XIOM e uonezifeuonsunjaq (Uss|aIN ® Aluea £2-T0-SH SOIdd

BRICS

Basic Research in Computer Science

Defunctionalization at Work

Olivier Danvy
Lasse R. Nielsen

BRICS Report Series

RS-01-23

ISSN 0909-0878

June 2001

Copyright (© 2001, Olivier Danvy & Lasse R. Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/23/

Defunctionalization at Work *

Olivier Danvy and Lasse R. Nielsen
BRICS T

Department of Computer Science
University of Aarhus *

June, 2001

Abstract

Reynolds’s defunctionalization technique is a whole-program transfor-
mation from higher-order to first-order functional programs. We study
practical applications of this transformation and uncover new connec-
tions between seemingly unrelated higher-order and first-order specifica-
tions and between their correctness proofs. Defunctionalization therefore
appears both as a springboard for revealing new connections and as a
bridge for transferring existing results between the first-order world and
the higher-order world.

*Extended version of an article to appear in the proceedings of PPDP 2001, Firenze, Italy.
fBasic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.
Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark

E-mail: {danvy,lrn}@brics.dk

Contents

1

Background and Introduction

1.1 A sample higher-order program with a static number of closures
1.2 A sample higher-order program with a dynamic number of closures
1.3 Defunctionalization in a nutshell
1.4 Related work
1.5 Thiswork e

ESEENEEN IS ESGNTN

Defunctionalization of List- and of Tree-Processing Programs 9

2.1 Flattening a binary tree intoa list 9
2.2 Higher-order representations of lists 10
2.3 Defunctionalizing Church-encoded non-recursive data structures. 13
2.4 Defunctionalizing Church-encoded recursive data structures . . . 15
2.5 Church-encoding the result of defunctionalization 16
2.6 Summary and conclusion 17
Defunctionalization of CPS-Transformed First-Order Programs 17
3.1 String parsing 17
3.2 Continuation-based program transformation strategies 20
3.3 Summary and conclusion 20
Two Syntactic Theories in the Light of Defunctionalization 20
4.1 Arithmetic expressions 20
4.1.1 A syntactic theory for arithmetic expressions 21
4.1.2 Implementation oL 21
4.1.3 Refunctionalization 22
414 Backtodirectstyle. oL 23
4.2 The call-by-value A-calculus 24
4.2.1 A syntactic theory for the call-by-value A-calculus 24
4.2.2 Implementation 24
4.2.3 Refunctionalization 0L 25
424 Backtodirectstyle. oL 26
4.3 Summary and conclusion 27

A Comparison between Correctness Proofs before and after

Defunctionalization: Matching Regular Expressions 28
5.1 Regular expressions. 28
5.2 The two matchers 29
5.2.1 The higher-order matcher 29
5.2.2 The first-order matcher, 30
5.3 The two correctness proofs oo 30
5.3.1 Correctness proof of the higher-order matcher 32
5.3.2 Correctness proof of the first-order matcher 32
5.4 Comparison between the two correctness proofs 33
5.5 Summary and conclusion Lo 34

6 Conclusions and Issues 35
A Correctness Proof of the Higher-Order Matcher 36

B Correctness Proof of the First-Order Matcher 39

List of Figures

1 Higher-order, continuation-based matcher for regular expressions 29
2 First-order, stack-based matcher for regular expressions 31

1 Background and Introduction

In first-order programs, all functions are named and each call refers to the callee
by its name. In higher-order programs, functions may be anonymous, passed
as arguments, and returned as results. As Strachey put it [50], functions are
second-class denotable values in a first-order program, and first-class expressible
values in a higher-order program. One may then wonder how first-class functions
are represented at run time.

e First-class functions are often represented with closures, i.e., expressible
values pairing a code pointer and the denotable values of the variables
occurring free in that code, as proposed by Landin in the mid-1960’s [30].
Today, closures are the most common representation of first-class functions
in the world of eager functional programming [1, 17, 32], as well as a
standard representation for implementing object-oriented programs [23].
They are also used to implement higher-order logic programming [8].

e Alternatively, higher-order programs can be defunctionalized into first-
order programs, as proposed by Reynolds in the early 1970’s [43]. In a
defunctionalized program, first-class functions are represented with first-
order data types: a first-class function is introduced with a constructor
holding the values of the free variables of a function abstraction, and it
is eliminated with a case expression dispatching over the corresponding
constructors.

e First-class functions can also be dealt with by translating functional pro-
grams into combinators and using graph reduction, as proposed by Turner
in the mid-1970’s [52]. This implementation technique has been investi-
gated extensively in the world of lazy functional programming [27, 29, 37,
38].

Compared to closure conversion and to combinator conversion, defunctional-
ization has been used very little. The goal of this article is to study practical
applications of it.

We first illustrate defunctionalization with two concrete examples (Sections
1.1 and 1.2). In the first program, two function abstractions are instantiated
once, and in the second program, one function abstraction is instantiated re-
peatedly. We then characterize defunctionalization in a nutshell (Section 1.3)
before reviewing related work (Section 1.4). Finally, we raise questions to which
defunctionalization provides answers (Section 1.5).

1.1 A sample higher-order program with a static number of closures

In the following ML program, aux is passed a first-class function, applies it to 1
and 10, and sums the results. The main function calls aux twice and multiplies
the results. All in all, two function abstractions occur in this program, in main.

(* aux : (int -> int) -> int %)
fun aux £
=f 1+ £f 10

(* main : int * int * bool -> int *)
fun main (x, y, b)
= aux (fn z => x + z) *
aux (fn z => if b then y + z else y - z)

Defunctionalizing this program amounts to defining a data type with two con-
structors, one for each function abstraction, and its associated apply function.
The first function abstraction contains one free variable (x, of type integer), and
therefore the first data-type constructor requires an integer. The second func-
tion abstraction contains two free variables (y, of type integer, and b, of type
boolean), and therefore the second data-type constructor requires an integer
and a boolean.

In main, the first first-class function is thus introduced with the first con-
structor and the value of x, and the second with the second constructor and the
values of y and b.

In aux, the functional argument is passed to a second-class function apply
that eliminates it with a case expression dispatching over the two constructors.

datatype lam = LAM1 of int
| LAM2 of int * bool

(* apply : lam * int -> int *)
fun apply (LAM1 x, z)
=x+z
| apply (LAM2 (y, b), z)
=1if b then y + z else y - z

(* aux_def : lam -> int *)
fun aux_def f
= apply (£, 1) + apply (£, 10)

(* main_def : int * int * bool -> int *)
fun main_def (x, y, b)
= aux_def (LAM1 x) * aux_def (LAM2 (y, b))

1.2 A sample higher-order program with a dynamic number of clo-
sures

A PPDP reviewer wondered what happens for programs that “dynamically gen-
erate” new closures, and whether such programs lead to new constants and thus
require extensible case expressions. The following example illustrates such a
situation and shows that no new constants and no extensible case expressions
are needed.

In the following ML program, aux is passed two arguments and applies one to
the other. The main function is given a number i and a list of numbers [j1, j2,
...] and returns the list of numbers [i+j1, i+j2, ...]. One function abstrac-
tion, fn i => i + j, occurs in this program, in main, as the second argument of
aux. Given an input list of length n, the function abstraction is instantiated n
times in the course of the computation.

(¥ aux : int * (int -> int) -> int *)
fun aux (i, f)
=f i

(* main = fn : int * int list -> int list *)
fun main (i, js)
= let fun walk nil
= nil
| walk (§ :: js)
= (aux (1, fn i => i + j)) :: (walk js)
in walk js
end

Defunctionalizing this program amounts to defining a data type with only one
constructor, since there is only one function abstraction, and its associated
apply function. The function abstraction contains one free variable (j, of type
integer), and therefore the data-type constructor requires an integer.

In main, the first-class function is introduced with the constructor and the
value of j.

In aux, the functional argument is passed to a second-class function apply
that eliminates it with a case expression dispatching over the constructor.

datatype lam = LAM of int

(* apply : lam * int -> int *)
fun apply (LAM j, i)
=i+ 3

(x aux_def : int * lam -> int *)
fun aux_def (i, f)
= apply (f, i)

(* main_def : int * int list -> int list x*)
fun main_def (i, js)
= let fun walk nil
= nil
| walk (j :: js)
= (aux_def (i, LAM j)) :: (walk js)
in walk js
end

Given an input list of length n, the constructor LAM is used n times in the course
of the computation.

1.3 Defunctionalization in a nutshell

In a higher-order program, first-class functions arise as instances of function
abstractions. All these function abstractions can be enumerated in a whole
program. Defunctionalization is thus a whole-program transformation where
function types are replaced by an enumeration of the function abstractions in
this program.

Defunctionalization therefore takes its roots in type theory. Indeed, a func-
tion type hides typing assumptions from the context, and, as pointed out by
Minamide, Morrisett, and Harper in their work on typed closure conversion [32],
making these assumptions explicit requires an existential type. For a whole pro-
gram, this existential type can be represented with a finite sum together with the
corresponding injections and case dispatch, and this representation is precisely
what defunctionalization achieves.

These type-theoretical roots do not make defunctionalization a straitjacket,
to paraphrase Reynolds about Algol [42]. For example, one can use several
apply functions, e.g., grouped by types, as in Bell, Bellegarde, and Hook’s work
[4]. Ome can also defunctionalize a program selectively, e.g., only its cont-
inuations, as in Section 3. One can even envision a lightweight defunction-
alization similar to Steckler and Wand’s lightweight closure conversion [48], as
in Banerjee, Heintze, and Riecke’s recent work [2].

1.4 Related work

Originally, Reynolds devised defunctionalization to transform a higher-order
interpreter into a first-order one [43]. He presented it as a programming tech-
nique, and never used it again [44], save for deriving a first-order semantics in
his textbook on programming language [45, Section 12.4].

Since then, defunctionalization has not been used much, though when it
has, it was as a full-fledged implementation technique: Bondorf uses it to make
higher-order programs amenable to first-order partial evaluation [5]; Tolmach
and Oliva use it to compile ML programs into Ada [51]; Fegaras uses it in
his object-oriented database management system, lambda-DB [18]; Wang and
Appel use it in type-safe garbage collectors [55]; and defunctionalization is an
integral part of MLton [7] and of Boquist’s Haskell compiler [6].

Only lately has defunctionalization been formalized: Bell, Bellegarde, and
Hook showed that it preserves types [4]; Nielsen proved its partial correctness
using denotational semantics [35, 36]; and Banerjee, Heintze and Riecke proved
its total correctness using operational semantics [2].

1.5 This work

Functional programming encourages fold-like recursive descents, typically using
auxiliary recursive functions. Often, these auxiliary functions are higher order
in that their co-domain is a function space. For example, if an auxiliary function
has an accumulator of type «, its co-domain is o — 3, for some 3. For another
example, if an auxiliary function has a continuation of type e — (3, for some (3,

its co-domain is (« —) — (. How do these functional programs compare to
programs written using a first-order, data-structure oriented approach?

Wand’s classical work on continuation-based program transformations [54]
was motivated by the question “What is a data-structure continuation?”. Each
of the examples considered in Wand’s paper required a eureka step to design
a data structure for representing a continuation. Are such eureka steps always
necessary?

Continuations are variously presented as a functional representation of the
rest of the computation and as a functional representation of the context of a
computation [20]. Wand’s work addressed the former view, so let us consider the
latter one. For example, in his PhD thesis [19], Felleisen developed a syntactic
approach to semantics relying on the first-order notions of ‘evaluation context’
and of ‘plugging expressions into contexts’. How do these first-order notions
compare to the notion of continuation?

In the rest of this article, we show that defunctionalization provides a single
answer to all these questions. All the programs we consider perform a recur-
sive descent and use an auxiliary function. When this auxiliary function is
higher-order, defunctionalization yields a first-order version with an accumula-
tor (e.g., tree flattening in Section 2.1 and list reversal in Section 2.2). When
this auxiliary function is first-order, we transform it into continuation-passing
style; defunctionalization then yields an iterative first-order version with an ac-
cumulator in the form of a data structure (e.g., string parsing in Section 3.1
and regular-expression matching in Section 5). We also consider interpreters
for two syntactic theories and we identify that they are written in a defunction-
alized form. We then “refunctionalize” them and obtain continuation-passing
interpreters whose continuations represent the evaluation contexts of the corre-
sponding syntactic theory (Section 4).

In addition, we observe that defunctionalization and Church encoding have
dual purposes, since Church encoding is a classical way to represent data struc-
tures with higher-order functions. What is the result of defunctionalizing a
Church-encoded data structure? And what does one obtain when Church-
encoding the result of defunctionalization?

Similarly, we observe that backtracking is variously implemented in a first-
order setting with one or two stacks, and in a higher-order setting with one or
two continuations. It is natural enough to wonder what is the result of Church-
encoding the stacks and of defunctionalizing the continuations. One can wonder
as well about the correctness proofs of these programs—how do they compare?

In the rest of this article, we also answer these questions. We defunctionalize
two programs using Hughes’s higher-order representation of intermediate lists
and obtain two efficient and traditional first-order programs (Section 2.2). We
also clarify the extent to which Church encoding and defunctionalization can
be considered as inverses of each other (Sections 2.3, 2.4, and 2.5). Finally,
we compare and contrast a regular-expression matcher and its proof before and
after defunctionalization (Section 5).

2 Defunctionalization of List- and of Tree-Processing Pro-
grams

We consider several canonical higher-order programs over lists and trees and
we defunctionalize them. In each case, defunctionalization yields a known, but
unrelated solution. We then turn to Church encoding, which provides a uni-
form higher-order representation of data structures. We consider the result of
defunctionalizing Church-encoded data structures, and we consider the result
of Church-encoding the result of defunctionalization.

2.1 Flattening a binary tree into a list

To flatten a binary tree into a list of its leaves, we choose to map a leaf to a
curried list constructor and a node to function composition, homomorphically.
In other words, we map a list into the monoid of functions from lists to lists.
This definition hinges on the built-in associativity of function composition.

datatype ’a bt = LEAF of ’a
| NODE of ’a bt * ’a bt

(*x cons : ’a -> ’a list -> ’a list *)
fun cons x xs
=X :: XS
(x flatten : ’a bt -> ’a list *)
(* walk : ’a bt -> ’a list -> ’a list *)

fun flatten t
= let fun walk (LEAF x)
= cons X
| walk (NODE (t1, t2))
= (walk t1) o (walk t2)
in walk t nil
end

Eta-expanding the result of walk and inlining cons and o yields a curried version
of the fast flatten function with an accumulator.

(* flatten_ee : ’a bt -> ’a list *)
(* walk : ’a bt -> ’a list -> ’a list *)

fun flatten_ee t
= let fun walk (LEAF x) a
=x :: a
| walk (NODE (t1, t2)) a
= walk t1 (walk t2 a)
in walk t nil
end

It is also instructive to defunctionalize flatten. Two functional values occur—
one for the leaves and one for the nodes—and therefore they give rise to a data

type with two constructors. Since flatten is homomorphic, the new data type
is isomorphic to the data type of binary trees, and therefore the associated
apply function could be made to work directly on the input tree, e.g., using
deforestation [53]. At any rate, we recognize this apply function as an uncurried
version of the fast flatten function with an accumulator.

datatype ’a lam = LAM1 of ’a | LAM2 of ’a lam * ’a lam

(x apply : ’a lam * ’a list -> ’a list *)
fun apply (LAM1 x, xs)
=x :: X8
| apply (LAM2 (f1, £2), xs)
= apply (f1, apply (£f2, xs))

(* cons_def : ’a -> ’a lam *)
fun cons_def x
= LAM1 x
(x o_def : ’a lam * ’a lam -> ’a lam x*)

fun o_def (f1, £2)
= LAM2 (f1, £2)

(* flatten_def : ’a bt -> ’a list *)
(* walk : ’a bt -> ’a lam *)
fun flatten_def t
= let fun walk (LEAF x)
= cons_def x
| walk (NODE (t1, t2))
= o_def (walk t1, walk t2)
in apply (walk t, nil)
end

The monoid of functions from lists to lists corresponds to Hughes’s novel
representations of lists [28], which we treat next.

2.2 Higher-order representations of lists

In the mid-1980’s, Hughes proposed to represent intermediate lists as partially
applied concatenation functions [28], so that instead of constructing a list xs,
one instantiates the function abstraction fn ys => xs @ ys. The key property
of this higher-order representation is that lists can be concatenated in constant
time. Therefore, the following naive version of reverse operates in linear time
instead of in quadratic time, as with the usual linked representation of lists,
where lists are concatenated in linear time.

(* append : ’a list -> ’a list -> ’a list *)
fun append xs ys
=xs Q@ ys

10

(* reverse : ’a list -> ’a list *)
fun reverse xs
= let fun walk nil
= append nil
| walk (x :: xs)
= (walk xs) o (append [x])
in walk xs nil
end

Let us defunctionalize this program. First, like Hughes, we recognize that
appending the empty list is the identity function and that appending a single
element amounts to consing it.

(¥ 4id : ’a list -> ’a list *)

fun id ys
(x cons : ’a -> ’a list -> ’a list *)
fun cons x xs
=X :: XS
(* reverse : ’a list -> ’a list *)
(* walk : ’a list -> ’a list -> ’a list %)

fun reverse xs
= let fun walk nil
= id
| walk (x :: xs)
= (walk xs) o (cons Xx)
in walk xs nil
end

The function space ’a 1list -> ’a list arises because of three functional values:
id, in one conditional branch; and, in the other, the results of consing an element
and of calling walk.

We thus defunctionalize the program using a data type with three construc-
tors and its associated apply function.

= LAMO
| LAM1 of ’a
| LAM2 of ’a lam * ’a lam

datatype ’a lam

(x apply : ’a lam * ’a list -> ’a list *)
fun apply (LAMO, ys)

= ys
| apply (LAM1 x, ys)
=x :: ys

| apply (LAM2 (f, g), ys)
= apply (£, apply (g, ys))

This data type makes it plain that in Hughes’s monoid of intermediate lists,
concatenation is performed in constant time (here with LAM2).

11

The rest of the defunctionalized program reads as follows.

(*

val

(*

fun

(*

fun

(*
(*

fun

id_def : ’a lam *)
id_def = LAMO

cons_def : ’a -> ’a lam *)
cons_def x = LAM1 x

o_def : ’a lam * ’a lam -> ’a lam *)
o_def (f, g) = LAM2 (f, g

reverse_def : ’a list -> ’a list *)
walk : ’a list -> ’a lam *)
reverse_def xs
= let fun walk nil
= id_def
| walk (x :: xs)
= o_def (walk xs, cons_def x)
in apply (walk xs, nil)
end

The auxiliary functions are only aliases for the data-type constructors. We
also observe that LAM1 and LAM2 are always used in connection with each other.
Therefore, they can be fused in a single constructor LAM3 and so can their treat-
ment in apply_lam. The result reads as follows.

datatype ’a lam_alt = LAMO
|

(*

fun

(*
(*

fun

LAM3 of ’a lam_alt * ’a

apply_lam_alt : ’a lam_alt * ’a list -> ’a list *)
apply_lam_alt (LAMO, ys)

= ys

apply_lam_alt (LAM3 (f, x), ys)

= apply_lam_alt (f, x :: ys)

reverse_def_alt : ’a list -> ’a list *)
walk : ’a list -> ’a lam_alt x*)
reverse_def_alt xs

= let fun walk nil
= LAMO
| walk (x :: xs)
= LAM3 (walk xs, Xx)
in apply_lam_alt (walk xs, nil)
end

As in Section 2.1, we can see that reverse_def_alt embeds its input list into the
data type lam_alt, homomorphically. The associated apply function could there-
fore be made to work directly on the input list. We also recognize apply_lam_alt
as an uncurried version of the fast reverse function with an accumulator.

12

Hughes also uses his representation of intermediate lists to define a ‘fields’
function that extracts words from strings. His representation gives rise to an
efficient implementation of the fields function. And indeed, as for reverse above,
defunctionalizing this implementation gives the fast implementation that accu-
mulates words in reverse order and reverses them using a fast reverse function
once the whole word has been found. Defunctionalization thus confirms the
effectiveness of Hughes’s representation.

2.3 Defunctionalizing Church-encoded non-recursive data structures

Church-encoding a value amounts to representing it by a A-term in such a way
that operations on this value are carried out by applying the representation to
specific A\-terms [3, 9, 24, 33].

A data structure is a sum in a domain. (When the data structure is induc-
tive, the domain is recursive.) A sum is defined by its corresponding injection
functions and a case dispatch [56, page 133]. Church-encoding a data structure
consists in (1) combining injection functions and case dispatch into A-terms and
(2) operating by function application.

In the rest of this section, for simplicity, we only consider Church-encoded
data structures that are uncurried. This way, we can defunctionalize them as a
whole.

For example, monotyped Church pairs and their selectors are defined as
follows.

(* Church_pair : ’a * ’a -> (Pa * ’a => ’a) -> ’a *)
fun Church_pair (x1, x2)
=fn s : ’a * ’a -> ’a => s (x1, x2)

(* Church_fst : ((’a * ’a -> ’a) => ’b) -> ’b *)
fun Church_fst p
=p (fn (x1, x2) => x1)

(x Church_snd : ((’a * ’a -> ’a) -> ’b) -> ’b %)
fun Church_snd p
=p (fn (x1, x2) => x2)

A pair is represented as a A-term expecting one argument. This argument is a
selector corresponding to the first or the second projection.

In general, each of the injection functions defining a data structure has the
following form.

inj; = A1, ..y Tn) A(S1, oy Sm)-Si (T1, -vy Tn)

So what happens if one defunctionalizes a Church-encoded data structure,
i.e., the result of the injection functions? Each injection function gives rise to a
data-type constructor whose arguments correspond to the free variables in the
term underlined just above. These free variables are precisely the parameters

13

of the injection functions, which are themselves the parameters of the original
constructors that were Church encoded.

Therefore defunctionalizing Church-encoded data structures (i.e., the result
of their injection functions) gives rise to the same data structures, prior to
Church encoding. These data structures are accessed through the auxiliary
apply functions introduced by defunctionalization.

For example, monotyped Church pairs and their selectors are defunctional-
ized as follows.

e The selectors are closed terms and therefore the corresponding construc-
tors are parameterless. By definition, a selector is passed a tuple of argu-
ments and returns one of them.

datatype sel = FST
| SND

(* apply_sel : sel * (’a * ’a) -> ’a %)
fun apply_sel (FST, (x1, x2))
= x1
| apply_sel (SND, (x1, x2))
= x2

e There is one injection function for pairs, and therefore it gives rise to a
data type with one constructor for the values of the two free variables of
the result of Church pair. The corresponding apply function performs a
selection. (N.B: apply_pair calls apply_sel, reflecting the curried type of
Church_pair.)

datatype ’a pair = PAIR of ’a * ’a

(* apply_pair : ’a pair * sel -> ’a %)
fun apply_pair (PAIR (x1, x2), s)
= apply_sel (s, (x1, x2))

e Finally, constructing a pair amounts to constructing a pair, a la Tarski one
could say [21], and selecting a component of a pair is achieved by calling
apply-pair, which in turns calls apply-_sel.

(* Church_pair_def : ’a * ’a -> ’a pair *)
fun Church_pair_def (x1, x2)
= PAIR (x1, x2)

(* Church_fst_def : ’a pair -> ’a *)
fun Church_fst_def p
= apply_pair (p, FST)

(* Church_snd_def : ’a pair -> ’a %)

fun Church_snd_def p
= apply_pair (p, SND)

14

An optimizing compiler would inline both apply functions. The resulting selec-
tors, together with the defunctionalized pair constructor, would then coincide
with the original definition of pairs, prior to Church encoding.

2.4 Defunctionalizing Church-encoded recursive data structures

Let us briefly consider Church-encoded binary trees. Two injection functions
occur: one for the leaves, and one for the nodes. A Church-encoded tree is a A-
term expecting two arguments. These arguments are the selectors corresponding
to whether the tree is a leaf or whether it is a node.

fun Church_leaf x
= fn (s1, s2) => s1 x

fun Church_node (t1, t2)
= fn (s1, s2) => s2 (t1 (s1, s2), t2 (s1, s2))

Due to the inductive nature of binary trees, Church-node propagates the selectors
to the subtrees.

In general, each of the injection functions defining a data structure has the
following form.

inj, = Mz1, ..,) A(S1, oy Sm)-Si (X1, oy Tj (81, vy Sm), woy Tn)

where z; (s1, ..., Sm) occurs for each x; that is in the data type.

So what happens if one defunctionalizes a Church-encoded recursive data
structure, i.e., the result of the injection functions? Again, each injection func-
tion gives rise to a data-type constructor whose arguments correspond to the free
variables in the term underlined just above. These free variables are precisely
the parameters of the injection functions, which are themselves the parameters
of the original constructors that were Church encoded.

Therefore defunctionalizing Church-encoded recursive data structures (i.e.,
the result of their injection functions) also gives rise to the same data struc-
tures, prior to Church encoding. These data structures are accessed through
the auxiliary apply functions introduced by defunctionalization.

Let us get back to Church-encoded binary trees. Since defunctionalization
is a whole-program transformation, we consider a whole program. Let us con-
sider the function computing the depth of a Church-encoded binary tree. This
function passes two selectors to its argument. The first is the constant function
returning 0, and accounting for the depth of a leaf. The second is a function
that will be applied to the depth of the subtrees of each node, and computes
the depth of the node by taking the max of the depths of the two subtrees and
adding one.

fun Church_depth t

=1t (fn x => 0,
fn (d1, d42) => 1 + Int.max (d1, d42))

15

This whole program is defunctionalized as follows.

e The selectors give rise to two constructors, SEL_LEAF and SEL_NODE, and the
corresponding two apply functions, apply_sel_leaf and apply_sel_node.

datatype sel_leaf = SEL_LEAF

fun apply_sel_leaf (SEL_LEAF, x)
=0

datatype sel_node = SEL_NODE

fun apply_sel_node (SEL_NODE, (di, d2))
= Int.max (d1, d2) + 1

e As for the injection functions, as noted above, they give rise to two con-
structors, LEAF and NODE, and the corresponding apply function.

datatype ’a tree = LEAF of ’a
| NODE of ’a tree * ’a tree

fun Church_leaf_def x
= LEAF x

fun Church_node_def (t1, t2)
= NODE (t1, t2)

e Finally, the defunctionalized main function applies its argument to the
two selectors.

(* depth_def : ’a tree -> int *)
(* apply_tree : ’a tree * (sel_leaf * sel_node) -> int *)
fun depth_def t
= apply_tree (t, (SEL_LEAF, SEL_NODE))
and apply_tree (LEAF x, (sel_leaf, sel_node))
= apply_sel_leaf (sel_leaf, x)
| apply_tree (NODE (t1, t2), (sel_leaf, sel_node))

= apply_sel_node (sel_node, (apply_tree (tl1, (sel_leaf, sel_node)),
apply_tree (t2, (sel_leaf, sel_node))))

Again, an optimizing compiler would inline both apply functions and SEL_LEAF
and SEL_NODE would then disappear. The result would thus coincide with the
original definition of binary trees, prior to Church encoding.

2.5 Church-encoding the result of defunctionalization

As can be easily verified with the Church pairs and the Church trees above,
Church-encoding the result of defunctionalizing a Church-encoded data struc-
ture gives back this Church-encoded data structure: the apply functions revert

16

to simple applications, the main data-structure constructors become injection
functions, and the auxiliary data-structure constructors become selectors.

In practice, however, one often inlines selectors during Church encoding if
they only occur once—which Shivers refers to as “super-beta” [46]. Doing so
yields an actual inverse to defunctionalization, as illustrated in Sections 4.1.3
and 4.2.3. This “refunctionalization” is also used, e.g., in Danvy, Grobauer, and
Rhiger’s work on goal-directed evaluation [13].

In Church-encoded data structures, selectors have the flavor of a continua-
tion. In Section 3, we consider how to defunctionalize continuations.

2.6 Summary and conclusion

We have considered a variety of typical higher-order programs and have de-
functionalized them. The resulting programs provide a first-order view that
reveals the effect of higher-orderness in functional programming. For example,
returning a function of type a — 3 often naturally provides a way to write
this function with an a-typed accumulator. For another example, defunction-
alizing uncurried Church-encoded data structures leads one back to these data
structures prior Church encoding, illustrating that Church encoding and de-
functionalization transform data flow into control flow and vice-versa.

3 Defunctionalization of CPS-Transformed First-Order Pro-
grams

As functional representations of control, continuations provide a natural target
for defunctionalization. In this section, we investigate the process of transform-
ing direct-style programs into continuation-passing style (CPS) programs [12,
49] and defunctionalizing their continuation. We then compare this process with
Wand’s continuation-based program-transformation strategies [54].

3.1 String parsing

We consider a recognizer for the language {0"1"™ | n € N}. We write it as
a function of type int list -> bool. The input is a list of integers, and the
recognizer checks whether it is the concatenation of a list of n 0’s and of a list
of n 1’s, for some n.

17

We start with a recursive-descent parser traversing the input list.

(* recO : int list -> bool *)
(* walk : int list -> int list *)
fun recO xs
= let exception NOT
fun walk (0 :: xs’)
= (case walk xs’
of 1 :: xs?’
=> xs’’
| _
=> raise NOT)

| walk xs
= xs
in (walk xs = nil) handle NOT => false

end

The auxiliary function walk traverses the input list. Every time it encounters
0, it calls itself recursively. When it meets something else than 0, it returns the
rest of the list, and expects to find 1 at every return. In case of mismatch (i.e.,
a list element other than 1 for returns, or a list that is too short or too long),
an exception is raised.

Let us write walk in continuation-passing style [12, 49].

(* recl : int list -> bool *)
(* walk : int list * (int list -> bool) -> bool *)
fun recl xs
= let fun walk (0 :: xs’, k)
= walk (xs’, fn (1 :: xs’?)

=> k xs’’
| _
=> false)
| walk (xs, k)
= k xs
in walk (xs, fn xs’ => xs’ = nil)

end

The auxiliary function walk traverses the input list tail-recursively (and thus
does not need any exception). If it meets something else than 0, it sends the
current list to the current continuation. If it encounters 0, it iterates down the
list with a new continuation. If the new continuation is sent a list starting with
1, it sends the tail of that list to the current continuation; otherwise, it returns
false. The initial continuation tests whether it is sent the empty list.

Let us defunctionalize rec1i. Two function abstractions occur: one for the
initial continuation and one for intermediate continuations.

datatype cont = CONTO
| CONT1 of cont

18

(x apply2 : (cont * int list) -> bool %)
fun apply2 (CONTO, xs’)
= xs’ = nil
| apply2 (CONT1 k, 1 :: xs’’)
= apply2 (k, xs’’)
| apply2 (CONT1 k, _)
= false

(* rec2 : int list -> bool *)
(* walk : int list * cont -> bool *)
fun rec2 xs
= let fun walk (0 :: xs’, k)
= walk (xs’, CONT1 k)
| walk (xs, k)
= apply2 (k, xs)
in walk (xs, CONTO)
end

We identify the result as implementing a push-down automaton [26]. This au-
tomaton has two states and one element in the stack alphabet. The two states
are represented by the two functions walk and apply2. The stack is implemented
by the data type cont. The transitions are the tail-recursive calls. This automa-
ton accepts an input if processing this input ends with an empty stack.

We also observe that cont implements Peano numbers. Let us replace them
with ML integers.

(* apply3 : (int * int list) -> bool *)
fun apply3 (0, xs’)
= xs’ = nil
| apply3 (k, 1 :: xs’’)
= apply3 (k-1, xs’’)

| apply3 (k, _)
= false
(* rec3 : int list -> bool *)

(* walk : int list * int -> bool %)
fun rec3 xs
= let fun walk (0 :: xs’, k)
= walk (xs’, k+1)
| walk (xs, k)
= apply3 (k, xs)
in walk (xs, 0)
end

The result is the usual iterative two-state recognizer with a counter.

In summary, we started from a first-order recursive version and we CPS-
transformed it, making it higher-order and thus defunctionalizable. We iden-
tified that the defunctionalized program implements a push-down automaton.
Noticing that the defunctionalized continuation implements Peano arithmetic,
we changed its representation to built-in integers and we identified that the
result is the usual iterative two-state recognizer with a counter.

19

3.2 Continuation-based program transformation strategies

Wand’s classical work on continuation-based program transformation [54] sug-
gests one (1) to CPS-transform a program; (2) to design a data-structure repre-
senting the continuation; and (3) to use this representation to improve the initial
program. We observe that in each of the examples mentioned in Wand’s article,
defunctionalization answers the challenge of finding a data structure represent-
ing the continuation—which is significant because finding such “data-structure
continuations” was one of the motivations of the work. Yet defunctionaliza-
tion is not considered in the textbooks and articles that refer to Wand’s article
and that we are aware of, which includes those found in the Research Index at
http://citeseer.nj.nec.com/.

Wand’s work is seminal in that it shows how detouring via CPS yields it-
erative programs with accumulators. In addition, Reynolds’s work shows how
defunctionalizing the continuation of CPS-transformed programs gives rise to
traditional, first-order accumulators.

We also observe that defunctionalized continuations account for the call /return
patterns of recursively defined functions. Therefore, as pointed out by Dijkstra
in the late 1950’s [16], they evolve in a stack-like fashion. A corollary of this re-
mark is that before defunctionalization, continuations are also used LIFO when
they result from the CPS transformation of a program that does not use control
operators [10, 11, 12, 14, 15, 39, 40, 49].

3.3 Summary and conclusion

Defunctionalizing a CPS-transformed first-order program provides a systematic
way to construct an iterative version of this program that uses a push-down
accumulator. One can then freely change the representation of this accumulator.

4 Two Syntactic Theories in the Light of Defunctionaliza-
tion

In this section, we present interpreters for two syntactic theories [19, 57]. One is
for simple arithmetic expressions and the other for the call-by-value A-calculus.
We observe that both of these interpreters correspond to the output of de-
functionalization. We then present the corresponding higher-order interpreters,
which are in continuation-passing style. In each interpreter, the continuation
represents the evaluation context of the corresponding syntactic theory.

4.1 Arithmetic expressions

We consider a simplified language of arithmetic expressions. An arithmetic
expression is either a value (a literal) or a computation. A computation is
either an addition or a conditional expression testing whether its first argument
is zero.

e = n|e+te | IFZeece

20

4.1.1 A syntactic theory for arithmetic expressions

A syntactic theory provides a reduction relation on expressions by defining val-
ues, evaluation contexts, and redexes [19].
The values are literals, and the evaluation contexts are defined as follows.

E = [l [Elll+e [E+[] | ElFz[]ee]

Plugging an expression e into a context E, written E[e], is defined as follows.

[Dle] = e
(E[[]+€le] = Ele+¢]
(Elv+[Dle] = Elv+¢

(E[¥z [e1 ea))e] = E[Fz e e; e

The reduction relation is then defined by the following rules, where the
expressions plugged into the context on the left-hand side are called redexes.

E[ny +ng3] — Ens] where ng is the sum of ny and ns
EiFz0ey e3] — Eleq]
E[IFznes es] — FEles] ifn#0

These definitions satisfy a “unique decomposition” lemma [19, 57]: any ex-
pression, e, that is not a value can be uniquely decomposed into an evaluation
context, E, and a redex, r, such that e = E[r].

4.1.2 Implementation

Arithmetic expressions are defined with the following data type.

datatype aexp = VAL of int (* trivial terms *)
COMP of comp (* serious terms *)

and comp = ADD of aexp * aexp

|
| IFZ of aexp * aexp * aexp

In aexp, we distinguish between trivial terms, i.e., values (literals) and serious
terms, i.e., computations (additions and conditional expressions), as traditional.
Evaluation contexts are defined with the following data type.

datatype evalcont = EMPTY

| ADD1 of evalcont * aexp
| ADD2 of evalcont * int
|

IFZ0 of evalcont * aexp * aexp

The corresponding plugging function reads as follows.

21

(x plug : evalcont * aexp -> aexp *)
fun plug (EMPTY, ae)
= ae
| plug (ADD1 (ec, ae2), ael)
= plug (ec, COMP (ADD (ael, ae2)))
| plug (ADD2 (ec, il), ae2)
= plug (ec, COMP (ADD (VAL i1, ae2)))
| plug (IFZO (ec, ael, ae2), ael)
= plug (ec, COMP (IFZ (ae0, ael, ae2)))

A computation undergoes a reduction step when (1) it is decomposed into a
redex and its context, (2) the redex is contracted, and (3) the result is plugged
into the context.

(* reducel : comp * evalcont -> aexp *)
fun reducel (ADD (VAL il, VAL i2), ec)
= plug (ec, VAL (i1+i2))
| reducel (ADD (VAL i1, COMP s2), ec)
= reducel (s2, ADD2 (ec, il))
| reducel (ADD (COMP si, ae2), ec)
= reducel (s1, ADD1 (ec, ae2))
| reducel (IFZ (VAL O, ael, ae2), ec)
= plug (ec, ael)
| reducel (IFZ (VAL i, ael, ae2), ec)
= plug (ec, ae2)
| reducel (IFZ (COMP sO, ael, ae2), ec)
= reducel (s0, IFZO (ec, ael, ae2))

Evaluation is specified by repeatedly performing a reduction until a value is
obtained.

(x eval : ae -> int *)
fun eval (VAL i)
=i
| eval (COMP s)
= eval (reducel (s, EMPTY))

4.1.3 Refunctionalization

We observe that the interpreter of Section 4.1.2 precisely corresponds to the out-
put of defunctionalization: plug is the apply function of ec. The corresponding
input to defunctionalization thus reads as follows.

22

(x reducel : comp * (aexp -> int) -> int *)
fun reducel (ADD (VAL il, VAL i2), ec)
= ec (VAL (i1+i2))
| reducel (ADD (VAL i1, COMP s2), ec)
= reducel (s2, fn ae2 => ec (COMP (ADD (VAL i1, ae2))))
| reducel (ADD (COMP sl1, ae2), ec)
= reducel (s1, fn ael => ec (COMP (ADD (ael, ae2))))
| reducel (IFZ (VAL 0, ael, ae2), ec)
= ec ael
| reducel (IFZ (VAL i, ael, ae2), ec)
= ec ae2
| reducel (IFZ (COMP sO, ael, ae2), ec)
= reducel (s0, fn ae0 => ec (COMP (IFZ (ae0, ael, ae2))))

(x eval : ae -> int *)
fun eval (VAL i)
=i
| eval (COMP s)
= eval (reducel (s, fn e => e))

We observe that reducel is written in continuation-passing style. Its contin-
uation therefore represents the evaluation context of the syntactic theory.

4.1.4 Back to direct style

In Section 4.1.3, since reducel uses its continuation canonically, it can be mapped
back to direct style [10, 14]. The result reads as follows.

(* reducel : comp -> aexp *)
fun reducel (ADD (VAL i1, VAL i2))
= VAL (i1+i2)
| reducel (ADD (VAL i1, COMP s2))
= COMP (ADD (VAL i1, reducel s2))
| reducel (ADD (COMP s1, ae2))
= COMP (ADD (reducel s1, ae2))
| reducel (IFZ (VAL 0, ael, ae2))
= ael
| reducel (IFZ (VAL i, ael, ae2))
= ae2
| reducel (IFZ (COMP sO, ael, ae2))
= COMP (IFZ (reducel sO, ael, ae2))

(x eval : ae -> int *)
fun eval (VAL i)
=i
| eval (COMP s)
= eval (reducel s)

The resulting direct-style interpreter represents evaluation contexts implicitly.

23

4.2 The call-by-value A-calculus

We now present a syntactic theory for the call-by-value A-calculus, and its im-
plementation.

4.2.1 A syntactic theory for the call-by-value A-calculus

We consider the call-by-value A-calculus. A A-expression is either a value (an
identifier or a A-abstraction) or a computation. A computation is always an
application.

e == x| Are| ee
v ou= x| Awe
E o= (]| Ellle | E[]]

Plugging an expression e into a context F is defined as follows.
([Dle] = e
(El[]ele] = Elee]
(Elv [IDle] = Efve]
Any application of values, v vo, is called a redex, although not all of them

actually reduce to anything. Only f-redexes do; the others are stuck.
The reduction relation is then defined by the following rule.

E[(Az.e)v] — Ele[v/z]]

These definitions also satisfy a “unique decomposition” lemma, allowing us
to implement the one-step reduction relation as a function.

4.2.2 Implementation

The A-calculus is defined with the following data type, where we distinguish
between values and computations.

VAL of value (* trivial terms *)
COMP of comp (* serious terms *)

datatype term =
I

and value = VAR of string
|

LAM of string * term

and comp = APP of term * term

In term, we distinguish between trivial terms, i.e., values (variables and -
abstractions) and serious terms, i.e., computations (applications), as traditional.
We also need a substitution function of the following type:

val subst : term * value * string -> term

Evaluation contexts are defined with the following data type.

24

= EMPTY
| APP1 of evalcont * term
| APP2 of evalcont * value

datatype evalcont

The corresponding plugging function reads as follows.

(x plug : evalcont * term -> term *)
fun plug (EMPTY, e)
=e
| plug (APP1 (ec, e’), e)
= plug (ec, COMP (APP (e, e’)))
| plug (APP2 (x, t), e)
= plug (x, COMP (APP (VAL t, e)))

A computation undergoes a reduction step when (1) it is decomposed into a
redex and its context, (2) the redex is contracted, if possible, and (3) the result
is plugged into the context. We therefore use an option type to account for the
possibility in (2).

datatype ’a option = NONE
| SOME of ’a

(* reducel : comp * evalcont -> term option *)
fun reducel (APP (VAL (LAM (x, e)), VAL t), ec)
= SOME (plug (ec, subst (e, t, x)))
| reducel (s as APP (VAL (VAR x), VAL t), ec)
= NONE
| reducel (APP (VAL t, COMP s), ec)
= reducel (s, APP2 (ec, t))
| reducel (APP (COMP s, e), ec)
= reducel (s, APP1 (ec, e))

Again, evaluation is specified by repeatedly performing a reduction until a
value, if any, is obtained. We use an option type to account for stuck terms.

(* eval : term -> value option *)
fun eval (VAL t)
= SOME t
| eval (COMP s)
= (case reducel (s, EMPTY)
of SOME e => eval e
| NONE => NONE)

There are two ways of not obtaining a value: evaluating a stuck term and
evaluating a diverging term (eval then does not terminate).
4.2.3 Refunctionalization

Again, we observe that the program above precisely corresponds to the output
of defunctionalization with plug as the apply function of ec. The corresponding
input to defunctionalization thus reads as follows.

25

(x reducel : comp * (term -> term option) -> term option *)
fun reducel (APP (VAL (LAM (x, e)), VAL t), ec)
= ec (subst (e, t, x))
| reducel (s as APP (VAL (VAR x), VAL t), ec)
= NONE
| reducel (APP (VAL t, COMP s), ec)
= reducel (s, fn e => ec (COMP (APP (VAL t, e))))
| reducel (APP (COMP s, e), ec)
= reducel (s, fn e’ => ec (COMP (APP (e’, e))))

(* eval : term -> value option *)
fun eval (VAL t)
= SOME t
| eval (COMP s)
= (case reducel (s, fn e => SOME e)
of SOME e => eval e
| NONE => NONE)

We observe that reducel is again written in continuation-passing style. Its
continuation therefore represents the evaluation context of the syntactic theory.

4.2.4 Back to direct style

Since reducel uses its continuation canonically, it can be mapped back to direct
style, using a local exception for stuck terms. The direct-style version of reduce1
reads as follows.

exception STUCK

(* reducel : comp -> term *)
fun reducel (APP (VAL (LAM (x, e)), VAL t))
= subst (e, t, x)
| reducel (s as APP (VAL (VAR x), VAL t))
= raise STUCK
| reducel (APP (VAL t, COMP s))
= COMP (APP (VAL t, reducel s))
| reducel (APP (COMP s, e))
= COMP (APP (reducel s, e))

(* eval : term -> value option *)
fun eval (VAL t)
= SOME t
| eval (COMP s)
= eval (reducel s)
handle STUCK => NONE

The result is a direct-style interpreter with an implicit representation of
evaluation contexts, just as for arithmetic expressions.

26

4.3 Summary and conclusion

We have considered two interpreters for syntactic theories, and we have observed
that the evaluation contexts and their plugging function are the defunctionalized
counterparts of continuations. This observation has led us to implement both
interpreters in direct style. (In that sense, Sections 3 and 4 are symmetric, since
Section 3 starts with a direct-style program and ends with a defunctionalized
CPS program.) This observation also suggests how to automatically obtain a
grammar of evaluation contexts out of the BNF of a language: defunctionalize
the CPS counterpart of a recursive descent over this BNF (e.g., a one-step re-
duction function). The data type representing the continuation is isomorphic to
the desired grammar, and the apply function is the corresponding plug function.

In general, evaluation contexts are specified so that a context can easily
be extended to the left or to the right with an elementary context. For the
call-by-value A-calculus, the two specifications read as follows:

E = []| Ee|vE
E =[] | Ellle] | Elv[]]

Or again, written using an explicit composition operator o (satisfying (E; o
E)[e] = Er[Exle]]):

E u= [l [[[JeJoE | [v[]loE
E u= [l Ec[[le | Eolv[]]

Since all evaluation contexts can be constructed by composing elementary con-
texts and since composition is associative, the two specifications define effec-
tively the same contexts. Only their representations differ. With the first repre-
sentation, an evaluation context is isomorphic to a list of elementary contexts.
With the second representation, the same evaluation context is isomorphic to
the reversed list.

Therefore, with the first representation, plugging an expression in a context
is recursively carried out by a right fold over the context,! and with the second
representation, plugging an expression in a context is iteratively carried out
by a left fold over the context.?2 The latter is implicitly what we have done in
Sections 4.1.2 and 4.2.2. In that light, let us reconsider the observation above on
how to automatically obtain a grammar of evaluation contexts out of the BNF
of a language. We can see that the resulting grammar is of the second kind and
that the associated plug/apply function is iterative, which is characteristic of a
left fold.

Let us get back to the first representation for arithmetic expressions and for
the call-by-value A-calculus. The unstated BNF for arithmetic expressions reads
as follows.

E = []| E4e|v+E | FzFEece

'Reminder: foldr f b [z1, 22, ..., zn] = f(z1, f(z2, ..., f(Tn, b)...)).
2Reminder: foldl f b [zn, ..., 2, x1] = f(z1, f(x2, "y f(T0, b)...)).

27

In the two interpreters, decomposition produces an evaluation context and plug-
ging consumes it. We observe that deforesting this combination of decomposi-
tion and plugging yields the same direct-style interpreters as the ones obtained
in Sections 4.1.4 and 4.2.4.

One may also wonder how the various representations of evaluation contexts
in a syntactic theory—i.e., as data types and as functions—influence reasoning
about programs. In the next section, we compare two correctness proofs of a
program, before and after defunctionalization.

5 A Comparison between Correctness Proofs before and
after Defunctionalization: Matching Regular Expres-
sions

We consider a traditional continuation-based matcher for regular expressions [26],
we defunctionalize it, and we compare and contrast its correctness proof before
and after defunctionalization. To this end, Section 5.1 briefly reviews reg-
ular expressions and the languages they represent; Section 5.2 presents the
continuation-based matcher, which is higher-order, and its defunctionalized
counterpart; and Section 5.3 compares and contrasts their correctness proofs.

5.1 Regular expressions

The grammar for regular expressions, r,
sponding language, L(r), are as follows.

over the alphabet ¥ and the corre-

r o= 0 L£0) = 0
|1 L£(1) = {e}
| ¢ L(c) = {c} wherece X
| rr L(rire) = L(r1)L(r2)
| r+r L(ri+re) = L(r1) UL(r2) .
| L) = L) =Uie, (L)’

We represent strings as lists of ML characters, and regular expressions as ele-
ments of the following ML datatype.

datatype regexp = ZERO
| ONE

| CHAR of char
| CAT of regexp * regexp
| SUM of regexp * regexp
|

STAR of regexp

We define the corresponding notion of “the language of a regular expression” as
follows.

L(zero) = {} L(CAT(r1, r2)) = L(r1)L(x2)
L(oNE) = {nil} L(sumM(rl, r2)) = L(r1)UL(x2)
L(CHAR ¢) =][]} L(STAR r) = J;e(L(x))

28

(* accept : regexp * char list * (char list -> bool) -> bool *)
(* accept_star : regexp * char list * (char list -> bool) -> bool *)
fun accept (r, s, k)
= (case r of ZERO
=> false
| ONE
=> k s
| CHAR c
=> (case s of (c’::s8’)
=> ¢ = ¢’ andalso k s’

| nil
=> false)
| CAT (r1, r2)
=> accept (rl, s, fn s’ => accept (r2, s’, k))
| SUM (r1, r2)
=> accept (r1l, s, k) orelse accept (r2, s, k)
| STAR r’

=> accept_star (r’, s, k))
and accept_star (r, s, k)
=k s
orelse accept (r, s, fn s’ => not (s = s’)
andalso accept_star (r, s’, k))

(* match : regexp * char list -> bool %)
fun match (r, s)
= accept (r, s, fn s’ => s’ = nil)

Figure 1: Higher-order, continuation-based matcher for regular expressions

The concatenation of languages is defined as L1 Lo = {x@y | x € L1 Ay € Lo},
where we use the append function (noted e as in ML) to concatenate strings.

5.2 The two matchers

Our reference matcher for regular expressions is higher-order (Figure 1). We
then present its defunctionalized counterpart (Figure 2).

5.2.1 The higher-order matcher

Figure 1 displays our reference matcher, which is compositional and continuation-
based. Compositional: all recursive calls to accept operate on a proper subpart
of the regular-expression under consideration. And continuation-based: the
control flow of the matcher is driven by continuations.

The main function is match. It is given a regular expression and a list of
characters, and calls accept with the regular expression, the list, and an initial
continuation expecting a list of characters and testing whether this list is empty.

29

The accept function recursively descends its input regular expression, thread-
ing the list of characters.

The accept_star function is a lambda-lifted version of a recursive continua-
tion defined locally in the STAR branch. (The situation is exactly the same as in
a compositional interpreter for an imperative language with while loops, where
one writes an auxiliary recursive function to interpret loops.) This recursive
continuation checks that matching has progressed in the string.

Recently, Harper has published a similar matcher to illustrate “proof-directed
debugging” [25]. Playfully, he considered a non-compositional matcher that does
not check progress when matching a Kleene star. His article shows (1) how one
stumbles on the non-compositional part when attempting a proof by structural
induction; and (2) how one realizes that the matcher diverges for pathologi-
cal regular expressions such as STAR ONE. Harper then (1) makes his matcher
compositional and (2) normalizes regular expressions to exclude pathological
regular expressions. Instead, we start from a compositional matcher and we
include a progress test in accept_star, which lets us handle pathological regular
expressions.

5.2.2 The first-order matcher

Defunctionalizing the matcher of Figure 1 yields a data type representing the
continuations and its associated apply function.

The data type represents a stack of regular expressions (possibly with a side
condition for the test in Kleene stars). The apply function merely pops the top
element off this stack and tries to match it against the rest of the string. We thus
name the data type “regexp_stack” and the apply function “pop-and_accept”.
We also give a meaningful name to the datatype constructors. Figure 2 displays
the result.

5.3 The two correctness proofs

We give a correctness proof of both the higher-order version and the first-order
version, and we investigate whether each proof can be converted to a proof for
the other version.

The correctness criterion we choose is simply that for all regular expressions
r and strings s (represented by a list of characters),

evaluating match (r, s) terminates, and
match (r, s) ~ true < s € L(r)

When writing match (r, s) ~» true, we mean that evaluating match (r, s)
terminates and yields the result true. We also reason about ML programs
equationally, writing e = ¢’ if e and ¢’ are defined to be equal, e.g., by a
function definition. If e = €’ then e and ¢’ evaluate to the same value, if any, so
e~ v < e~ v. We write e = ¢/ on ML expressions only if they represent the
same value.

30

datatype regexp_stack

(*
(*
(*

fun

(*

fun

= EMPTY
| ACCEPT of regexp * regexp_stack
| ACCEPT_STAR of char list * regexp * regexp_stack]

accept_def : regexp * char list * regexp_stack -> bool %)
accept_star_def : regexp * char list * regexp_stack -> bool %)
pop_and_accept : regexp_stack * char list *)
accept_def (r, s, k)
= (case r of ZERO
=> false
| ONE
=> pop_and_accept (k, s)
| CHAR c
=> (case s of (c’::s?)
=>c=c’
andalso pop_and_accept (k, s’)
| nil
=> false)
| CAT (r1, r2)
=> accept_def (rl, s, ACCEPT (r2, k))
| SUM (r1, r2)
=> accept_def (rl, s, k) orelse accept_def (r2, s, k)
| STAR r’

=> accept_star_def (r’, s, k))

accept_star_def (r, s, k)
= pop_and_accept (k, s)

orelse accept_def (r, s, ACCEPT_STAR (s, r, k))
pop_and_accept (EMPTY, s’)
= s’ = nil
pop_and_accept (ACCEPT (r2, k), s’)
= accept_def (r2, s’, k)
pop_and_accept (ACCEPT_STAR (s, r, k), s’)
= not (s = s’)

andalso accept_star_def (r, s’, k)

match : regexp * char list -> bool *)
match (r, s)
= accept_def (r, s, EMPTY)

Figure 2: First-order, stack-based matcher for regular expressions

31

5.3.1 Correctness proof of the higher-order matcher

Since match (r, s) = accept (r, s, fn s’ => s’ = nil), by definition, it is
sufficient to prove that for s and r as above, and for any function from lists of
characters to booleans terminating on all suffixes of s, denoted by k,

evaluating accept (r, s, k) terminates, and
accept (r, s, k) ~ true < s € L(r)L(k)

where we define the language of a “string-acceptor” k as the set {s | k s ~» true}.
The proof is by structural induction on the regular expression. In the case
where r = STAR r’, a subproof shows that the following holds for any string.

evaluating accept_star (r’, s, k) terminates, and
accept._star (r’, s, k) ~>true < s € L(r’)*L(k)

The subproof is by well-founded induction on the structure of the string (suffixes
are smaller) for the “«<” direction, and by mathematical induction on the nat-
ural number n such that s € L£(x’)"L(k) for the “=" direction. Both subproofs
use the outer induction hypothesis for accept (r’, s, k). (See Appendix A.)

We can transfer this proof to the defunctionalized version. Since k s trans-
lates to pop_and.accept (k, s), we define L(k) to read {s | pop_and.accept
(k, s) ~ true}. The proof then goes through in exactly the same format.

5.3.2 Correctness proof of the first-order matcher

Alternatively, if we were to prove the correctness of the first-order matcher di-
rectly, we would be less inclined to recognize the stack k as representing a func-
tion. Instead, we could easily end up proving the following three propositions
by mutual induction.

Py(r,s,k) def accept (r, s, k) ~» true & s € L(r)L(k)
def

Py(x,s) = pop-and.accept (k, s) ~ true < s € L(k)
Ps(r, s,k) def accept.star (r, s, k) ~> true < s € L(r)*L(k)

where we define the language of a stack of regular expressions as follows.

L(EMPTY) = {nil}
L(ACCEPT (r, k) = L(r)L(k)
L(ACCEPT_STAR (s, r, k)) = (L(r)*L(k))\ {s}

For brevity we ignore the termination part of the proof and assume that all
the functions are total. We prove, by well-founded induction on the propositions
themselves, that Py, P>, and P5 hold for any choices of s, r, and k. The ordering
is an intricate mapping into w X w, ordered lexicographically so that the proof
of a proposition only depends on “smaller” propositions. (See Appendix B.)

32

This proof is more convoluted than the higher-order one for two reasons:

1. it separates the language of the continuation from the function that matches
it, so one has to check whether the function really matches the correct lan-
guage; and

2. it combines the two nested inductions of the higher-order proof into one
well-founded induction.

Still this proof reveals a property of the continuations in the higher-order version,
namely that there are at most three different kinds of continuations in use,
something that cannot be seen from the type of the continuation—a full function
space.

We could thus define a subset of this function space inductively, so that it
only contains the functions that can be generated by the three abstractions.
The first-order proof could then be extended to the higher-order program by
assuming everywhere that the continuation k lies in this subset and showing
that newly generated continuations do too. In effect, the set of continuations
is partitioned into disjoint subsets, just as the first-order datatype represents a
sum, and then we can prove something about elements in each part.

5.4 Comparison between the two correctness proofs

The proof of correctness of the first-order matcher directly uses the fact that the
inductively defined data type representing continuations is a sum. Given a value
of this type, we can reason by inversion and do a proof by cases. We show that
a proposition holds for each of the three possible summands, and we conclude
that the proposition must hold for any value of that type. This is reminiscent
of defunctionalization, where in an entire program, the functions occupying a
function space are exactly those originating from the function abstractions in
the program, which can be represented by a finite sum.

We can translate the proof of the first-order matcher directly into a proof
of the higher-order matcher. The resulting proof uses global reasoning, namely
that all the used functions arise from only finitely many function abstractions,?
and furthermore that these function abstractions inductively define a subset of
the function space. We change the induction hypothesis to assume that the
functions are taken from that subset. When instantiating a function abstrac-
tion, we must show that the result belongs to the subset—which follows from the
assumptions on the free variables—allowing us to use the induction hypothesis
on this new function. When using a function, we can then reason by inversion
and do a proof by cases to show a property of this function. Each case corre-
sponds to an abstraction that can have created this function. We show that a
proposition holds for each of the three possible function abstractions, and we
conclude that the proposition must hold for the function.

The proof of correctness of the higher-order matcher uses local reasoning
instead. We do not assume that the functions lie in the exact subset of the

3Such global reasoning is the one enabled by control-flow analysis [46].

33

function space that is generated by the function abstractions. Instead, we as-
sume the weaker property that given a string, the function terminates on all
suffixes of that string. This assumption is sufficient to complete the proof.

We can translate the proof of the higher-order matcher directly into a proof
of the first-order matcher by replacing function abstractions with datatype con-
structors and applications with calls to the apply function. The resulting proof
uses local reasoning, namely that all the defined functions satisfy a property.
The property that the function k terminates on all suffixes of the current string
is translated to the property that pop_and_accept (k, s’) terminates if s’ is a
suffix of the current string. This assumption is then propagated to the calls to
pop-and_accept.

Therefore, the two proofs differ where the inductive reasoning occurs:

e in the first-order case, the inductive reasoning about a data-type value is
carried out at the use point; in contrast, no reasoning takes place where
the data-type value is defined; and

e in the higher-order case, the inductive reasoning about a function value is
carried out at the definition point; in contrast, no reasoning takes place
where the function value is used.

This difference is emphasized by the translations between the proofs. It orig-
inates from the different handlings of recursion in the two matchers. In the
first-order case, recursion is handled in the case dispatch where the values are
used. In the higher-order case, recursion is handled in a function abstraction,
which is only available to reason upon where the function is defined.

5.5 Summary and conclusion

We have considered a matcher for regular expressions, both in higher-order
form and in first-order form, and we have compared them and their correctness
proof. The difference between the function-based and the datatype-based rep-
resentation of continuations is reminiscent of the concept of ‘junk’ in algebraic
semantics [22]. One representation is a full function space where many elements
do not correspond to an actual continuation, and the other representation only
contains elements corresponding to actual continuations. This difference finds
an echo in the correctness proofs of the two matchers, as analyzed in Section 5.4.

More generally, this section also illustrates that defunctionalizing a func-
tional interpreter for a backtracking language that uses success continuations
yields a recursive interpreter with one stack [13, 31, 41]. Similarly, defunction-
alizing a functional interpreter that uses success and failure continuations yields
an iterative interpreter with two stacks [13, 34].

34

6 Conclusions and Issues

Reynolds’s defunctionalization technique connects the world of higher-order pro-
grams and the world of first-order programs. In this article, we have illustrated
this connection by considering a variety of situations where defunctionalization
proves fruitful in a declarative setting.

Higher-order functions provide a convenient support for specifying and for
transforming programs. As we have shown, defunctionalization can lead to
more concrete specifications, e.g., that use first-order accumulators. And as
we have seen with Wand’s continuation-based program-transformation strate-
gies, defunctionalization can automate eureka steps to represent data-structure
continuations.

Conversely, defunctionalization also increases one’s awareness that some
first-order programs naturally correspond to other, higher-order, programs. For
example, we have seen that the evaluation contexts of a syntactic theory corre-
spond to continuations. For another example, functional interpreters for back-
tracking languages are variously specified with one or two control stacks and with
one or two continuations, but these specifications are not disconnected, since
defunctionalizing the continuation-based interpreters yields the corresponding
stack-based ones. On a related note, CPS-transforming an interpreter with one
continuation is already known to automatically yield an interpreter with two
continuations [12]. We are, however, not aware of a similar transformation for
their stack-based counterparts.

We also have compared and contrasted the correctness proofs of a program,
before and after defunctionalization. We have found that while the first-order
and the higher-order programming methods suggest different proof methods,
each of the proofs can be adapted to fit the other version of the program.

Finally, we have pointed out at the type-theoretical foundations of defunc-
tionalization.

Acknowledgments: Andrzej Filinski and David Toman provided most timely
comments on an earlier version of this article. This article has also benefited
from Daniel Damian, Julia Lawall, Karoline Malmkjzer, and Morten Rhiger’s
comments, from John Reynolds’s encouraging words, and from the attention of
the PPDP’01 anonymous reviewers.

This work is supported by the ESPRIT Working Group APPSEM (http:
//www.md.chalmers.se/Cs/Research/Semantics/APPSEM/).

35

A Correctness Proof of the Higher-Order Matcher

To prove the correctness criterion given in Section 5.3.1, it suffices to prove the
following property for all regular expressions, r, strings, s, and functions from
strings (i.e., lists of characters) to booleans, k, that terminate on all suffixes of
s:

evaluating accept(r,s,k) terminates, and

accept (r,s,k) ~ true & s € L(r)L(k)

where we define the language of a string-acceptor, k, by L(k) = {s | k(s) ~ true}.
The proof is by structural induction on the regular expression r. In each
case let k and s be given such that evaluating k terminates on all suffixes of s.

case r = ZERO : Evaluating accept(r,s,k) terminates, since it evaluates imme-
diately to false.

The equivalence holds since both sides of the bi-implication are false, one
because accept (r,s,k) ~ false and the other because L(r) = 0.

case r = ONE : Evaluating accept(r,s,k) terminates, since k terminates on any
suffix of s, including s itself.

Also, accept(ONE,s,k) = k(s) ~ true is, by definition, equivalent to s €
L(x), and L(r)L(kx) = L(k).

case r = CHAR c : Evaluating accept(r,s,k) terminates since either it yields
false immediately, or it calls k with a suffix of s.
If (and only if) s € L(CHAR ¢)L(x) = {[c]} L(k) then there is a s’ such
that s=c:: s’ and s’ € L(k).
By definition, s’ € L(k) is equivalent to k(s’) ~> true, and s = ¢ :: s’ and
k(s’) ~> true are exactly the conditions under which accept(r,s,k) ~
true.

case r = SUM(r1,r2) : Evaluating accept (r,s,k) terminates since accept (r1,s,k)
and accept (r2,s,k) are both known to terminate from the induction hy-
pothesis.
The condition s € L(r)L(k) is equivalent to s € L(r1)L(k)Vs € L(xr2)L (k).
By induction hypothesis, s € £(r1)L(k) < accept(rl,s,k) ~» true and
s € L(r2)L(k) < accept(r2,s,k) ~ true, and both applications of accept
terminate. Together these conditions imply

accept(rl,s,k) orelse accept(r2,s,k) ~~ true
which is equivalent to accept(r,s,k) ~~ true.

case r = CAT(r1,r2) : Evaluating accept(r,s,k) terminates, since when s’ is a
suffix of s, the induction hypothesis tells us that evaluating accept (r2,s’ ,k)
terminates (k terminates for all suffixes of s’ since they are also suffixes
of s). Therefore the function fn s’=>accept(r2,s’,k) terminates on all

36

suffixes of s. In this case, the induction hypothesis tells us that evaluating
accept(rl,s,fn s=>...) terminates.

Also, s € L(r)L(k) is equivalent to s € L(r1)L(r2)L(k) (language concate-
nation associates).

Let ¥/ = fn s’=>accept(r2,s’,k). Then, by induction hypothesis, k" ter-
minates for arguments that are suffixes of s since k does, and k(s’) ~> true
iff accept(xr2,s’,k) ~» true, which by induction hypothesis is exactly if
s’ € L(r2)L(k) holds. Also by induction hypothesis, s € L(xr1)L(k") ~
L(r1)L(r2)L(k) < accept(rl,s,k’) ~» true which holds exactly when
accept(r,s,k) ~> true holds.

case r = STAR(r1) : In this case s € L(r)L(k) is equivalent to s € L£(r1)*L(k),
and accept(r,s,k) ~> true is equivalent to accept_star(rl,s,k) ~- true.
Thus, we want to show that

evaluating accept_star(ri,s,k) terminates, and
s € L(r1)*L(k) & accept_star(rl,s,k) ~> true

We show this by showing the implication both ways.

The = direction: We want to show that (for all strings s)
s € L(r1)*L(k) = accept_star(rl,s,k) ~> true
To do this we show the equivalent
(In.s € L(r1)"L(k)) = accept_star(rl,s,k) ~> true
by course-of-values induction on n.

o If n =0 then s € £(r1)°L(k) = L(k). In that case k(s) ~ true, s0
accept_star(rl,s,k) ~~ true.

o If n> 0 and s € L(r1)"L(k), then either n is minimal such that the
property holds, or there is a m < n such that s € L£(r1)™L(k).
If there is such an m then the induction hypothesis tells us immedi-
ately that accept_star(rl,s,k) ~> true.
If n is minimal, then we know that s & L(x), so k(s) ~> false since
it is assumed to terminate. Also, there exists z and y such that
s~ 2@y, x € L(r1)", and y € L(k). Since L(r1)" = L(r1)L(r1)" 1,
we can again split z into z = x1Qzo where z1 € L(r1) and zo €
L(r1)"~1. Since n was minimal, we know that ¢ L(r1)"~1, so 21
is not the empty string.
Then 22@Qy € L(r1)" *L(k), so from the induction hypothesis we
derive accept_star(rl,z.@y,k) ~~ true, and since x; was not the
empty string, xoQy # s. If we let

k' = fn s’=>not (s=s’) andalso accept_star(rl,s’,k)

37

then x2@Qy € L(k'), and so by the original induction hypothesis,
accept(rl,s,k’) ~» true, which means that accept_star(rl,s,k) ~
true.

Termination and the < direction: The proof for this case is by well-
founded induction on the structure of s, in the ordering where a string

is greater than or equal to its suffixes (and strictly greater than a proper
suffix).

Evaluating accept_star(rl,s,k) terminates, since both k(s) terminates
by assumption about k, and for any proper suffix of s’, the induction hy-
pothesis tells us that evaluating accept_star(ri,s’,k) terminates, so the
function (fn s’=> not (s=s’) andalso accept_star(rl,s’,k)) terminates
on all suffixes of s, so the outer induction hypothesis tells us that evalu-
ating accept(rl,s,fn s’=>...) terminates.

Assume accept_star(ril,s,k) ~> true. This means that either

® k(s) ~~ true, in which case s € L(k) C L(STAR(r1))L(k), or

e k(s) ~ false and accept(rl,s,fn s’=>...) = true. Let k£’ denote
k' = fn s’=>not (s=s’) andalso accept_star(ril,s’,k)

Then k' terminates on all suffixes of s. On s itself it evaluates to false
(comparing lists always terminates), and on all proper suffixes, s, the
induction hypothesis tells us that evaluating accept_star(ri,s’,k)
terminates.

In this case the structural induction hypothesis tells us that s €
L) LK),

By definition this means that there exists x and y such that s = @y,
x € L(r1), and y € L(k¥') (i.e., both not(s=y) ~» true and also
accept_star(rl,y,k) ~~ true).

Therefore y # s, so y is a proper suffix of s (and x is not the empty
string). In that case the well-founded induction hypothesis gives us
that y € L(r1)*L(k), so we have shown

s =2zQy e L(r1)L(r1)"L(k) C L(r1)"L(k).

QED

38

B Correctness Proof of the First-Order Matcher

To prove the correctness criterion given in Section 5.3.2,

Pi(z,s,k) def accept(r,s,k) ~ true & s € L(r)L(k)

Py(x,s) def pop-and_accept (k,s) ~» true < s € L(k)
Ps(r,s,k) et accept_star(r,s,k) ~ true < s € L(r)*L(k)

by mutual well-founded induction, we give a measure on each proposition such
that each case of the proof only depends on strictly smaller propositions. The
measure of the propositions are given as pairs of natural numbers, ordered lex-
icographically.

[Pi(x,s,6)] = (Is], [zljs) + [xlj5))
(P2 (x,8)] = (sl [x]g))
[P3(x;s,%)| = (Is], |zlig| (3 [s] +2) + [x]|5))
where |s| = length(s)
|ZERO|, = 1
N[, = 1
|CHAR(c) |, = 1
|suM(r1,r2)|, = |ri, +]r2],
|CAT(r1,r2)|, = |r1, +|r2[, +2
ISTAR(D) |, = (3n+2)|r|,
|EMPTY|, = 0
|ACCEPT(r,k)|, = |r|,+ k|, +1

|ACCEPT_STAR(s,,K) |, = |7lmin(nr1)sis) T [Eln

The cases of the proof are:

Pi(r,s,k):

e If r = ZERO then accept(r,s,k) ~» true does not hold, and neither does
s € L(zERD)L(k) = (), so the bi-implication holds.

e If r = ONE then accept(r,s,k) ~~ true if and only if pop_and_accept (k,s) ~~
true. By well-ordered induction hypothesis, pop_and-accept(k,s) ~» true
is equivalent to s € L(k), and L(0NE) = {[]}, so s € L(ONE)L(k).

e If r = CHAR(c) then accept(r,s,k) ~> true if and only if s = c::s’
and pop.and accept(k,s’) ~» true. In that case, |s'| < |s| and then
|Py(k,s’)| < |Pi(CHAR(c),s,k)|. By induction hypothesis s’ € L(k) so
s = [cles’ € L(CHAR(c))L(k).

e If r = SUM(r1,r2) then accept(r,s,k) ~» true holds if and only if either
accept(rl,s,k) ~ true or accept(r2,s,k) ~» true. Since |r|, is always

39

positive, both of these are “smaller”, so the induction hypothesis tells us
that this is equivalent to s € L(r1)L(k) or s € L(r2)L(k), which is the
same as s € (L(r1)L(k)) U (L(r2)L(k)) = (L(r1) UL(xr2))L(k) = L(x)L(k).

If r = CAT(x1,r2) then accept(r,s,k) ~» true holds if and only if the
equivalent accept(r1,s,ACCEPT(r2,k)) ~> true holds.

From P;(r1,s,ACCEPT(xr2,k)), which is smaller in our ordering, we know
that this is equivalent to s € L£(r1)L(ACCEPT(x2,k)) = L(r1)L(r2)L(k) =
L(r)L(k).

If r = STAR(r1), then assuming accept(r,s,k) ~- true is equivalent to
assuming accept_star(rl,s,k) ~» true. Thus, we can just show Ps(r1,s, k)
instead.

Now, accept_star(rl,s,k) ~- true if either pop_and_accept(k,s) ~> true
or accept(rl,s,ACCEPT_STAR(s,r1,k)) ~ true.

The first case is equivalent to s € L(k) C L(r1)*L(k), by induction hy-
pothesis (Pa(k, s) is “smaller”).

The second case is equivalent to s € L£(r1)L(ACCEPT_STAR(s,r1,k)) =
L(r1)((L(r1)*L(x)) \ {s}), also by induction hypothesis.

Using basic operations on sets, the disjunction of these two predicates can
be seen to be equivalent to s being in the union of the sets, or equivalently,
s € (L(r1)° U (L(x1) \ {01} L(x1)*)L(x) = L(xr1)*L(k).

Notice that while P5(r1, s, k) is not strictly smaller than P; (STAR(r1), s, k),
that is not a problem, since we are not assuming Ps(r1,s,k) here.

PQ(k, S):

If x = EMPTY then s € L(k) if and only if s is the empty string, which is
exactly when pop_and_accept(k,s) ~> true holds.

If k = ACCEPT(r,k’) then s € L(kx) = L(r)L(k’) which is equivalent to
accept(r,s,k’) ~» true by induction hypothesis (P;(r,s,k’) is smaller
than P»(ACCEPT(x,k’),s) by just one). In this case, pop_and_accept (k,s) =
accept(r,s,k’) ~> true.

If x = ACCEPT_STAR(s’,r,k’) then s € L(k) exactly when s # s’ and
s € L(r)*L(x’). By induction hypothesis, s € L(r)*L(k’) is equivalent
to accept_star(r,s,k) ~» true, and the inequality is reflected in the ML
program, so not(s=s’) ~» true. Taken together, s € L(k) holds exactly
when pop_and_accept (k,s) ~> true does.

Ps(r,s,k): This case is similar to the sub-induction in P;(STAR(x),s, k), and
indeed, |Ps(z,s, k)| = |P1(STAR(z), s, k)|.

QED

40

References

[1]

Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing
style. In Michael J. O’Donnell and Stuart Feldman, editors, Proceedings
of the Sizteenth Annual ACM Symposium on Principles of Programming
Languages, pages 293-302, Austin, Texas, January 1989. ACM Press.

Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Semantics-based
design and correctness of control-flow analysis-based program transforma-
tions. Unpublished, March 2001.

Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundation of Mathematics. North-Holland,
1984. Revised edition.

Jeffrey M. Bell, Frangoise Bellegarde, and James Hook. Type-driven de-
functionalization. In Mads Tofte, editor, Proceedings of the 1997 ACM SIG-
PLAN International Conference on Functional Programming, pages 25-37,
Amsterdam, The Netherlands, June 1997. ACM Press.

Anders Bondorf. Self-Applicable Partial Evaluation. PhD thesis, DIKU,
Computer Science Department, University of Copenhagen, Copenhagen,
Denmark, 1990. DIKU Rapport 90/17.

Urban Boquist. Code Optimization Techniques for Lazy Functional Lan-
guages. PhD thesis, Department of Computing Science, Chalmers Univer-
sity of Technology, Goteborg University, Géteborg, Sweden, April 1999.

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed
closure conversion for typed languages. In Smolka [47], pages 56-71.

Weidong Chen, Michael Kifer, and David S. Warren. Hilog: A foundation
for higher-order logic programming. The Journal of Logic Programming,
15(3):187-230, February 1993.

Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183-195, 1994.

Olivier Danvy. Formalizing implementation strategies for first-class contin-
uations. In Smolka [47], pages 88-103.

Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361-391, 1992.

Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A unifying approach
to goal-directed evaluation. New Generation Computing, 20(1), 2001. To
appear. A preliminary version is available in the proceedings of SAIG 2001.

41

[14]

[15]

120

21]

22

23

[24

[25]

[26]

Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class
continuations. In William Clinger, editor, Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, LISP Pointers, Vol. V,
No. 1, pages 299-310, San Francisco, California, June 1992. ACM Press.

Olivier Danvy and Frank Pfenning. The occurrence of continuation parame-
ters in CPS terms. Technical report CMU-CS-95-121, School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, February
1995.

Edsger W. Dijkstra. Recursive programming. In Saul Rosen, editor, Pro-
gramming Systems and Languages, chapter 3C, pages 221-227. McGraw-
Hill, New York, 1960.

R. Kent Dybvig. Three Implementation Models for Scheme. PhD thesis,
Department of Computer Science, University of North Carolina at Chapel
Hill, Chapel Hill, North Carolina, April 1987. Technical Report #87-011.

Leonidas Fegaras. lambda-DB. Available online at http://lambda.uta.
edu/lambda-DB/manual/, 1999-2001.

Matthias Felleisen. The Calculi of A-v-CS Conversion: A Syntactic Theory
of Control and State in Imperative Higher-Order Programming Languages.
PhD thesis, Department of Computer Science, Indiana University, Bloom-
ington, Indiana, August 1987.

Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages, second edition. The MIT Press, 2001.

Jean-Yves Girard. Locus solum. Mathematical Structures in Computer
Science, 11(3), 2001. To appear.

Joseph A. Goguen, James W. Thatcher, and Eric G. Wagner. An initial
algebra approach to the specification, correctness and implementation of
abstract data types. In Current Trends in Programming Methodology, vol-
ume IV, pages 80-149. Prentice-Hall, 1978.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

Mayer Goldberg. Recursive Application Survival in the A-Calculus. PhD
thesis, Computer Science Department, Indiana University, Bloomington,
Indiana, May 1996.

Robert Harper. Proof-directed debugging. Journal of Functional Program-
ming, 9(4):463-469, July 1999.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

42

[27]

(28]

[29]

John Hughes. Super combinators: A new implementation method for ap-
plicative languages. In Daniel P. Friedman and David S. Wise, editors,
Conference Record of the 1982 ACM Symposium on Lisp and Functional
Programming, pages 1-10, Pittsburgh, Pennsylvania, August 1982. ACM
Press.

John Hughes. A novel representation of lists and its application to the
function “reverse”. Information Processing Letters, 22(3):141-144, 1986.

Thomas Johnsson. Lambda lifting: Transforming programs to recursive
equations. In Jean-Pierre Jouannaud, editor, Functional Programming Lan-
guages and Computer Architecture, number 201 in Lecture Notes in Com-
puter Science, pages 190-203, Nancy, France, September 1985. Springer-
Verlag.

Peter J. Landin. The mechanical evaluation of expressions. Computer
Journal, 6:308-320, 1964.

Chris Mellish and Steve Hardy. Integrating Prolog in the POPLOG en-
vironment. In John A. Campbell, editor, Implementations of PROLOG,
pages 147-162. Ellis Horwood, 1984.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure
conversion. In Guy L. Steele Jr., editor, Proceedings of the Twenty-Third
Annual ACM Symposium on Principles of Programming Languages, pages
271-283, St. Petersburg Beach, Florida, January 1996. ACM Press.

Torben A. Mogensen. Efficient self-interpretation in lambda calculus. Jour-
nal of Functional Programming, 2(3):345-363, 1992.

Tim Nicholson and Norman Y. Foo. A denotational semantics for Prolog.
ACM Transactions on Programming Languages and Systems, 11(4):650—
665, 1989.

Lasse R. Nielsen. A denotational investigation of defunctionalization.
Progress report (superseded by [36]), BRICS PhD School, University of
Aarhus, June 1999.

Lasse R. Nielsen. A denotational investigation of defunctionalization. Tech-
nical Report BRICS RS-00-47, DAIMI, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, December 2000.

Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice Hall International Series in Computer Science.
Prentice-Hall International, 1987.

Simon L. Peyton Jones and David R. Lester. Implementing Functional Lan-

guages. Prentice Hall International Series in Computer Science. Prentice-
Hall, 1992.

43

[39]

[40]

Jeff Polakow. Linear logic programming with ordered contexts. In Maurizio
Gabbrielli and Frank Pfenning, editors, Proceedings of the Second Interna-
tional Conference on Principles and Practice of Declarative Programming,
pages 68-79, Montréal, Canada, September 2000. ACM Press.

Jeff Polakow and Kwangkeun Yi. Proving syntactic properties of exceptions
in an ordered logical framework. In Herbert Kuchen and Kazunori Ueda,
editors, Fifth International Symposium on Functional and Logic Program-
ming, number 2024 in Lecture Notes in Computer Science, pages 61-77,
Tokyo, Japan, March 2001. Springer-Verlag.

Todd A. Proebsting. Simple translation of goal-directed evaluation. In
Ron K. Cytron, editor, Proceedings of the ACM SIGPLAN’97 Conference
on Programming Languages Design and Implementation, SIGPLAN No-
tices, Vol. 32, No 5, pages 1-6, Las Vegas, Nevada, June 1997. ACM Press.

John C. Reynolds. The essence of Algol. In van Vliet, editor, International
Symposium on Algorithmic Languages, pages 345-372, Amsterdam, The
Netherlands, 1982. North-Holland.

John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363-397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972).

John C. Reynolds. Definitional interpreters revisited. Higher-Order and
Symbolic Computation, 11(4):355-361, 1998.

John C. Reynolds. Theories of Programming Languages. Cambridge Uni-
versity Press, 1998.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Tam-
ing Lambda. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-
(CS-91-145.

Gert Smolka, editor. Proceedings of the Ninth European Symposium on
Programming, number 1782 in Lecture Notes in Computer Science, Berlin,
Germany, March 2000. Springer-Verlag.

Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM
Transactions on Programming Languages and Systems, 19(1):48-86, 1997.

Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-
474, Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, May 1978.

Christopher Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1/2):1-49, 2000.

44

[51]

[52]

[53]

[54]

[56]

[57]

Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed
language interoperability via source translation. Journal of Functional Pro-
gramming, 8(4):367-412, 1998.

David A. Turner. A new implementation technique for applicative lan-
guages. Software—Practice and Experience, 9(1):31-49, 1979.

Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231-248, 1989.

Mitchell Wand. Continuation-based program transformation strategies.
Journal of the ACM, 27(1):164-180, January 1980.

Daniel C. Wang and Andrew W. Appel. Type-safe garbage collectors.
In Hanne Riis Nielson, editor, Proceedings of the Twenty-Fighth Annual
ACM Symposium on Principles of Programming Languages, pages 166—178,
London, United Kingdom, January 2001. ACM Press.

Glynn Winskel. The Formal Semantics of Programming Languages. Foun-
dation of Computing Series. The MIT Press, 1993.

Yong Xiao, Amr Sabry, and Zena M. Ariola. From syntactic theories to
interpreters: Automating proofs of decomposition lemma. Higher-Order
and Symbolic Computation, 14(4), 2001. To appear.

45

Recent BRICS Report Series Publications

RS-01-23 Olivier Danvy and Lasse R. Nielsen.Defunctionalization at
Work. June 2001. Extended version of an article to appear
in Sgndergaard, editor,3rd International Conference on Prin-
ciples and Practice of Declarative ProgrammingPDP '01 Pro-
ceedings, 2001.

RS-01-22 Zolén Esik. The Equational Theory of Fixed Points with Ap-
plications to Generalized Language Thearyune 2001. 21 pp.
To appear in Kuich, editor, 5th International Conference De-
velopments in Language Theory DLT '01 Proceedings, LNCS,
2001.

RS-01-21 Luca Aceto, Zolan Esik, and Anna Ingolfsdottir. Equational
Theories of Tropical Semirings June 2001. 52 pp. Extended
abstracts of parts of this paper have appeared in Honsell and
Miculan, editors, Foundations of Software Science and Compu-
tation Structures FoSSaCS '01 Proceedings, LNCS 2030, 2000,
pages 42-56 and in Gaubert and Loiseau, editor§yorkshop on
Max-plus Algebras and their Applications to Discrete-event Sys-
tems, Theoretical Computer Science, and OptimizatidnAX-
PLUS '01 Proceedings, IFAC (International Federation of Au-
tomatic Control) IFAC Publications, 2001.

RS-01-20 Catuscia Palamidessi and Frank D. Valencia Temporal Con-
current Constraint Programming CalculusJune 2001. 31 pp.

RS-01-19 Ji1 Srba. On the Power of Labels in Transition Systemsgune
2001. 23 pp. Full and extended version of Larsen and Nielsen,
editors, Concurrency Theory: 12th International Conferenge
CONCUR '01 Proceedings, LNCS, 2001.

RS-01-18 Katalin M. Hangos, Zsolt Tuza, and Anders Yeo.Some Com-
plexity Problems on Single Input Double Output Controllers
May 2001. 27 pp.

RS-01-17 Claus Brabrand, Anders Mgller, Steffan Olesen, and
Michael I. Schwartzbach. Language-Based Caching of Dynam-
ically Generated HTML May 2001. 18 pp.

RS-01-16 Olivier Danvy, Morten Rhiger, and Kristoffer H. Rose. Nor-
malization by Evaluation with Typed Abstract Syntaklay 2001.
9 pp. To appear inJournal of Functional Programming

