
The Complexity of XPath Query Evaluation

Georg Gottlob
Database and AI Group

Technische Universität Wien
A-1040 Vienna, Austria

gottlob@dbai.tuwien.ac.at

Christoph Koch
LFCS

University of Edinburgh
Edinburgh EH9 3JZ, UK
koch@dbai.tuwien.ac.at

Reinhard Pichler
Inst. für Computersprachen
Technische Universität Wien

A-1040 Vienna, Austria
reini@logic.tuwien.ac.at

ABSTRACT
In this paper, we study the precise complexity of XPath
1.0 query processing. Even though heavily used by its in-
corporation into a variety of XML-related standards, the
precise cost of evaluating an XPath query is not yet well-
understood. The first polynomial-time algorithm for XPath
processing (with respect to combined complexity) was pro-
posed only recently, and even to this day all major XPath
engines take time exponential in the size of the input queries.
From the standpoint of theory, the precise complexity of
XPath query evaluation is open, and it is thus unknown
whether the query evaluation problem can be parallelized.

In this work, we show that both the data complexity and
the query complexity of XPath 1.0 fall into lower (highly par-
allelizable) complexity classes, but that the combined com-
plexity is PTIME-hard. Subsequently, we study the sources
of this hardness and identify a large and practically impor-
tant fragment of XPath 1.0 for which the combined com-
plexity is LOGCFL-complete and, therefore, in the highly
parallelizable complexity class NC2.

1. INTRODUCTION
XPath 1.0 is the node-selecting query language central

to most core XML-related technologies that are under the
auspices of the W3C, including XQuery, XSLT, and XML
Schema. Evaluating XPath queries efficiently is essential to
the effectiveness and real-world impact of these technologies.

The most natural question related to XPath query pro-
cessing, its complexity, however, has received surprisingly
little attention. The first polynomial-time algorithms for
XPath processing (w.r.t. both the size of the data and the
query, i.e., combined complexity, cf. [10]) were proposed only
recently [3]. Apparently, the fact that queries can be evalu-
ated in polynomial time with respect to combined complex-
ity for the full XPath 1.0 language was not folklore. We
believe that at the time of writing this, all publicly avail-
able XPath engines and systems processing languages con-
taining XPath (such as XQuery or XSLT processors) take

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-670-6/03/06 ...$5.00.

time exponential in the sizes of the XPath expressions in
the input. This thesis is supported by experimental evi-
dence on a number of popular systems in [3]. Moreover,
immediate functional implementations of the standards doc-
uments, of the current standard, XPath 1.0 [13], as well as
the now proposed XPath 2.0 language1 (through the new
XML Query 1.0 Algebra) [14], lead to exponential-time pro-
cessing of XPath 1.0 queries.

The polynomial-time result of [3] was shown using a form
of dynamic programming. Based on this, we presented al-
gorithms that run in time O(|D|5 ∗ |Q|2) and space O(|D|4 ∗
|Q|2), where |D| denotes the size of the data and |Q| is
the size of the query. We also introduced the logical core
fragment of XPath, called Core XPath, which includes the
logical and path processing features of XPath but excludes
arithmetics and string manipulations. Core XPath queries
can be evaluated in time O(|D| ∗ |Q|), i.e. linear in the size
of the query and of the data. In a second paper [4], we im-
proved the above upper bounds on the complexity to time
O(|D|4 ∗ |Q|2) and space O(|D|2 ∗ |Q|2). Moreover, we de-
fined a large fragment of XPath for which we provided a
quadratic-time, linear-space evaluation algorithm. We also
pointed out the features of XPath causing the various in-
creases in the degrees of polynomials established when mov-
ing from a smaller XPath fragment to a larger one.

Now that the combined complexity of XPath is known to
be polynomial, a natural question emerges, namely whether
XPath is also P-hard (i.e., hard for polynomial time), or
alternatively, whether it is in the complexity class NC, and
thus effectively parallelizable. In case the problem is P-hard,
it is interesting to understand the sources of this hardness,
and to find large, effectively parallelizable fragments.

This paper thus studies the precise complexity of XPath
1.0 query processing. The contributions are as follows.

• We establish the combined complexity of XPath to be
P-hard. This remains true even for the Core XPath
fragment.

• We show that positive Core XPath, i.e. Core XPath
without negation, is LOGCFL-complete, and thus
highly parallelizable.

Moreover, if the language is further restricted to the
path expressions fragment (PF) without conditions,

1XPath 2.0 now includes most of XQuery and thus is Turing-
complete; however, most real-world path queries will remain
expressible in XPath 1.0, which is a strict fragment of XPath
2.0.

Core XPath pWF

pos. Core XPath

PF

WF

LOGCFL-complete
LOGCFL

NL-complete

pXPath

XPathP-complete P

Figure 1: Combined complexity of XPath.

the complexity of evaluating queries is complete for
nondeterministic logarithmic space.

• We extend Core XPath by the arithmetics features of
XPath, to the so-called Wadler Fragment (WF), and
show that a large fragment of it, which we call pWF
(“positive”/“parallel” WF), is still in LOGCFL and
can be massively parallelized. The main features ex-
cluded from WF to obtain pWF are negation and se-
quences of condition predicates.

• This leads us to an even larger fragment of XPath,
called pXPath, which we believe contains most practi-
cal XPath queries and for which query evaluation can
be massively parallelized (the combined complexity is
still LOGCFL-complete).

• Finally, we complement our results on the combined
complexity of XPath with a study of data complexity
and query complexity. Both problems fall into low
(highly parallelizable) complexity classes even in the
presence of negation in queries.

The inclusion relationships2 between fragments discussed
and their (combined) complexities are shown in Figure 1.
An arrow L1 → L2 means that language L1 is a fragment
of language L2.

2. PRELIMINARIES

2.1 Complexity Classes
We briefly discuss the complexity classes and some of their

characterizations used throughout the paper. For more thor-
ough surveys of the related theory see [6, 7].

2In the drawing, we assume that NL ⊂ LOGCFL ⊂ P.

By P, L, and NL we denote the well-known complex-
ity classes of problems solvable in deterministic polynomial
time, deterministic logarithmic space, and nondeterministic
logarithmic space, respectively, on Turing machines.

It is conjectured that problems complete for P are inher-
ently sequential and cannot profit from parallel computa-
tion. A problem is instead called highly parallelizable if it
can be solved within the complexity class NC of all prob-
lems solvable in polylogarithmic time on a polynomial num-
ber of processors working in parallel [5]. By NCi, we denote
the class of problems solvable in time O(logi n) using O(ni)
processors (in terms of the size n of the input).

A simple model of parallel computation is that of boolean
circuits. By a monotone circuit, we denote a circuit in which
only ∧-gates and ∨-gates (but no ¬-gates) are used. A family
of circuits is a sequence G0,G1,G2, . . . , where the n-th circuit
Gn has n inputs. Such a family is L-uniform if there exists
an L-bounded deterministic Turing machine which, on the
input of n bits 1, outputs the circuit Gn. A circuit or family
of circuits has bounded fan-in if all of its gates have fan-in
bounded by some constant. A semi-unbounded circuit is a
monotone circuit in which all ∧-gates are of bounded fan-in
(w.l.o.g., we may restrict the fan-in to two) but the ∨-gates
may have unbounded fan-in.

Definition 2.1. SAC1 is the class of problems solvable
by L-uniform families of semi-unbounded circuits of depth
O(log n) (SAC1 circuits).

�

LOGCFL is usually defined as the complexity class con-
sisting of all problems L-reducible to a context-free lan-
guage. There are two important alternative characteriza-
tions that we are going to use.

Proposition 2.2 ([11]). LOGCFL = SAC1. SAC1

circuit value is LOGCFL-complete.

A nondeterministic auxiliary pushdown automaton (NAux-
PDA) is a nondeterministic Turing machine with a distin-
guished input tape, a worktape, an output tape, and a stack
(of which strictly only the topmost element can be accessed
at any time).

Proposition 2.3 ([9]). LOGCFL is the class of all
decision problems solvable by an NAuxPDA with a logarith-
mic space-bounded worktape in polynomial time.

Proposition 2.4 ([1]). LOGCFL is closed under com-
plement.

Regarding the containment of these classes, we know that
NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ NC2 ⊆ NC ⊆ P. P,
LOGCFL, and NL are closed under L-reductions.

2.2 A Brief Introduction to XPath
XPath 1.0 is a language with a large number of features

and therefore somewhat unwieldy for theoretical treatment.
In this paper, we restrict ourselves to introducing only some
of these features, and to giving an informal explanation of
their semantics. For a detailed definition of the full XPath
language, we refer to [13], and for a concise yet complete
formal definition of the XPath semantics see [3].

In this section, we define two basic fragments of XPath.
Core XPath, first defined in [3], supports the most com-
monly used features of XPath, path navigation and con-
ditions with logical connectives, but excludes arithmetics,

string manipulations, and some of the more esoteric aspects
of the language. The second fragment, which was first dis-
cussed in [12] by Wadler, contains XPath’s logical and arith-
metic features, but excludes string manipulations. We refer
to it as the Wadler Fragment, short WF.

We start by discussing Core XPath. We sketch the frag-
ment in terms of its syntax and then informally discuss the
semantics.

Definition 2.5. The syntax of Core XPath is defined by
the grammar

locpath ::= ‘/’ locpath | locpath ‘/’ locpath |
locpath ‘ |’ locpath | locstep.

locstep ::= axis ‘::’ ntst ‘[’ bexpr ‘]’ . . . ‘[’ bexpr ‘]’.
bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr |

‘not(’ bexpr ‘)’ | locpath.
axis ::= ‘self’ | ‘child’ | ‘parent’ |

‘descendant’ | ‘descendant-or-self’ |
‘ancestor’ | ‘ancestor-or-self’
‘following’ | ‘following-sibling’
‘preceding’ | ‘preceding-sibling’.

where “locpath” is the start production, “axis” denotes axis
relations (see below), and “ntst” denotes tags labeling doc-
ument nodes or the star ‘*’ that matches all tags (“node
tests”).

�

The main syntactical feature of Core XPath are location
paths. Expressions enclosed in brackets are called conditions
or predicates.

The main application of XPath is the navigation in XML
document trees. This is done using the axis relations, natu-
ral binary relations such as “child” and “descendant” be-
tween nodes, which we do not define here (but see [13,
3]; they also have the intuitive meanings conveyed by their
names). The probably most common use of XPath is to com-
pose axis applications with selections of document nodes by
their tags (“node tests”). For instance, the query /descen-
dant::a/child::b selects all those nodes labeled “b” that are
children of nodes labeled “a” that are in turn descendants
of the root node (denoted by the initial slash).

Conditions enclosed in square brackets allow to impose
additional constraints on node selections. For example,

/descendant::a/child::b[descendant::c and

not(following-sibling::d)]

selects exactly those nodes v from the nodes in the result of
/descendant::a/child::b that have at least one3 descendant
labeled “c” and do not have a right sibling in the tree that
is labeled “d” (i.e., there is no child v′ of the parent of v
which follows v in the flow of the document and is labeled
“d”).

Definition 2.6. The syntax of the WF-Queries is de-
fined by the Core XPath grammar with the following ex-
tensions. “bexpr” is now

bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr |
‘not(’ bexpr ‘)’ | locpath |
nexpr relop nexpr.

3Location paths occurring in conditions – i.e., within square
brackets – have an “exists”-semantics, meaning that at least
one node must match the location path starting from the
current node.

Moreover,

expr ::= locpath | bexpr | nexpr.
nexpr ::= ‘position()’ | last()’ | number |

nexpr arithop nexpr.
arithop ::= ‘+’ | ‘-’ | ‘*’ | ‘div’ | ‘mod’.
relop ::= ‘=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’.

“expr” (rather than “locpath”) is now the start production
and “number” denotes constant real-valued numbers.

�

Even though XPath is mainly understood as a language
for selecting a subset of the nodes of an XML document
tree, query results can also be of different types, namely –
for the WF – numbers and booleans (as well as character
strings for full XPath). XPath expressions are evaluated
relative to a context, which by definition is a triple of a
context node and two integers, the so-called context position
and the context size. For details, we refer to [13, 3], but
consider the example query child::a[position() + 1 = last()].
Relative to a context-triple (v, i, j), i and j are ignored when
the location step child::a selects those children of v that are
labeled “a”. Let {w1, . . . , wm} be this set of nodes, where
the indices correspond to the relative order of the nodes in
the document, simply speaking4. The application of an axis
causes a change of context to which the condition [position()
+ 1 = last()] is applied. The condition is tried on each of
the triples (w1, 1, m), . . . , (wm,m,m). It will select all those
nodes wk for which k + 1 = m, i.e. the “position” k in the
selection is by one smaller than the last index m, the size of
the selection.

Proposition 2.7 ([3]). XPath query evaluation is in
P with respect to combined complexity.

Core XPath queries can even be evaluated in time O(|Q| ∗
|D|), where |Q| denotes the size of the query and |D| denotes
the size of the data.

3. COMPLEXITY OF CORE XPATH
In this section, we show that XPath and even Core XPath

are P-hard with respect to combined complexity.

Remark 3.1. In the proof of the following theorem, we
often assign several labels to one and the same node, even
though each node of an XML document can have only one
tag. We assume these labels to be assigned, say, using
attributes or by children additionally introduced for this
purpose5. We add condition expressions of the form T (l)
(where l is a label) to Core XPath. For instance, we can
write child::*[T (a)] in place of child::a and now realize and
verify multiple labels of one and the same node (imagine
child::*[T (a) and T (b) and T (c)]).

Theorem 3.2. Core XPath is P-complete with respect to
combined complexity.

Proof. Membership of the combined complexity even of full
XPath was shown to be in P in [3], thus all we need to show
is P-hardness. This is done by reduction from the monotone
boolean circuit value problem, which is P-complete [7].

4To be precise, for some axes this order is reversed, see [13].
5T (l) could be a shortcut for child::l.

∧ ∧ ∧

∨

∧
�

� �

�

���

�� � �

G3 G4G2G1

G5

(a1) (b1) (a0) (b0)

G9

G8G7G6

Figure 2: A 2-bit full adder carry-bit circuit.

Given an instance of this problem (a monotone boolean
circuit), let M denote the number of input gates and let N
denote the number of all other gates in the circuit. Let the
gates be named G1 . . . GM+N . Without loss of generality6,
we may assume that the gates G1 . . . GM+N are numbered
in some order such that no gate Gi depends on the output
of another gate Gj with j > i. In particular, the input gates
are named G1 . . . GM and the output gate is GM+N .

An example of a circuit with appropriately numbered gates
is shown in Figure 2. This circuit computes the carry-bit of
a two-bit full-adder, i.e. it tells whether adding the two-bit
numbers a1a0 and b1b0 leads to an overflow. The carry-bit
c1 is computed as (a1 ∧ b1) ∨ (a1 ∧ c0) ∨ (b1 ∧ c0) where
c0 = a0 ∧ b0 is the carry-bit of the lower digit (a0 and b0).

The document tree is of very simple and regular struc-
ture; it consists of a root node v0 with M + N children
v1 . . . vM+N , of which each vi again has exactly one child v′i
(thus, the tree has depth three). For our carry-bit example
of Figure 2 with M = 4 and N = 5, the tree is

	
� �

��

 � �

v0

v′

1 v′

2 v′

3 v′

4 v′

5 v′

6 v′

7 v′

8 v′

9

v1 v2 v3 v4 v5 v6 v7 v8 v9

Node labels are taken from the alphabet

{0, 1, G,R, I1, . . . , IN , O1, . . . , ON}

and each tree node is assigned a set of such labels. This
is done as follows. The root node v0 has no labels. The
nodes v1 . . . vM+N are assigned the label G each. (In a way
described later, node vi represents the value of gate Gi).
Node vM+N is also assigned label R (for “result”). Each
node out of v1 . . . vM is assigned the truth value at the input
gate of the same index (i.e., out of G1 . . . GM), respectively.
This is either the label 0 or 1. Moreover, if the output of
gate Gi is an input of gate GM+k (thus, by our gate ordering
requirement, i < M + k), we add Ik to the labels of vi and
Ok to the labels of vM+k. In our example, the nodes v1 . . . v9
are labeled

6The gates can be “sorted” to adhere to such an ordering in
logarithmic space.

∧

∨

∧

∧

∧

v1 v2 v3 v4v5v6 v7 v8v9

�

�

�

�

� �

� ��

� �

��

� � ��

� � � �

�

�
� �

� ��

� �

�

�

�

�

�

�

�

�

�

�

�

G1 G2

v(a1) v(b1)

G3 G4

v(b0)v(a0)

G6

G8

G7

G5

G9

L4

L5

L3

L2

L1 I1I1

I2

I3

I2

I3
O2

O3

O1

O4

I4
I4

O5

I5 I5 I5

Figure 3: Circuit of Figure 2 with gates serialized.

v1: {G, v(a1), I2, I3} v2: {G, v(b1), I2, I4}
v3: {G, v(a0), I1} v4: {G, v(b0), I1}
v5: {G,O1, I3, I4} v6: {G,O2, I5}
v7: {G,O3, I5} v8: {G,O4, I5}
v9: {G,R,O5}

where v(a1), v(b1), v(a0), v(b0) ∈ {0, 1} are the truth values
a1, b1, a0, and b0, respectively, at the input gates. Figure 3
shows how the Ik and Ok labels are assigned to the nodes
v1 . . . vM+N . (Figure 3 is explained in more detail below.)

Finally, the nodes v′1 . . . v
′
M are labeled

{I1, . . . , IN , O1, . . . , ON}

each and the nodes v′M+i, for 1 ≤ i ≤ N , are labeled

{Ik, Ok | i ≤ k ≤ N}.

The query evaluating a circuit uses the intuition of pro-
cessing one gate out of GM+1 . . . GM+N at a time, in the
order of ascending index. It is

/descendant-or-self::*[T (R) and ϕN]

with, for 1 ≤ k ≤ N , the condition expressions

ϕk := descendant-or-self::*[T (Ok) and parent::*[ψk]]

and

ψk := not(child::*[T (Ik) and not(πk)])

if the type of gate GM+k is “∧” and

ψk := child::*[T (Ik) and πk]

otherwise, and

πk := ancestor-or-self::*[T (G) and ϕk−1].

Moreover, ϕ0 := T (1).
It is easy to see that the reduction can be effected in log-

arithmic space. We next argue that it is also correct.
Discussion. We use the ordering of the circuit in that

we, intuitively, will evaluate the circuit in Core XPath one
gate at a time. We treat the circuit as if layered, with all
gates of a layer of the same type (“∧” or “∨”) and only

exactly one with fan-in greater than one. (Our encoding
permits unbounded fan-in, including one.) Figure 3 shows
this alternative view of the example circuit of Figure 2. The
N = 5 non-input gates have been aligned using five layers
L1 . . . L5. The smaller empty circles denote “dummy” gates
of fan-in one, which are needed to propagate the values of
gates that are already available to the layers above. In our
encoding, intuitively, all gates of layer Lk have to have the
same type. The type of the dummy gates7 in layer Lk is
thus determined by the type of the one gate of fan-in greater
than one (namely GM+k). In the example, all gates of layers
L1 . . . L4 are of type ∧ and the gates of layer L5 are all of
type ∨.

The ϕk, ψk, and πk all are condition expressions, and
there is a natural meaning to “ϕk matches node w” or
equivalently “node w satisfies ϕk”, which we will denote
as w ∈ [[ϕk]] below. Formally, w ∈ [[ϕk]] if and only if
query /descendant-or-self::*[ϕk] selects node w. We define
w ∈ [[ψk]] and w ∈ [[πk]] analogously. This notation helps to
imagine the query (tree) being processed bottom-up.

Claim. Let 0 ≤ k ≤ N and 1 ≤ i ≤M + k. Then,

vi ∈ [[ϕk]] ⇔ gate Gi evaluates to true.

This can be shown by an easy induction.
Induction start (k = 0). The gates G1 . . . GM+k are

precisely the input gates, which have been assigned their
initial value (either 0 or 1) as label. The label 1 is not used
elsewhere in the tree. By definition, ϕ0 is the expression
T (1), so vi ∈ [[ϕ0]] iff the value of the input gate Gi is 1.
Thus our claim holds for k = 0.

Induction step. Now assume that our claim holds for
k − 1 ≥ 0 (i.e., vi ∈ [[ϕk−1]] iff gate Gi has been established
to be true by step k − 1). We show that it also holds for k.
We proceed by computing first [[πk]], then [[ψk]], and finally
[[ϕk]]. One can verify by inspection of πk that

[[πk]] = {vi, v
′
i | 1 ≤ i ≤M + k, vi ∈ [[ϕk−1]]}

(Note that only the nodes v1 . . . vM+k are labeled G.)
ψk is at the heart of our construction and performs the ac-

tual computation of the M +k gates at layer k. These gates
are the M + k − 1 “dummy” gates of fan-in one which just
propagate the input and thus make sure that the truth value
of gate Gi (1 ≤ i < M + k), once computed, remains avail-
able to layers above, and the gate GM+k of fan-in greater
than one.

In our document, node vi is labeled Ik iff gate GM+k takes
input from gate Gi. By the definition of ψk, v0 ∈ [[ψk]] if and
only if all children (for GM+k a ∧-gate) or at least one child
(for GM+k a ∨-gate) that is labeled Ik matches πk. Thus,

v0 ∈ [[ψk]] ⇔ GM+k evaluates to true.

For the dummy gates, the Ik labels are one level deeper
down in the tree. (The sole purpose of πk was to push the
previously computed value of Gi – as a matching on node vi

– to two different depths to allow for different handling of
dummy gates and gate GM+k by the same XPath expression
ψk.) Node v′i has the label Ik for each 1 ≤ i < M + k. The
parent of v′i however, vi, has only one child (namely, v′i), so

7In fact, the types of gates of fan-in one do not matter in
the circuit: the conjunction as well as the disjunction of a
single truth value is the identity. For this reason, and to
save space, we do not show the types of the dummy gates
in Figure 3.

	

�

��

� �

�

	
� �

v0

v′

i v′

j v′

k+M

ϕk, ψk

πk πk

.

vk+M
ϕk

G,Okvj
πk

G, IkG, Ik vi
πk

v0

v′

i

πk, ϕkIk , Ok

ϕk

.
G vi

πk, ψk, ϕk

(b)

(a)

Figure 4: Schematic design of relevant tree region
and ϕk/ψk/πk-matchings made for (a) dummy gates
and (b) gates of fan-in greater than one (here, two).

it does not matter whether ψk is of the ∧- or the ∨-type.
For 1 ≤ i < M + k,

vi ∈ [[ψk]] ⇔ gate Gi evaluates to true.

[[ψk]] computes (or preserves, in the case of dummy gates)
the truth values of the gates, but the matchings that witness
these truth values end up being at different depths in the
tree, depending on the gate. ϕk “stores” the matchings at
the same depth (the nodes v1 . . . vM+k) for 1 ≤ i ≤M + k:

vi ∈ [[ϕk]] ⇔ gate Gi evaluates to true.

This proves our claim. (ϕk also matches other nodes above
and below v1 . . . vM+k, but this does not matter because
these nodes are labeled neither G nor R.)

The schematic designs of Figure 4 show the regions of the
document tree that we are interested in, the relevant labels,
and the matchings of condition expressions ϕk, ψk, and πk at
step k, for both cases of gates (dummy gates in Figure 4 (a)
and gates GM+k in Figure 4 (b)).

The overall query /descendant-or-self::*[T (R) and ϕN] has
a nonempty result exactly if the output gate GM+N of the
circuit evaluates to true, because vM+N is the only node la-
beled R and vM+N ∈ [[ϕN]] if and only if GM+N evaluates
to true.

�

Corollary 3.3. Core XPath remains P-hard even if

1. the document tree is limited to depth three and

2. only the axes child, parent, and descendant-or-self are
allowed.

Proof. The previous proof has the stated properties, ex-
cept that it uses the ancestor-or-self axis in the definition
of πk. All we need to do is to replace ancestor-or-self::* in

πk by descendant-or-self::*/parent::*. πk then additionally
matches the root node v0, but this does not matter to the
remainder of the construction because v0 never carries an Ik

label and thus never has an impact on ψk.
�

We overstated the required tree depth in Corollary 3.3 to
allow for multiple node labels to be encoded as additional
children, as discussed in Remark 3.1. The document trees of
the encoding of the proof of Theorem 3.2 are only of depth
two.

Note also that the queries used in the encoding essentially
do not branch out in terms of axis applications. That is, in
each conjunction (“or” is not used) of expressions, there is
at most one subexpression that contains an axis application.

4. INSIDE CORE XPATH
The result of the previous section is essentially negative:

As Core XPath is P-hard, it is considered unlikely that a
parallel algorithm exists for evaluating all queries of this
language. It is thus natural to search for fragments of Core
XPath that we can show to be in NC and therefore highly
parallelizable.

In fact, such a fragment is obtained by removing nega-
tion (“not”) from Core XPath. This fragment will be called
positive Core XPath.

Theorem 4.1. The combined complexity of positive Core
XPath is in LOGCFL.

We postpone the proof of this theorem to the next section,
where we will engineer a strictly and considerably larger
LOGCFL fragment of XPath (see Theorem 5.5).

As we will see next, the general proof technique used to
show Theorem 3.2 can be employed to prove further hard-
ness results of XPath fragments (inside P) using circuits.
(Recall that the proof of Theorem 3.2 does not require gates
to have bounded fan-in.)

Theorem 4.2. Positive Core XPath is LOGCFL-hard
w.r.t. combined complexity.

Proof (Sketch). By reduction from SAC1 circuit value,
which is LOGCFL-complete (see Proposition 2.2). Given
a SAC1 circuit, we use the construction of the proof of The-
orem 3.2 with the following changes:

• In the document, there are exactly two Ik-labels now
for each ∧-layer. We call them I1

k and I2
k . For ”dummy”-

gates propagating the value of gate Gi, the single “in-
put line”, node v′i, is assigned both I1

k and I2
k .

• We construct queries as usual, but instead of nega-
tion (which allows to express an unbounded “for all”),
we use the XPath language construct “and” with two
inputs, one labeled I1

k and one I2
k .

That is, for gates of type “∧”, ψk is replaced by

ψk := child::*[T (I1
k) and πk] and

child::*[T (I2
k) and πk]

Thus at every ∧-step of the query, the subexpression
of the query needs to be inserted twice. Although the
query grows exponentially in the depth of the circuit, it
can be computed in L because the depth of the circuit
(and thus the size of subexpressions to be copied) is
only logarithmic.

e
e

e

e

e

e

e

�

�

�

�

v1

v2 v3

v4

	

	

	

		

	

	

	

	

	

v1

v2

v3

v4

c

c

c

c

(c)(b)









0 1 0 1
1 0 0 0
1 1 0 1
0 0 1 0









(a)

Figure 5: Graph (a), its (transposed) adjacency ma-
trix (b), and tree of the encoding (c).

All else of the reduction remains the same.
�

Let PF be the fragment of Core XPath containing only
the location paths, without conditions (i.e., no expressions
enclosed in brackets are permitted).

Theorem 4.3. With respect to combined complexity, PF
is NL-complete under L-reductions.

Proof (Sketch). Membership in NL is obvious: we can
just guess the path while we verify it in L. NL-hardness fol-
lows from a L-reduction from the directed graph reachability
problem, which is NL-complete (cf. [7]). The reduction is
quite simple, so we just provide an example (see Figure 5).
Let G = (V,E) be the directed input graph. Assume we
look for a path from node vi to node vj . We abbreviate
the n-times repeated application of an axis χ as χn::*. By
χn::c, we denote (χ::*/)n−1χ::c. As is easy to verify, given
a positive integer m, the query /descendant::vi/ϕm with

ϕk := child::c/descendant::e/parent2∗|V |::*/child|V |::c/
parent::*/ϕk−1

and ϕ0 := self::vj computes the node labeled vj if and only if
node vj is reachable from node vi in m steps. To extend this
to reachability, we add a loop for each node of the graph (or
equivalently, set the main diagonal of the adjacency matrix
to ones only) and have m := |E|.

�

5. PARALLELIZING WF
We are now going to search for restrictions on WF that

push down the complexity of the query evaluation problem
to the highly parallelizable complexity class LOGCFL.

To achieve this, we require that scalar values (i.e., val-
ues different from node sets) can be stored in logarithmic
space. Moreover, we also have to exclude two important
constructs from WF, namely iterated predicates of the form
χ :: t[e1] . . . [ek] with k ≥ 2 and the not-function. The re-
sulting XPath fragment will be referred to as the “positive”
(or “parallel”) WF (short pWF). It is formally defined as
follows:

Definition 5.1. pWF is obtained by restricting WF in
the following way:

1. Expressions of the form χ :: t[e1] . . . [ek] with k ≥ 2 are
not allowed, where χ denotes an axis, t is a node test
and the ei’s are XPath expressions.

2. The not-function may not be used.

3. The nesting depth of arithmetic operators is bounded
by some constant k.

�

The first two restrictions above mean that the grammar
from Definitions 2.5 and 2.6 has to be modified as follows:

locstep ::= axis ‘::’ ntst ‘[’ bexpr ‘]’
bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr |

| locpath | nexpr relop nexpr.

Remark 5.2. Note that positive Core XPath is strictly
a fragment of pWF. This is due to the fact that the first
restriction above plays no role in Core XPath. More gen-
erally, an XPath expression of the form χ :: t[e1] . . . [ek] is
equivalent to χ :: t[e1 and . . . and ek] as long as position()
and last() are not used.

The classical decision problem regarding query evaluation
(also known as the Success problem) is, given a database, a
query, and a query result, to decide whether the given query
result is correct for the given query on the input database.
In our context, the XML document takes the place of the
database, the XPath query in conjunction with a context-
triple the place of the query, and finally, a value that is
either of type boolean, number, string, or node set assumes
the place of the query result to be checked.

For our purposes, it is convenient to work with the follow-
ing slightly different decision problem.

Definition 5.3 (Singleton-Success).
Input: A tuple (D,Q,~c, v), where D is an XML document,
Q an XPath query, ~c a context-triple, and v a value. If Q is
of type number or string, then v is a value of this type. If
Q is of type boolean, then v is the value true. Finally, if Q
is of type node set, then v is a single node.
Question: Does query Q on document D and context ~c
evaluate to v (in case of result type number, string or boolean)
or does it evaluate to some node set X with v ∈ X ?

�

Lemma 5.4. The Singleton-Success problem for pWF
can be decided in LOGCFL.

Proof (Sketch). We describe a NAuxPDA that decides the
Singleton-Success problem for queries from pWF. The
LOGCFL-membership of this problem will follow imme-
diately from the correctness and the fact that the NAux-
PDA runs simultaneously with a logarithmic space-bounded
worktape and in polynomial time.

Notation. Let an instance of the Singleton-Success prob-
lem be given through some XML document D, XPath query
Q, context-triple ~c and value v. By TQ, we denote the parse
tree of Q. The root node of TQ will be denoted by R. Recall
that every node N in TQ corresponds to a subexpression of
Q, which we shall denote by expr (N). Finally, we write K
to denote the maximum number of child nodes of the nodes
in TQ. Actually, for pWF, K = 2 holds.

Basics of the NAuxPDA. The principal idea of the NAux-
PDA is to traverse TQ along its edges in depth-first, left-to-
right order. Along this traversal, we basically pass through

every node N in the query tree TQ at most once in down-
ward direction and at most K times in upward direction.
If we visit a node N in downward direction, then we make
some guesses (namely, a context ~c and the corresponding
result of evaluating the subexpression expr (N) of Q on the
document D for this context ~c). If we process a node N in
upward direction and no further child node of N has to be
processed (i.e., either, they have all been processed or the
result value of expr (N) is fully determined by those which
have already been processed), then we carry out certain con-
sistency checks between the guesses at the current node and
at its child nodes. Similarly, if we reach a leaf node N , then
we have to check whether the context and the result value
guessed at N are consistent with the expression expr (N).

Our traversal of the query tree TQ starts at the root R of
TQ in downward direction. Eventually, we shall have visited
all nodes of TQ that are required to determine the overall
result and we shall come back to the root R of the query tree.
If all the consistency checks thus carried out were successful,
then the overall result of our computation is “success”. As
soon as one such check fails, we halt with the overall result
“failure”.

Worktape and stack of the NAuxPDA. On our work-
tape, we maintain two integers CurrN and AuxN as well as
a variable Dir which can have one of the values “down” or
“up”. Moreover, our worktape contains the K + 2 main
data structures CurrVal, AuxVal, and ChildVal [i] with i ∈
{1, . . . , K}, each consisting of four components cnode, cpos,
csize, and res, which stand for context-node, context-position,
context-size, and result, respectively.

The variables CurrN and AuxN hold node-ids of nodes
in the query tree. CurrN denotes the current node in the
query tree and AuxN is an auxiliary variable. Dir denotes
the direction of the last move (i.e., either downward or up-
ward) of our traversal of TQ. CurrVal and ChildVal [i] with
i ∈ {1, . . . , K} contain the values of cnode, cpos, csize, and
res that were guessed when processing the current node
in the query tree and the i-th child of this node, respec-
tively. AuxVal is used as an auxiliary variable for copying
purposes. All of these data structures are initially set to
the value “undef ”. The values of CurrVal, ChildVal [1], . . . ,
ChildVal [K], and CurrN are pushed onto the stack when a
node is left in downward direction. Conversely, these val-
ues are popped from the stack before a node is entered in
upward direction. Consequently, whenever we start to pro-
cess a node N , then the stack contains the values CurrVal,
ChildVal [1], . . . , ChildVal [K], and CurrN for all nodes along
the path from R to the parent of N .

Initialization and main procedure. In the beginning, we
select the root node R of TQ as the current node CurrN and
fill in the context and result value from the input into the
variable CurrVal (rather than guessing these values, as we
shall do for all further nodes). All the other data structures
ChildVal [i] are initialized to “undef ”. If R is a leaf node
(i.e., TQ consists of the root R only), then we check the con-
sistency of the context and result value in CurrVal with the
XPath expression expr (R). If this check is successful, then
the overall result of the NAuxPDA is “success”, otherwise
the NAuxPDA halts with “failure”. On the other hand, if
R is not a leaf node, then we have to move downward in the
query tree. If the XPath expression expr (R) is of the form
“e1 or e2” or of the form “π1 |π2”, then we choose nondeter-

expressions expr (CurrN) at leaf nodes of the query tree TQ

expr (CurrN) local consistency condition
χ :: t r can be reached from n via χ :: t
position() r = p
last() r = s
c (= constant number) r = c

expressions expr (CurrN) at internal nodes of the query tree TQ

expr (CurrN) local consistency condition
/π n = root ∧ r = r1
π1 |π2 (n = n1 ∧ r = r1) ∨ (n = n2 ∧ r = r2)
π1/π2 (n = n1 ∧ n2 = r1 ∧ r = r2)
χ :: t[e] let Y = {y ∈ dom | y can be reached from n via χ :: t}
(first child of CurrN corresponds r ∈ Y ∧ (let pnew = position of r in Y , let snew = |Y |
to e, the second one to χ :: t) n1 = r ∧ p1 = pnew ∧ s1 = snew ∧ r = true)
boolean(π) r = true ∧ (n1 = n ∧ p1 = p ∧ s1 = s ∧ r1 ∈ dom)
e1 and e2 r = true ∧ [(n1 = n ∧ p1 = p ∧ s1 = s ∧ r1 = true) ∧

(n2 = n ∧ p2 = p ∧ s2 = s ∧ r2 = true)]
e1 or e2 r = true ∧ [(n1 = n ∧ p1 = p ∧ s1 = s ∧ r1 = true) ∨

(n2 = n ∧ p2 = p ∧ s2 = s ∧ r2 = true)]
e1 RelOp e2 r = true ∧ r1 RelOp r2 ∧ [(n1 = n ∧ p1 = p ∧ s1 = s) ∧
(both e1 and e2 are numbers) (n2 = n ∧ p2 = p ∧ s2 = s)]
e1 ArithOp e2 r = r1 ArithOp r2 ∧ [(n1 = n ∧ p1 = p ∧ s1 = s) ∧
(both e1 and e2 are numbers) (n2 = n ∧ p2 = p ∧ s2 = s)]

legend: n, p, s, r: CurrVal.cnode CurrVal.cpos CurrVal.csize CurrVal.res

n1, p1, s1, r1: ChildVal [1].cnode ChildVal [1].cpos ChildVal [1].csize ChildVal [1].res
n2, p2, s2, r2: ChildVal [2].cnode ChildVal [2].cpos ChildVal [2].csize ChildVal [2].res

Table 1: Local consistency checks for pWF.

ministically a single child of R (and ignore the whole subtree
of TQ rooted at the other child node of R). Otherwise we
move on to the first child of R. In either case, the current
values of CurrN, CurrVal, ChildVal [1], . . . , ChildVal [K] are
pushed onto the stack and CurrN is assigned the node-id of
the element node to be visited next.

Processing a node in downward direction. If a node
is entered in downward direction, then we guess the com-
ponents of CurrVal. After that we basically proceed like in
the main procedure explained above. In particular, the data
structures ChildVal [i] are initialized to “undef ”. Moreover,
if the current node is not a leaf node, then we make the
same downward move as in the main procedure. Otherwise,
if the current node is a leaf node, then we carry out the same
consistency check as before. In case of a negative result of
this check, we again halt with “failure”. However, in case of
a successful check, we are of course not yet allowed to halt
with success. Instead, we move upward in the query tree.
For this upward move, we save the current value of CurrN
and CurrVal to the auxiliary variables AuxN and AuxVal, re-
spectively. Then we pop CurrN, CurrVal, ChildVal [1], . . . ,
ChildVal [K] from the stack and finally assign AuxVal to the
appropriate variable ChildVal [1], . . . , ChildVal [K], i.e., if
the upward move started at the i-th child of its parent, then
AuxVal is assigned to ChildVal [i].

Processing a node in upward direction. Now suppose
that we have entered the current node by an upward move
from its i-th child. If the current node contains a child that
has to be processed yet, then we move on to this child by
a downward move. Of course, prior to this move, the vari-
ables CurrN, CurrVal, ChildVal [1], . . . , ChildVal [K] have to

be pushed onto the stack. Otherwise, if there are no more
child nodes left to be processed, then the consistency of the
values CurrVal and ChildVal [1], . . . , ChildVal [K] with the
expression expr (CurrN) has to be checked. If this check is
successful, then we make the same kind of upward move as in
case of a leaf node that is processed in downward direction.
Otherwise, we halt with “failure”.

Consistency checks for the current node. If a leaf
node in the query tree has been reached, then we have
to check whether the chosen combination of the compo-
nents of CurrVal is indeed allowed for the subexpression
expr (CurrN). Similarly, if the context and result value have
already been determined for a non-leaf node plus the re-
quired child nodes, then we have to check whether the non-
deterministic choices were consistent with the subexpression
expr (CurrN). All possible kinds of checks thus required are
given in Table 1, where we use the following notation: We
write χ :: t for a location step consisting of an axis χ and
a node test t. e stands for any XPath expression while π
stands for a location path. By RelOp and ArithOp we de-
note relational operators (=, 6=, ≤, . . .) and arithmetic
operators (+,−, ∗, . . .), respectively. The set of all element
nodes in D is denoted by dom and root denotes the concep-
tual root node in the XPath data model (cf. [13]). Moreover,
we assume w.l.o.g., that type conversions from node sets
to boolean values are made explicit via the XPath-function
boolean. Finally, we do not treat the case of undefined com-
ponents separately. In general, we assume that conditions
on undefined values yield the result “undef ”. But of course,
we assume that true ∨ “undef ” ≡ true holds.

Discussion. As for the correctness of this NAuxPDA, it

has to be shown that an instance (D,Q, 〈cn, cp, cs〉, v) of
the Singleton-Success problem of pWF yields the answer
“yes” iff there exists a run of the NAuxPDA that halts with
success. A detailed proof of this is provided in the full pa-
per. It remains to be shown that the NAuxPDA works si-
multaneously in L and P. As for the time complexity, recall
that the NAuxPDA traverses (parts of) the query tree TQ

in depth-first, left-to-right order. Along this traversal, ev-
ery node N is processed at most once in downward direction
and at most K times (with K = 2 in case of pWF) in up-
ward direction. Moreover, the actions required to process a
node once can be clearly done in polynomial time. As for
the space complexity, note that the variables of the work-
tape plus a fixed number of counters and auxiliary variables
clearly fit into logarithmic space. The crucial observation
for the logarithmic space complexity is that we never have
to explicitly compute node sets, e.g., checking r ∈ Y and
determining the position of r in Y and the size of Y can be
done without explicitly computing the node set Y itself (cf.
the consistency check for χ :: t[e] in Table 1).

�

Theorem 5.5. pWF is in LOGCFL with respect to com-
bined complexity.

Proof (Sketch). The NAuxPDA of the previous proof non-
deterministically guesses and verifies a result, or in the case
of queries returning a node set, a single node of the result.
Checking whether a given XPath query evaluates to some
node set X (or equivalently, computing that node set) can
be done by deciding the Singleton-Success problem in a
loop over all elements v ∈ X without a significant increase of
the overall complexity. In our definition of the Singleton-
Success problem, we assumed the technical restriction that
results of boolean XPath queries can be only checked to be
true. Checking whether a given XPath query with boolean
result value evaluates to false is the co-problem of checking
whether a query evaluates to true. However, by Proposi-
tion 2.4, LOGCFL is closed under complementation.

�

Remark 5.6. It is well-known that the complexity class
LOGCFL is inside the class NC2 of problems solvable in
time O(log2 n) with quadratically many processors working
in parallel. In fact, given this intuition and the insight ob-
tained from the reduction to NAuxPDA, it is not hard to
find a highly parallel algorithm for evaluating pWF queries.
The intuition for matching straight-line path queries (cf. our
PF fragment from Section 4) is similar to parallel algorithms
for graph reachability (cf. [7]); however, rather than connect-
ing nodes in a graph, the goal is to connect contexts with
nodes in the query result. Additional synchronization is re-
quired for branches in the query tree (e.g. “and”), which
is not surprising as graph reachability is in NL and thus
presumably simpler than a LOGCFL-complete problem.
However, at the branches, the subexpressions below can be
evaluated in parallel before finalizing the branch (i.e., pro-
ceeding bottom-up).

�

The next result shows that pWF is in a sense a maximal
LOGCFL fragment of WF. Of course, we are not really in-
terested in dealing with arbitrarily big number expressions.
As far as the other two restrictions in Definition 5.1 are con-
cerned, none of them can be simply omitted. This is clear
for negation, as Core XPath is strictly a fragment of pWF
extended by negation. As shown next, the final restriction

is essential as well. By iterated predicates, we again refer to
location steps of the form χ :: t[e1] . . . [ek] with k ≥ 2.

Theorem 5.7. The combined complexity of pWF queries
extended by iterated predicates is P-complete.

Proof (Sketch). The proof goes by an appropriate modi-
fication of the XML document D and the location paths ϕ,
ψ, and π from the proof of Theorem 3.2.

XML document. We extend D by adding one additional
child wi to every node vi with i ∈ {0, . . . ,M + N} (as the
right-most child, say). Each node wi is labeled W . Hence,
the condition T (W) is fulfilled exactly by these new nodes.
Moreover, for the node v0, we introduce an additional label
A (“auxiliary”). Thus, the condition T (A) is only fulfilled
by the root node v0. The new document tree corresponding
to the example in the proof of Theorem 3.2 looks as follows:

	
� ���
 � �

� � � � � � � � � �� � � � � � ��

�
v0

v1 v2 v3 v4 v5 v6 v7 v8 v9

v′

9v′

8v′

5v′

4v′

1 v′

2 v′

3 w6v′

6w5w4w1 w2 w3 w8 w9w7v′

7

w0

XPath query. The desired query Q′ (encoding the value
of the gate GM+N) is

/descendant-or-self::*[T (R) and ϕ′
N]

where the auxiliary location paths ϕ′
k, ψ′

k, and π′
k with 1 ≤

k ≤ N are defined as follows:

ϕ′
k := descendant-or-self::*[T (Ok) and parent::*[ψ′

k]]

and

ψ′
k := child::*[(T (Ik) and π′

k[last()=1]) or T (W)][last()=1],

if the type of gate GM+k is “∧” and

ψ′
k := child::*[T (Ik) and π′

k[last() > 1]]

otherwise, and

π′
k := ancestor-or-self::*[(T (G) and ϕ′

k−1) or T (A)].

Moreover, we set ϕ′
0 := T (1) as in Theorem 3.2.

In order to prove the correctness of this problem reduction,
we introduce the following notion: Let ρ and σ be XPath
queries that are evaluated on the document D or on D′, re-
spectively. Then we call ρ and σ equivalent on a node x (that
occurs both in D and D′), iff the evaluation of boolean(ρ) on
D and the evaluation of boolean(σ) on D′ for the context-
node x yield the same result. Then the following equiva-
lences hold for any k ≥ 1 (in case of ψk and πk) and for any
k ≥ 0 (in case of ϕk):

(1) ϕk and ϕ′
k are equivalent on v1, . . . , vM+N .

(2) ψk and ψ′
k are equivalent on v0, . . . , vM+N .

(3) πk and π′
k[last() > 1] as well as not(πk) and π′

k[last() =
1] are equivalent on v1, . . . , vM+N , v′1, . . . , v′M+N .

These equivalences can be shown by an easy induction ar-
gument. We only discuss (3) here, in order to point out

the central idea of “encoding” the not-function by iterated
predicates: By the induction hypothesis, ϕk−1 and ϕ′

k−1 are
equivalent on v1, . . . , vM+N , that is, on the nodes for which
the condition T (G) is true. By the new disjunct T (A) in
the predicate of π′

k, the location path π′
k evaluates to the

same set as πk plus the node v0. Moreover, by the condi-
tion T (G), the node set resulting from πk never contains
the node v0. The equivalence of πk with π′

k[last() > 1] and
the equivalence of not(πk) with π′

k[last() = 1] (on v1, . . . ,
vM+N , v′1, . . . , v′M+N) are thus obvious.

The correctness of the whole problem reduction follows
immediately from the equivalence (1) for k = N .

�

Note that in the above proof of Theorem 5.7, we only
made use of predicate sequences [e1] . . . [ek] whose length k
was bounded by 2. We thus have:

Corollary 5.8. The combined complexity of pWF ex-
tended by iterated predicates of the form χ :: t[e1][e2] is P-
complete.

Despite the negative results of Theorems 3.2 and 5.7, one
possible direction into which pWF can be extended with-
out leaving the complexity class LOGCFL is to bound the
depth of negation, i.e., the maximum depth of nested occur-
rences of the not-function in queries.

Theorem 5.9. The combined complexity of pWF queries
augmented by negation with bounded depth is in LOGCFL.

Proof (Sketch). We modify the NAuxPDA encoding in
the proof of Lemma 5.4 as follows: First, we transform the
input query Q by means of de Morgan’s laws in such a way
that all occurrences of the not-function are either shifted im-
mediately in front of relational operators RelOp or location
paths π. Expressions of the form e1 RelOp e2 where both
operands are numbers can be replaced by e1 not(RelOp) e2.
In other words, = is replaced by 6=, < is replaced by ≥,
etc. We thus get an equivalent query Q′ where the “not”
only occurs in the form not(π). Then we have to modify our
NAuxPDA in such a way, that it treats subexpressions of the
form not(π) by checking in a loop over all element nodes x
in D whether x is in the node set resulting from the evalua-
tion of π for the context-node CurrVal.cnode. This check is
done by calling the NAuxPDA recursively. The correctness
of this algorithm follows immediately from the correctness of
the NAuxPDA in the proof of Lemma 5.4. The space com-
plexity clearly does not significantly increase compared to
the NAuxPDA in Lemma 5.4. Moreover, by the existence
of a constant bound K on the nesting of negation (and,
hence, by the same bound K on the nesting of the loops
in the above described modified version of our NAuxPDA),
the polynomial time upper bound on this computation is
also preserved.

�

6. PARALLELIZING XPATH
In Section 5, we proved the LOGCFL-membership for

a fragment of XPath that was derived from WF by impos-
ing some restrictions. In fact, we can get a much larger
LOGCFL fragment of XPath by starting from full XPath
and defining the analogous restrictions. The important fact
is again that the evaluation can be done without the need
to ever compute node sets explicitly and without having to
deal with scalars (i.e., values different from node sets) that
do not fit into L. Analogously to pWF, we thus define:

Definition 6.1. Positive (or parallel) XPath (pXPath)
is obtained by imposing the following restrictions on XPath:

1. Expressions of the form χ :: t[e1] . . . [ek] with k ≥ 2 are
not allowed.

2. The following functions may not be used: not, count,
sum, string, and number as well as the string functions
local-name, namespace-uri, name, string-length, and
normalize-space.

3. Constructs of the form e1 RelOp e2 where at least one
of the expressions ei is of type boolean, are forbidden.

4. The depth of nesting of arithmetic operators and of the
concat-function is bounded by some given constant K.
Likewise, the arity of the concat-function is bounded
by K.

�

The above restrictions extend the ones in Definition 5.1 in
the following way: The evaluation of expressions of the form
count(e) and sum(e) requires the explicit computation of
the node set value of e unless we again introduce loops over
dom into the NAuxPDA as in Theorem 5.9. With the func-
tions string and number as well as the string functions listed
above, we would have to manipulate items of information in
the document D whose size is not necessarily logarithmically
bounded. Moreover, the functions string and number could
also be used to “encode” negation, e.g., number(e) = 0 for
a boolean expression e evaluates to true, iff e evaluates to
false. Similarly, constructs of the form e1 RelOp e2 where at
least one of the expressions ei is of type boolean are forbid-
den since they can also be used to “encode” negation, e.g.,
by an expression of the form e 6= true().

Analogously to Theorem 5.5, we have

Theorem 6.2. The combined complexity of pXPath is in
LOGCFL.

Proof (Sketch). The LOGCFL-membership of the prob-
lem Singleton-Success and (as a consequence, see the
proof of Theorem 5.5) the combined complexity of pXPath
can be established by almost the same NAuxPDA as in Sec-
tion 5. The only adaptation required is an extension of
Table 1. In principle, for each of the additionally allowed
XPath constructs, a new line with the corresponding local
consistency check has to be added. Alternatively, we can
cover these new lines via the “effective semantics function”
F of XPath operators Op that was introduced in [3] for
all XPath constructs except for location paths and the func-
tions position() and last() (whose semantics was defined sep-
arately in [3]). Then the consistency check for an expression
of the form Op(e1, . . . , el) comes down to the condition

(
l�

i=1

(ni = n ∧ pi = p ∧ si = s)) ∧ r = F [[Op]](r1 , . . . , rl)

Moreover, in case of a boolean expression e, we add the con-
junct r = true. Note that the last four lines in Table 1
are (equivalent formulations of) special cases of this prin-
ciple with F [[and]] = ∧, F [[or]] = ∨, F [[RelOp]] = RelOp,
and F [[ArithOp]] = ArithOp, respectively. Of course, the
polynomial time and logarithmic space upper bound on the
complexity also holds for the thus extended NAuxPDA.

�

Finally, we mention that also pXPath can be extended
by negation with bounded depth without destroying the

LOGCFL-membership. The following result is stated with-
out proof.

Theorem 6.3. The combined complexity of pXPath aug-
mented by negation with bounded depth is in LOGCFL.

Conceptually, this can be shown exactly like Theorem 5.9.
However, there are now quite a few new constructs which
have to be considered separately since negation cannot be
shifted inside them, e.g., not(e1 RelOp e2) where at least
one of the operands ei is a node set has to be treated in a
loop over all nodes x ∈ dom just like expressions of the form
not(π) in Theorem 5.9.

7. QUERY AND DATA COMPLEXITY
In this paper, we have addressed the combined complexity

of various fragments of XPath. While the general problem
is P-hard, we have engineered large fragments that can be
massively parallelized. We conclude this treatment with an
outlook towards the two main other complexity measures,
the complexity of queries when either the size of the query
or of the data is fixed.

Theorem 7.1. PF is L-hard under NC1-reductions (with
respect to data complexity).

Proof. Given a tree in which all nodes have a unique la-
bel, the query /descendant-or-self::v1/descendant::v2 from
our path expressions fragment PF (see Section 4) selects a
node if and only if v2 is reachable from v1 in the tree. This is
directed tree reachability , which is L-complete under NC1-
reductions [2]. The query is constant and can be assumed
to work on the same tree as the directed tree reachability
problem. The result follows.

�

Theorem 7.2. XPath is in L w.r.t. data complexity.

Proof (Sketch). The basic idea for an XPath evaluation
algorithm that runs in L is motivated by the bottom-up dy-
namic programming algorithm for full XPath of [3], which
was based on the notion of so-called context-value tables, re-
lations consisting of tuples containing a context and a cor-
responding value for (a subexpression of) the given query,
one tuple for each meaningful context. We compute one
such context-value table for each node of the query tree.
Given the context-value tables for the direct subexpressions
e1, . . . , en, computing the context-value table of expression
Op(e1, . . . , en), where Op is an atomic XPath operation (a
node in the query tree), only requires a very simple computa-
tional task which can be carried out in L. Since we consider
data complexity, the query and the number of operations
in its query tree is assumed fixed. We can compose a fixed
number of steps that individually run in L into an algorithm
that runs in L overall.

�

Theorem 7.3. XPath without multiplication or the “con-
cat” operation is in L w.r.t. query complexity.

Proof (Sketch). Let Q be the input query and D the
(fixed) document. All operations in Q have a fixed arity not
greater than K = 3.

Let us first assume that Q does not contain operations
such as + that make strings or numbers grow (logarithmi-
cally) with the size of the query. Then, it is known from [3]

that the size of each context-value table is bounded by the
constant |D|4. To compute the context-value table holding
the result of Q on D, we simply have to make a bottom-up
traversal of the query tree of Q, which can be performed in
L. Regarding storage requirements, only a stack bounded
by K ∗ log |Q| context-value tables is needed, which holds
context-value tables computed bottom-up but not used yet
and waiting to be employed for the computation of context-
value tables higher up in the query tree. (Note that this
is not the depth of the query tree, which is not necessarily
bounded by O(logQ).)

Computing context-value tables bottom-up step by step is
important for handling path expressions and negation well.
For string- or number-typed expressions e, these relations
do not have to be materialized, but results can be generated
and checked top-down when computing a node set-typed
context-value table for an expression that contains e as a
direct subexpression with only an additional |D| ∗ log |Q|-
sized memory window.

�

We did not provide a lower bound for the query com-
plexity of XPath, but conjecture a considerable fragment of
XPath to be ALOGTIME-complete with respect to query
complexity.

Acknowledgments
This work was supported by the EU Research Training Net-
work GAMES. The first author was partially funded by
grant Z29-N04 of the Austrian Research Fund (FWF). The
second author’s visit to the University of Edinburgh’s Labo-
ratory for Foundations of Computer Science was sponsored
by Erwin Schrödinger grant J2169 of the FWF.

The paper [8], also to be found in this proceedings volume,
contains a number of related and overlapping results on the
complexity of XPath, and is work independent from ours.

8. REFERENCES

[1] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo,
and M. Tompa. “Two Applications of Inductive
Counting for Complementation Problems”. SIAM
Journal of Computing, 18:559–578, 1989.

[2] S. A. Cook and P. McKenzie. “Problems Complete for
Deterministic Logarithmic Space”. J. Algorithms,
8:385–394, 1987.

[3] G. Gottlob, C. Koch, and R. Pichler. “Efficient
Algorithms for Processing XPath Queries”. In
Proceedings of the 28th International Conference on
Very Large Data Bases (VLDB’02), Hong Kong,
China, Aug. 2002.

[4] G. Gottlob, C. Koch, and R. Pichler. “XPath Query
Evaluation: Improving Time and Space Efficiency”. In
Proceedings of the 19th IEEE International
Conference on Data Engineering (ICDE’03), pages
379–390, Bangalore, India, Mar. 2003.

[5] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits
to Parallel Computation: P-Completeness Theory.
Oxford University Press, 1995.

[6] D. S. Johnson. “A Catalog of Complexity Classes”. In
J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume 1, chapter 2, pages 67–161.
Elsevier Science Publishers B.V., 1990.

[7] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[8] L. Segoufin. “Typing and Querying XML Documents:
Some Complexity Bounds”. In Proceedings of the 22nd
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), San Diego,
CA, 2003.

[9] I. Sudborough. “Time and Tape Bounded Auxiliary
Pushdown Automata”. In Mathematical Foundations
of Computer Science (MFCS’77), pages 493–503.
Springer Verlag, LNCS 53, 1977.

[10] M. Y. Vardi. “The Complexity of Relational Query
Languages”. In Proc. 14th Annual ACM Symposium
on Theory of Computing (STOC’82), pages 137–146,
San Francisco, CA USA, May 1982.

[11] H. Venkateswaran. “Properties that Characterize
LOGCFL”. Journal of Computer and System
Sciences, 43:380–404, 1991.

[12] P. Wadler. “Two Semantics for XPath”, 2000. Draft
paper available at
http://www.research.avayalabs.com/user/wadler/.

[13] World Wide Web Consortium. XML Path Language
(XPath) Recommendation., Nov. 1999.
http://www.w3c.org/TR/xpath/.

[14] World Wide Web Consortium. “XQuery 1.0 and
XPath 2.0 Formal Semantics. W3C Working Draft
(Aug. 16th 2002), 2002.
http://www.w3.org/TR/query-algebra/.

