. Principles of Database and
Knowledge-base Systems, Volumes I: Classical
Database Systems. Computer Science Press, New
York, 1988.

G. Wiederhold. Mediators in the architecture of future
information systems. IEEE Computer, 25(3):38-49,
1992.

J. Yang, K. Karlapalem, and Q. Li. Algorithms for
materialized view design in data warehousing
environment. In Proc. of VLDB, 1997.

M. Yannakakis. Algorithms for acyclic database
schemes. In Proc. of VLDB, pages 82-94. IEEE
Computer Society Press, 1981.

M. Zaharioudakis, R. Cochrane, G. Lapis,

H. Pirahesh, and M. Urata. Answering complex SQL
queries using automatic summary tables. In SIGMOD,
pages 105-116, 2000.

