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Abstract
We propose in this paper a novel framework for multilevel routing

considering both routability and performance. The two-stage multilevel
framework consists of coarsening followed by uncoarsening. Unlike the
previous multilevel routing, we integrate global routing, detailed rout-
ing, and resource estimation together at each level of the framework,
leading to more accurate routing resource estimation during coarsen-
ing and thus facilitating the solution refinement during uncoarsening.
Further, the exact routing information obtained at each level makes our
framework more flexible in dealing with various routing objectives (such
as crosstalk, power, etc). Experimental results show that our approach
obtains significantly better routing solutions than previous works. For
example, for a set of 11 commonly used benchmark circuits, our ap-
proach achieves 100% routing completion for all circuits while the pre-
vious multilevel routing, the three-level routing, and the hierarchical
routing can complete routing for only 3, 0, 3 circuits, respectively.
In particular, the number of routing layers used by our router is even
smaller. We also have performed experiments on timing-driven routing.
The results are also very promising.

1 Introduction
Research in VLSI routing has received much attention in the litera-

ture. Routing is typically a very complex combinatorial problem. In or-
der to make it manageable, the routing problem is usually solved using
the two-stage approach of global routing followed by detailed routing.
Global routing first partitions the routing area into tiles and decides tile-
to-tile paths for all nets while detailed routing assigns actual tracks and
vias for nets. Many routing algorithms adopt a flat framework of find-
ing paths for all nets. Those algorithms can be classified into sequential
and concurrent approaches. Early sequential routing algorithms include
maze-searching approaches [16, 21] and line-searching approaches [13],
which route net-by-net. Most concurrent algorithms apply network-flow
or linear-assignment formulation [1, 20] to route a set of nets at one time.

The major problem of the flat frameworks lies in their scalability
for handling larger designs. As technology advances, technology nodes
are getting smaller and circuit sizes are getting larger. To cope with
the increasing complexity, researchers proposed to use hierarchical ap-
proaches to handle the problem: Marek-Sadowska proposed a hierar-
chical global router based on linear assignment [19]; Heisterman and
Lengauer presented a hierarchical integer linear programming approach
for global routing [12]; Wang and Kuh proposed a hierarchical ��� ��*
algorithm for timing-driven multilayer MCM/IC routing [22]; Chang,
Zhu, and Wong applied linear assignment to develop a hierarchical, con-
current global and detailed router for FPGA’s [3].

The two-level, hierarchical routing framework, however, is still lim-
ited in handling the dramatically growing complexity in current and fu-
ture IC designs which may contain hundreds of millions of gates in a
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single chip. As pointed out in [5], for a 0.07 �� process technology,
a 2.5 � 2.5 ��� chip may contain over 360,000 horizontal and vertical
routing tracks. To handle such high design complexity, the two-level,
hierarchical approach becomes insufficient. Therefore, it is desired to
employ more levels of routing for larger IC designs.

The multilevel framework has attracted much attention in the liter-
ature recently. It employs a two-stage technique: coarsening followed
by uncoarsening. The coarsening stage iteratively groups a set of circuit
components (e.g., circuit nodes, cells, modules, routing tiles, etc) based
on a predefined cost metric until the number of components being con-
sidered is smaller than a threshold. Then, the uncoarsening stage itera-
tively ungroups a set of previously clustered circuit components and re-
fines the solution by using a combinatorial optimization technique (e.g.,
simulated annealing, local refinement, etc). The multilevel framework
has been successfully applied to VLSI physical design. For example,
the famous multilevel partitioners, ML [2], hMETIS [14], and HPM [8],
the multilevel placer, mPL [4], and the multilevel floorplanner/placer,
MB*-tree [18], all show the promise of the multilevel framework for
large-scale circuit partitioning, placement, and floorplanning.

Recently, Cong, Fang, and Zhang proposed a pioneering multilevel
approach for large-scale, full-chip, routability-driven routing [5]. The
framework starts by recursively coarsening routing tiles, and an estima-
tion of routing resources is computed at each level. When the number
of tiles is below a threshold, a multicommodity flow algorithm is used
to obtain an initial routing solution. Then the uncoarsening stage uses
a modified maze-searching algorithm to further improve the routing so-
lution level by level. Their final results of the multilevel algorithm are
tile-to-tile paths for all the nets. The results are then fed into a detailed
router to find the exact connection for each net. Their experimental re-
sults show better routing quality or running times than the traditional
two-stage flat approach of global routing followed by detailed routing
and the hierarchical approaches.

Inspired by the work of the multilevel router presented in [5], we pro-
pose in this paper a novel framework for multilevel routing considering
both routability and performance. Different from the work presented
in [5], ours has the following distinguished features:

� We integrate global routing, detailed routing, and resource esti-
mation together at each level of the framework, leading to more
accurate routing resource estimation during coarsening and thus
facilitating the solution refinement during uncoarsening. Specif-
ically, at each level of the coarsening stage, we perform global
routing to obtain a good initial solution for all nets inside the tiles
being considered and then detailed routing to obtain the exact
routing patterns for these nets. Since the exact routing patterns
are known, resource estimation is more accurate. With these good
properties, the refinement conducted at the uncoarsening stage
becomes much easier. In contrast, the work [5] performs only
resource estimation during the coarsening stage and only global
routing during the uncoarsening stage. After the multilevel pro-
cessing is finished, the final global routing result is then fed into
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Figure 1: The multilevel framework flow.

a detailed router to obtain the final routing solution. It is obvious
that our approach can have better interaction among global rout-
ing, detailed routing, and resource estimation since they are con-
sidered simultaneously. For example, global and detailed routers
usually use rip-up and re-route to refine a routing solution based
on the results of resource estimation. If the three tasks are per-
formed separately, the re-routing process conducted at the global
routing stage may be in vain since it does not know if the re-
routing is useful for the detailed router. Also, the detailed router
may fail to find a path because of the low flexibility induced from
the separated global routing. Therefore, making the three tasks
interact with each other can significantly improve routing quality.

� A two-stage refinement method of Z-pattern routing followed by
maze routing is used in our multilevel framework, which makes
re-routing much more effective.

� Unlike the work [5] that considers routability alone, we also
apply a recalling modification method to perform timing-driven
routing.

� Our framework is more flexible and thus different routing objec-
tives (such as crosstalk, power, etc) can be incorporated into our
framework since exact track and wiring information at each level
after detailed routing is known.

Figure 1 shows our multilevel framework, and Table 1 summaries the
differences between our multilevel system and that presented in [5].

Experimental results show that our approach obtains significantly
better routing solutions than the multilevel routing [5], the three-level
routing [6], and the hierarchical approach [5]. For the 11 benchmark cir-
cuits provided by the authors of [5], our approach obtains 100% routing
completion for all circuits while the multilevel routing, the three-level
routing, and the hierarchical routing can complete routing for only 3, 0,
3 circuits, respectively. In particular, the number of routing layers re-
quired for routing completion for our approach is even smaller. We also
have performed experiments on timing-driven routing. The results are
also very promising.

The rest of this paper is organized as follows. Section 2 presents the
routing model and the multilevel routing framework. Section 3 presents
our framework for routability and timing optimization. Experimental
results are shown in Section 4. Finally, we give concluding remarks in
Section 5.

2 Preliminaries
2.1 Routing Model

Routing in modern IC’s is a very complex processing, and thus we
can hardly obtain solutions directly. Our routing algorithm is based on
a graph search technique guided by the congestion and timing informa-
tion associated with routing regions and topologies. The router assigns
higher costs to route nets through congested areas to balance the net dis-
tribution among routing regions. For performance-driven routing, addi-
tional costs are added to the routing topologies with longer critical path
delays.

Before we can apply the graph search technique to multilevel rout-
ing, we first need to model the routing resource as a graph such that the
graph topology can represent the chip structure. Figure 2 illustrates the
graph modeling. For the modeling, we first partition a chip into tiles.
A node in the graph represents a tile in the chip, and an edge denotes
the boundary between two adjacent tiles. Each edge is assigned a ca-
pacity according to the physical area or the number of tracks of a tile.
The graph is used to represents the routing area and is called multilevel
routing graph ��. A global router finds tile-to-tile paths for all nets on
�� to guide the detailed router. The goal of global routing is to route
as many nets as possible while meeting the capacity constraint of each
edge and any other constraint, if specified. As the process technology
advances, multiple routing layers are possible. The number of layers in
a modern chip can be more than six [11]. Wires in each layer run either
horizontally or vertically. We refer to the layer as a horizontal (H) or a
vertical (V) routing layer.

2.2 Multilevel Routing Model
As illustrated in Figure 1, �� corresponds to the routing graph of

the level 0 of the multilevel coarsening stage. At each level, our global



Our framework The framework in [5]
Objective � Considers both routability and timing. � Considers only routability.
Coarsening � Performs global and detailed routing at each level. � Performs only routing resource estimation using a line-sweep algorithm.

� Performs congestion estimation after detailed routing.
� Uses the Z-shaped routing refinement method.

After coarsening � No initial routing is needed. � Initial routing using a multicommodity flow algorithm.
Uncoarsening � Uses a global and a detailed maze routers to refine � Uses a global maze router to refine the solution.

the solution.
Characteristics � Performs routing during coarsening and thus detailed � Coarsening does not route any net, lacking local routing information.

routing information and local congestion are known. � Activates refinement (rip-up and re-route) during global routing and may
� Activates refinement (rip-up and re-route) when detailed not be useful to detailed routing.

routing fails and is thus more effective for actual routing. � Performs global and detailed routing separately.
� Performs global and detailed routing at each level.

Table 1: Framework comparison between ours and [5].

(a)  partitioned layout (b)  routing graph

Figure 2: The routing graph.

router first finds routing paths for the local nets (or local 2-pin connec-
tions) (those nets [connections] that entirely sit inside a tile), and then
the detailed router is used to determine the exact wiring. After the global
and detailed routing are performed, we merge four adjacent tiles of ��

into a larger tile and at the same time perform resource estimation for
use at the next level (i.e., level 1 here). Coarsening continues until the
number of tiles at a level, say the �-th level, is below a threshold. After
finishing coarsening, the uncoarsening stage tries to refine the routing
solution starting from the last level � where coarsening stops. During
uncoarsening, the unroutable nets during coarsening are considered, and
maze routing and rip-up and re-route are performed to refine the routing
solution. Then we proceed to the next level (level ���) of uncoarsening
by expanding each tiles to four finer tiles. The process continues up to
level 0 when the final routing solution is obtained.

3 Multilevel Routing Framework
Our multilevel routing algorithm is inspired by the work [5]. Nev-

ertheless, our framework is significantly different from [5]. During the
coarsening stage of the work [5], instead of routing or planning wires,
they only estimate routing resources by using a line-sweep algorithm
and then recursively coarsen to the last level �. Since their coarsening
stage does not perform real routing, it is hard to retrieve the routing in-
formation at the higher level, which may make real routing resource esti-
mation inaccurate. At the last level �, they apply a multicommodity flow
algorithm to obtain an initial routing and avoid the net ordering problem.
However, a router may encounter higher congestion when uncoarsening
expands local nets. A bad initial routing at the higher level needs more
time to re-route at the lower level because of lacking local routing infor-
mation. This problem is also with the hierarchical approach.

Our router tends to route shorter nets first since we route local nets
at each level of coarsening. It is obvious that the local nets at the lower
level (say, level 0) are usually shorter than those at a higher level (say,
level �). Naturally, a shorter net enjoys less freedom while search-

ing for a path to route it. This fact holds even during rip-up and re-
route. Thus, this observation implicitly suggests that a shorter net has a
higher priority than a longer net as far as routability is concerned. Kast-
ner, Bozorgzadeh, and Sarrafzadeh in [15] also suggest this conclusion.
Thought this net ordering scheme may not be the optimal solution for
some routing problems (for example, when timing is considered, rout-
ing the most critical net first often leads to better timing performance),
it is still a reasonable alternative.
3.1 Multilevel Routing for Routability

Given a netlist, we first run the minimum spanning tree (MST) algo-
rithm to construct the topology for each net, and then decompose each
net into 2-pin connections, with each connection corresponding to an
edge of the minimum spanning tree. Our multilevel framework starts
from coarsening the finest tiles of level 0. At each level, tiles are pro-
cessed one by one, and only local nets (connections) are routed. At each
level, the two-stage routing approach of global routing followed by de-
tailed routing is applied. (See Figures 3(a)–(c) for an illustration.) The
global routing is based on the approach used in the Pattern Router [15]
and first routes local nets (connections) on the tiles of level 0. Let
the multilevel routing graph of level 	 be �� � �
�� ���. Let �� = �

 � �� � 
 is the edge chosen for routing�. We apply the cost function
� � �� � 	 to guide the routing:

����� �
�

����

�� � (1)

where �� is the congestion of edge 
 and is defined by

�� � �����������

where �� and �� are the capacity and density associated with 
, respec-
tively.

After the global routing is completed, we perform detailed routing
with the guidance of the global-routing results and find a real path in
the chip. Our detailed router is based on the maze-searching algorithm
and supports the local refinement illustrated in Figures 3(d)–(f). Pattern
routing uses an L-shaped or a Z-shaped route to make the connection,
which gives the shortest path length between two points. Therefore, the
wire length is minimum, and thus we do not include wire length in the
cost function at this stage. We measure the routing congestion based on
the commonly used channel density. After the detailed routing finishes
routing a net, the channel density associated with an edge of a multilevel
graph is updated accordingly. This is called resource estimation.

Our global router first tries L-shaped pattern routing. If the rout-
ing fails, we try Z-shaped pattern routing. This can be considered as
a simple version of rip-up and re-route. If both pattern routes fail, we
give up routing the connection, and an overflow occurs. We refer to a
failed net (failed connection) as that causes an overflow. The failed nets



(connections) will be reconsidered (refined) at the uncoarsening stage.
There are at least two advantages by using this approach. First, routing
resource estimation is more accurate than that performing global rout-
ing alone since we can precisely evaluate the routing region. Second,
we can obtain a good initial solution for the following refinement very
effectively since pattern routing enjoys very low time complexity and
uses fewer routing resources due to its simple L-shaped and Z-shaped
routing patterns. Figure 3 shows an example of routing a local net in a
tile.

n

m

global route detailed routeAn MST edge

(a) Route the local
connection n in a tile
of G  .i

(b) Global route of n. (c) Detailed route of n
on the chip.

(d) Route another local
connection m that
belongs to the same
net as n.

(e) Detailed route of 
connection m.

(f) Local refinement of
the net.

Figure 3: Global routing, detailed routing, and local refinement.

The uncoarsening stage starts to refine each local failed net (connec-
tion), left from the coarsening stage. The global router is now changed
to the maze router with the following cost function � � �� � 	:

����� �
�

����

���� � ��� � ����� (2)

where �� �, and � are user-defined parameters, �� is the length of the net
(connection), and �� � ��� ��. If an overflow happens, �� is set to 1; it
is set to 0, otherwise.

There is a trade-off among minimizing wire length, congestion, and
overflow. At the uncoarsening stage, we intend to resolve the overflow
in a tile. Therefore, we let c be much larger than � or �. Also, a de-
tailed maze routing is performed after the global maze routing. Iterative
refinement of a failed net is stopped when a route is found or several
tries (say, three) have been made. Uncoarsening continues until the first
level �� is reached and the final solution is found. Note that the global
maze routing here serves as an elaborate rip-up and re-route processor,
in contrast to the simple L-shaped and Z-shaped routing during coarsen-
ing. This two-stage approach of global and local refinement of detailed
routing gives our overall refinement scheme.
3.2 Multilevel Routing for Performance
3.2.1 Timing Optimization
In deep submicron IC designs, interconnection delay dominates the per-
formance of a circuit. Therefore, improving the wire delay also im-
proves the overall chip performance. The routing problem with timing
constraints is much more complex, as not only congestion must be con-
trolled but also timing constraints must be satisfied. Many techniques
have been developed to facilitate high-performance IC designs. For

example, the algorithms for performance-driven routing-tree topology
construction have received much attention [7, 10, 17]. However, most
existing works focus only on constructing a single routing tree. To em-
ploy the existing methods of tree construction, the congestion problem
must be addressed. The minimum spanning tree (MST) topology leads
to the minimum total wirelength, and thus congestion is easier to be con-
trolled than other topologies. However, its topology may result in longer
critical paths and thus degrade circuit performance. Though a shortest
path tree (SPT) may result in the best performance, its total wirelength
(and congestion) may be significantly larger than that constructed by the
MST algorithm [10]. In [10], researchers used the idea of incremen-
tally modifying an MST to construct a routing tree for a better trade-off
between timing (SPT) and wirelength (MST).

Our construction of a timing-driven routing tree is based on the sim-
ilar idea used in [10]. We first construct an MST (for smaller wirelength
and thus better routability) and then fix the timing violation, if any, by re-
sorting to the SPT topology of the net. Performance optimization usually
targets on the minimization of the critical path delay, but to determine
a critical path in a circuit is an NP-hard problem due to the false path
problem [9]. Therefore, for simplicity, we minimize the critical sink
of a net. In the following, we present our framework for timing-driven
multilevel routing that is summarized in Figure 5.

The same as the framework for multilevel routing for routability, we
first build an MST for each net. However, the MST here is directed since
timing analysis is conducted from the tree source to all sinks, opposite
to the multilevel routing for routability that uses undirected trees. After
the topologies of all nets are obtained, our multilevel framework starts
from coarsening the finest tiles at level 0 and processes tiles one by one.
Before we route a local net (connection), timing analysis based on the
Elmore delay model is performed from the tree source to all sinks. If a
target node violates the timing constraint, we modify the tree topology
by recalling modification. That is, if a target node violates the timing
constraint, we delete this local connection and then trace back from the
target node to the tree source to find a new parent for the connection that
can meet the timing constraint. (Although this process might increase
the total wirelength and thus the total wire capacitance, the decrease of
the path delay due to lower source-to-sink loading capacitance is even
more significant.) Figure 4 shows how to trace back the tree from the
target node to the source to find a new node to satisfy the timing con-
straint. After a new path that meets the timing constraint is found, we
start to route the net if it is a local net belonging to the current level. The
routing process is the same as that for multilevel routing for routability.
After detailed routing is done, the target node may again violate the tim-
ing constraint because the detailed route may run through a longer path
or incur a larger load from other tree branches. We will fix the timing vi-
olation at the later uncoarsening stage. In order to alleviate this problem,
we may keep a small timing slack when we estimate the path delay.

(a) Node i on the thick path
violates the timing constraint.

source source source

node i node i node i

(b) Connect node i to a new
parent to satisfy the timing
constraint and delete the
corresponding edge.

(c) Continue the modification
until it meets the timing
constraint.

Figure 4: An example of recalling modification.

After coarsening is done, our algorithm performs timing analysis on
all nets again to identify those nets that violate the timing constraints.



Uncarsening continues to refine those failed nets, if any, by maze rout-
ing. Also, the failed nets from the coarsening stage are refined. Since
we iteratively fine tune every local net, a topology of the net meeting the
timing constraint and possessing good routability is gradually formed.
Like [5], the iterative refinement provides a framework for seamless in-
tegration of different algorithms at different levels.

Algorithm: Performance-Driven-Multilevel-Routing(G, N, C)
Input: G - partitioned layout;

N - netlist of multi-terminal nets;
C - timing constraints.

Output: routing solutions for N on G
begin
1 Partition layout and build MSTs for � ;
2 //coarsening stage
3 For each level at the coarsening stage
4 Choose a local net �;
5 if � violates its timing constraint,

apply recalling modification to fix timing;
6 if � belongs to this level
7 Global Pattern Routing();
8 Detailed Routing();
9 //uncoarsening stage
10 For each level at the uncoarsening stage
11 Timing Analysis on All Nets();
12 Choose a local net � that violates its timing constraint

or a failed net during coarsening;
13 if � violates its timing constraint,

apply recalling modification to fix timing;
14 Global Maze Routing();
15 Detailed Routing();
16 Output Result();
end

Figure 5: Algorithm for performance-driven multilevel routing.

3.2.2 Via Minimization
Vias typically have significantly larger RC delay than metal wires, and
thus it is desired to minimize the number of vias used in a routing path
to optimize circuit performance. We apply the following algorithm,
called SPVM (Simultaneous Pathlength and Via Minimization), to per-
form maze routing to find a shortest path with the minimum number of
bends/vias. It associates each basic detailed routing region � (could be
a grid cell in gridded-based routing or a basic routing region defined by
the wire pitch in gridless routing) with two labels: ���� and ����, where
���� is the distance of the shortest path from source � to �, and ����
is the minimum number of bends/vias along the shortest path from � to
�. Initialize ���� � 
� ���� � 
� �� �� �� ���� � � and ���� � �.
Maze routing is a two-stage approach of wave propagation followed by
backtracking [16]. In the wave-propagation stage of maze routing, the
computation of label �’s is the same as the original maze-routing algo-
rithm. Let � be a basic routing region on the wave front and � a neigh-
boring basic routing region of �. The predecessor routing region of �
is the region from which the wave front was propagated for obtaining
the minimum ����. The propagation direction of � is the direction from
the predecessor routing region of � to �. The computation of ���� is as
follows.

The basic idea is to compare the distance label �’s first and then
compare the bend/via number label �’s. The value ���� of a neighboring
routing region � with ���� � ���� stays unchanged because the path
from � through � to � is not the shortest path between � and �. The
backtracking stage is the same as that of the original maze-routing al-
gorithm. Note that it is possible that there may exist several shortest

1 if (���� 
 ���� � �)
2 if (���� � ���� and � is along the propagation direction of �)
3 ����� ����;
4 Record � as the predecessor routing region of �;
5 if (���� � ���� � � and � is not along the propagation

direction of �)
6 ����� ���� � �;
7 Record � as the predecessor routing region of �.

Figure 6: The algorithm to compute ����.

paths with different number of bends/vias. The wave-propagation stage
always keeps track of the shortest path with the minimum bend/via num-
ber to allow the backtracking stage to find such a path. We have the
following theorem.

Theorem 1 Algorithm SPVM guarantees to find a shortest path with
the minimum number of bends/vias, if the path exists.

4 Experimental Results
We have implemented our multilevel routing system in the C++

language on a 450 MHz SUN Sparc Ultra-60 workstation with 2
GB memory. The routing system is available at the web site
http://cc.ee.ntu.edu.tw/�ywchang/research.html. We compared our re-
sults with [5] and [6] based on the 11 benchmark circuits provided by
the authors. The design rules for wire/via widths and wire/via separation
for detailed routing are the same as those used in [5, 6]. The parameters
� and � in the cost function � were both set to 1 while � was initially
set to 1 and was gradually increased when the router failed to refine the
target net until a termination bound was reached.

Table 2 lists the set of benchmark circuits. In the table, “Ex.” gives
the names of the circuits, “Size” gives the layout dimensions, “#Layers”
denotes the number of routing layers used, and “#Nets” gives the num-
ber of two-pin connections after net decomposition. Table 3 gives the
comparison of our multilevel routing for routability with the three-level
routing [6], the hierarchical routing [5], and the multilevel routing [5].
The three-level routing (A) first uses a performance-driven global router,
then a noise-constrained wire spacing and track assignment algorithm,
and a detailed router [6]. The hierarchical routing with rip-up and re-
plan (B) is developed in [5] for comparative study. Since the hierar-
chical approach adopts the top-down process to handle designs, it has
a more global view of the problem. But, as mentioned earlier, a hi-
erarchical flow lacks local routing information and needs to refine more
local congestion than a multilevel approach does. The multilevel routing
(C) gives the main results from [5]. In the table, “Time (s)” represents
the running times in second, “#Rtd. Nets” denotes the number of routed
nets, “Comp. Rates” gives the routing completion rates, and “avg.” (bot-
tom) denotes the average routing completion rates.

As shown in the table, our approach obtains significantly better rout-
ing solutions than the multilevel routing [5], the three-level routing [6],
and the hierarchical approach [5]. For the 11 benchmark circuits pro-
vided by the authors of [5], our approach obtains 100% routing comple-
tion for all circuits while the multilevel routing, the three-level routing,
and the hierarchical routing can complete routing for only 3, 0, 3 cir-
cuits, respectively.

Since all examples are 100% routed by our system using the num-
bers of layers given in the test data, we show our superior performance
by further reducing the numbers of available routing layers in the exam-
ples. Table 4 shows that our multilevel router still obtains better routing



Ex. #Layers (A) Three-Level Routing (B) Hierarchical Routing (C) Multilevel Routing of [5] (D) Our Results
with Rip-up and Re-route

Time (s) #Rtd. Cmp. Time (s) #Rtd. Cmp. Time (s) #Rtd. Cmp. Time (s) #Rtd. Cmp.
Nets Rates Nets Rates Nets Rates Nets Rates

Mcc1 4 933.2 1499 88% 947.9 1600 94.5% 436.7 1683 99.4% 204.7 1694 100%
Mcc2 4 12333.6 5451 72.3% 10101.4 7161 95.6% 7644.8 7474 99.1% 7203.3 7541 100%
Struct 3 406.2 3530 99.4% 324.5 3551 100% 316.8 3551 100% 151.5 3551 100%
Prim1 3 239.1 2018 99.0% 353.0 2037 100% 350.2 2037 100% 165.4 2037 100%
Prim2 3 1331 8109 98.9% 2423.8 8194 100% 2488.4 8196 100% 788.2 8197 100%
S5378 3 430.2 2607 83.4% 57.9 2964 94.9% 54.0 2963 94.8% 10.9 3124 100%
S9234 3 355.2 2467 88.9% 40.7 2564 92.4% 41.0 2561 92.3% 7.7 2774 100%

S13207 3 1099.5 6118 87.5% 161.9 6540 93.5% 188.8 6574 94.0% 38.2 6995 100%
S15850 3 1469.1 7343 88.2% 426.1 7874 94.6% 403.4 7863 94.5% 57.5 8321 100%
s38417 3 3560.9 19090 90.8% 754.6 19596 93.2% 733.6 19636 93.3% 137.6 21035 100%
S38584 3 7086.5 25642 91.0% 1720 26461 93.9% 1721.6 26504 94.1% 316.7 28177 100%

avg. 89.8% 95.7% 96.5% 100%

Table 3: Comparison among (A) the three-level routing [6], (B) the hierarchical routing [5], (C) the multilevel routing [5], and (D) our multilevel routing. Note:
(A), (B), (C) were run on a 440 Mhz Sun Ultra-5 with 384 MB memory; (D) was run on a 450Mhz Sun Sparc Ultra-60 with 2GB MB.

Ex. Size (��) #Layers #Nets #Pins
Mcc1 39000�45000 4 1694 3101
Mcc2 152400�152400 4 7541 25024
Struct 4903�4904 3 3551 5717
Prim1 7552�4988 3 2037 2941
Prim2 10438�6468 3 8197 11226
S5378 4330�2370 3 3124 4734
S9234 4020�2230 3 2774 4185

S13207 6590�3640 3 6995 10562
S15850 7040�3880 3 8321 12566
S38417 11430�6180 3 21035 32210
S38584 12940�6710 3 28177 42589

Table 2: The benchmark circuits.

completion rates by even using fewer layers. From Table 4, we can see
that if we only use two layers, our router often needs more time for per-
forming routing since rip-up and re-route might occur more often as the
routing resources become more restricted.

We also performed experiments on timing-driven routing (although
no previous timing-driven routers are available to us for comparative
studies). In the benchmark circuits, Mcc1, Mcc2, Prim1 and Prim2 do
not have the information of net sources. Therefore, we cannot calculate
the path delay for those benchmarks, and thus only the results for the
six examples listed in Table 5 are reported. To perform experiments on
timing-driven routing, we used the same resistance, capacitance, and via
parameters as those used in [11]. First, we constructed a shortest path
tree for a net by connecting all sinks directly to their net source to obtain
the timing constraints. We then assigned the timing bound of each sink
as the multiplication of the constant � and the shortest path delay of the
net. We tried different values of �’s and used three layers for routing. As
shown in Table 5, as � approaches 2.5 (2.0), the routing completion rates
obtained by our timing-driven multilevel routing system are higher than
(comparable to) those obtained in [5] that considered only routability.
Further, our timing-driven router can dramatically reduce both the crit-
ical path delay (����) and the average net delay (����). Therefore, the
performance-driven multilevel router is very promising. Figure 7 shows
the 2-layer routing solution for “S9234” obtained from our system with
routability consideration alone (completion rates = 99.7%). Figure 8
shows the 3-layer routing solution for “S9234” from our timing-driven
multilevel routing with � � � (completion rates = 94.3%).

Ex. #Layers = 2 #Layers = 3
Time (s) #Rtd. Cmp. Time (s) #Rtd. Cmp.

Nets Rates Nets Rates
Mcc1 242.1 1686 99.4% 204.7 1694 100%
Mcc2 - - - 25189.7 7272 96.4%
Struct 151.5 3551 100% 151.7 3551 100%
Prim1 165.4 2037 100% 166.5 2037 100%
Prim2 788.2 8197 100% 789.6 8197 100%
S5378 24.8 3099 99.1% 10.9 3124 100%
S9234 12.3 2767 99.7% 7.7 2774 100%

S13207 56.6 6979 99.7% 38.2 6995 100%
S15850 164.4 8299 99.7% 57.5 8321 100%
S38417 208.3 21012 99.8% 137.6 21035 100%
S38584 681.2 28122 99.8% 316.7 28177 100%

avg. (99.7%)* 99.6%

Table 4: Results of our multilevel routing for routability by using two and three
layers. (*: exclude the rate for Mcc2.)

5 Conclusion
We have proposed a novel multilevel routing framework considering

both routability and performance. Unlike the previous multilevel rout-
ing, we have integrated global routing, detailed routing, and resource
estimation together at each level of the framework, leading to more ac-
curate routing resource estimation during coarsening and thus facilitat-
ing the solution refinement during uncoarsening. The exact routing in-
formation at each level makes our framework more flexible in dealing
with various routing objectives (such as crosstalk, power, etc). Experi-
mental results have shown that our approach is very promising. Future
work lies in the development of a performance-driven multilevel router
considering signal integrity.
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