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Abstract

Due to increasing clock speeds, increasing design sizes and shrinking
technologies, it is becoming more and more challenging to distribute a
single global clock throughout a chip. In this paper we study the effect
of using a Globally Asynchronous Locally Synchronous (GALS) organi-
zation for a superscalar, out-of-order processor, both in terms of power
and performance. To this end, we propose a novel modeling and sim-
ulation environment for multiple clock cores with static or dynamically
variable voltages for each synchronous block. Using this design explo-
ration environment we were able to assess the power/performance trade-
offs available for Multiple Clock, Single Voltage (MCSV), as well as Mul-
tiple Clock, Dynamic Voltage (MCDV) cores. Our results show that MCSV
processors are 10% more power efficient when compared to single-clock
single voltage designs with a performance penalty of about 10%. By ex-
ploiting the flexibility of independent dynamic voltage scaling the various
clock domains, the power efficiency of GALS designs can be improved
by 12% on average, and up to 20% more in select cases. The power
efficiency of MCDV cores becomes comparable with the one of Single
Clock, Dynamic Voltage (SCDV) cores, while being up to 8% better in
some cases. Our results show that MCDV cores consume 22% less power
at an average 12% performance loss.

1 Introduction

Power consumption has become a critical issue in processor design,
not only in embedded or portable environments, but also for high-end
systems where performance has been the chief design constraint. Due
to increased levels of complexity and integration, power density increases
dramatically with shrinking device sizes and costly packaging and cooling
techniques have to be employed to preserve the reliability and correct op-
eration of core processors. Although performance is still the main selling
factor in the high-end processor market, solutions that drastically reduce
power requirements while still preserving the performance constraints are
desirable. A large component of the power budget in high-end proces-
sors is the clock power consumption. Most conventional microprocessor
designs are synchronous in their construction; that is, they have a global
clock signal which provides a common timing reference for the opera-
tion of all the circuitry on the chip. On the other hand, fully asynchronous
designs built using self-timed circuits do not have any global timing refer-
ence; examples of this design style are given in Sutherland’s work on Mi-
cropipelines [1]. Globally Asynchronous Locally Synchronous systems
(which we refer to as GALS systems in this paper) are an intermediate
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style of design between these two. GALS systems contain several inde-
pendent synchronous blocks which operate with their own local clocks
and communicate asynchronously with each other. The main feature of
these systems is the absence of a global timing reference and the use of
several distinct local clocks (or clock domains), possibly running at dif-
ferent frequencies.

In the microprocessor industry, global clock distribution issues are per-
haps the best motivating factor for the study of GALS systems. With each
technology shrink, the clock distribution network of a large chip grows
rapidly in complexity and requires large design effort, power and die area.
For instance in the Alpha 21264 processor, the global and major clock
grids alone consume a third of its total power budget. Ronen et al. men-
tion the worsening interconnect and clock distribution problem [2] and
advocate global asynchrony as a possible solution. Since products in this
arena have to have the highest performance at the lowest possible power
cost, early design exploration tools for assessing the impact of asynchrony
on both performance and power are needed.

In this paper, we describe the development of a modeling and simula-
tion framework for GALS high end processors. Using this framework, we
address the following issues:

o If we design a microprocessor in a GALS style with multiple clock
domains (also called Multiple Clock, Single Voltage, or MCSV
core), how much performance overhead will it incur over a fully
synchronous machine?

o Will the elimination of the global clock network help in reducing the
power requirements of the processor, as it has been claimed before?

e How can we exploit the extra flexibility offered by independent
clock domains in a GALS processor and what is the impact of
using a Multiple Clock Dynamic Voltage (MCDV) scheme on
power/performance metrics?

Our analysis shows that GALS (MCSV) processors are not necessar-
ily better in terms of power consumption than fully synchronous designs
as it has been claimed before. Moreover, there is also a decrease in per-
formance due to the asynchronous communication overhead and this can
have adverse effects on overall energy consumption. The energy savings
obtained by the elimination of the global clock are offset by the additional
power consumed due to longer execution times. The use of dynamic volt-
age scaling in MCDV cores improves the situation for some applications
by providing up to 20% additional power savings.

1.1 Related Work

Sutherland’s paper on Micropipelines [1] contains the classic intro-
duction to asynchronous design. The Amulet processor core developed
at Manchester, which implements the ARM instruction set, is in its third
generation and is commercially viable [3]. As Ronen et al. mention in



[2], the worsening interconnect and clock distribution problem, as well as
the burden of high clock power cost can be potentially solved by employ-
ing a global asynchronous design as a possible solution. GALS systems
have been studied in detail by Chapiro in his 1984 thesis [4]. His work
covers metastability issues in GALS systems and outlines a stretchable
clocking strategy which provides a mechanism for asynchronous commu-
nication. Hemani et al. estimated in [5] the clock power savings in GALS
designs compared to synchronous designs. However, their work targets a
regular ASIC design flow with simpler clocking strategies rather than the
aggressive clock distribution networks used in microprocessors.

Of great importance in GALS designs is the choice of the asyn-
chronous communication mechanism between various synchronous
blocks. Chelcea and Nowick propose in [6] the use of FIFOs as a low-
latency asynchronous communication mechanism between synchronous
blocks. Muttersbach et al. have implemented asynchronous wrappers
around synchronous blocks [7]; they have used these wrappers along
with asynchronous memory blocks to implement an ASIC and have thus
proved the feasibility of GALS design in silicon. A similar system has
been proposed by Moore et al. in [8]; pausible clocking for GALS sys-
tems has been described by Yun and Dooply in [9].

Dynamic voltage scaling (DVS) has been widely studied and imple-
mented commercially. The use of multiple power grids and their impli-
cations in area overhead have been discussed in [10]. The difference in
pipeline stage latencies has been explored for lowering the power require-
ments at system level, but for a specialized communication Myrinet GAM
pipeline in a dynamic voltage scaling environment [11]. In [12], an ex-
ample of adaptive dynamic voltage scaling in a system with self-timed
circuits is presented. In that case, the traffic information in the communi-
cation buffers is used to adapt the supply voltage of various components.
Finally, [13] presents a study of GALS processor systems and is the clos-
est to our work. There, the authors use a communication scheme based
on asynchronous FIFOs and stoppable clocks. The voltage assignment
mechanism is an oracle-based scheme which finds the optimal voltages to
be applied to different clock domains in a GALS processor.

The problem of power modeling at high levels of abstraction (sys-
tem, software and microarchitectural level) has recently started to gain
a lot of attention. Wattch [14] presents an advanced microarchitectural
power simulator based on parameterized power models which are proven
to be within 10% accurate when compared to three different high-end
microprocessors. Wattch is based on SimpleScalar [15] which is a de-
tailed, cycle-accurate simulator for superscalar, out-of-order cores. How-
ever, none of these simulators assume multiple clock domains or fine
grain power management using dynamic adaptation of voltages and clock
speeds.

1.2 Organization and Scope

The rest of this paper is organized as follows. Section 2 presents the
motivation behind our proposed GALS architecture. In section 3, we de-
scribe some practical issues related to defining synchronous blocks, the
proposed architecture and our scheme for dynamic clock management.
The simulation and modeling environment is presented in section 4 while
section 5 summarizes our experimental results. We conclude in section 6
with some final remarks.

2 Motivation

The idea of GALS system design is in itself quite old [4]. Interest in
GALS design is now growing, mainly due to the global clock distribu-
tion problem. Trends of increasing die sizes and rising transistor counts
may soon lead to a situation in which distributing a high-frequency global

clock signal with low skew throughout a large die is prohibitively expen-
sive in terms of design effort, die area, and power dissipation. GALS
systems eliminate the need for careful design and fine-tuning of a global
clock distribution network. While asynchronous systems eliminate the
clock altogether, the industry is not yet ready to switch to a completely
asynchronous design style mostly because design tools in this arena are
not as mature as those for synchronous design.

2.1 Clock Power

In cutting-edge processor designs, the clock distribution network is
one of the most power-hungry parts. For instance, the Alpha 21264 had
a clock distribution network which consumed 24 watts out of the proces-
sor’s total power budget of 72 watts. High power is not only an issue for
mobile devices, but is also an issue for other chips; for instance in the first
generation Alpha, the single-line driver of the clock grid led to thermal
management problems since the continuous switching at the driver led to
a very high temperature at the chip’s center and hence a high tempera-
ture gradient [16]. Power has thus become a first-class constraint in clock
system design.

2.2 Clock Skew

Restle et al. have argued in [17] that clock skew arises mainly due to
process variations in the tree of buffers driving the clock. Since device ge-
ometries will continue to shrink and clock frequencies and die sizes will
continue to increase, global clock skew induced by such process varia-
tions can only get worse. Hence we argue that we will reach a point
where clock skew will eat up a significant proportion of the cycle time
and thus, will directly affect performance. For instance, the first release
of Intel’s Itanium core had a clock skew that was 9% of the cycle time
using traditional clock distribution techniques; using a network of active
deskewing elements [18], the clock skew was reduced to 2% of the cycle
time. While techniques like active deskewing help to push the envelope
for clocked systems further, they come at additional cost in terms of die
area and power dissipation. At some point, pushing the limits of global
clock distribution networks will lead to diminishing marginal returns. At
that stage, GALS design techniques will come in useful.

2.3 Multiple-Clock Dynamic-Voltage Designs

Most of applications running on core processors (be it high-end, em-
bedded or application specific) exhibit a wide range of run-time profiles,
both within and across applications. This is mainly manifested via non-
uniform resource usage, as well as bursty communication patterns among
various parts of the pipeline. One such example is the fetch stage dur-
ing which the I-cache is accessed and instructions are brought into the
fetch queue. While an I-cache miss is being resolved, the issue and exe-
cution stages of the pipeline may proceed at their own pace until no more
instructions advance in the pipeline due to pending dependencies. A sim-
ilar situation may appear in case of non-blocking D-cache misses. In this
case, multiple outstanding D-cache misses are resolved while instructions
may proceed normally through the pipeline. In addition, if there are in-
structions non-critical to the overall performance (e.g., infrequent floating
point operations in integer applications), their execution may proceed at
a lower speed without significantly affecting performance. While mul-
tiple clock domains offer this flexibility, they also come with additional
potential for power savings. Such synchronous blocks whose speed may
be gracefully scaled down, can also run at a lower voltage, thus providing
additional power savings.

Since usage profiles and communication patterns among pipeline
stages vary within and across applications, such MCDV cores should be



able to dynamically adapt the speed and corresponding voltage for each
synchronous block such that overall performance is kept within certain
limits. As it will be shown later, a MCDV core can be better than a fully
synchronous core as far as their power-performance trade-off is concerned
given certain specific conditions.

2.4 Theoretical Efficiency of Voltage Scaling in MCDV
Cores

In this section, we provide some theoretical results on the efficiency
of using fine-grained dynamic voltage scaling in multiple-clock dynamic
voltage cores. We assume that the following hold:

o \We consider the case of pipelined cores in which each clock domain
i has n; pipe stages, with L; total load on the critical path of the clock
domain.

e The switched capacitance for each clock domain is C;. The voltage
and clock speed associated with clock domain i are Vyqj and fj, with
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where a is a technology-dependent factor, which is 1.2 to 1.6 for
current technologies [19] and V; is the threshold voltage.

Lemmal Assuming a linear pipeline organization (without feedback
paths), the SCDV pipeline achieves better energy savings than the MCDV
under the same slowdown factor per computation, if the switched capaci-
tance per clock domain C;j is proportional to the total load on the critical
path L;.

Proof We assume that the SCDV base pipeline is run at a voltage Vgq such
that the latency per computation is the same as the MCDV pipeline with
k clock domains, each running at voltage Vqq; (i=1,2,...,k). We also
assume that between clock domains (i, i+ 1) there exists a load overhead
of I; due to synchronization and voltage level conversion. To achieve the
same latency, the following has to hold:
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Function f is also monotonically decreasing; thus from (1) and (2) and
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which shows that the SCDV pipeline performs better energy-wise than the
MCDV for the same slowdown factor (or performance penalty) under the
assumptions of Lemma 1.

This result is in fact a generalization of the optimal voltage scheduling
problem for applications with hard real-time constraints. Ishihara and
Yasuura showed in [20] that using a single voltage level in a dynamic
voltage scheduling environment achieves the best energy savings under
given performance constraints.

The general problem is, however, far from being that simple. In fact,
in most designs, there is no relationship between the load on the critical
path and the corresponding switched capacitance for that clock domain.
We show in the following a necessary condition for fine-grained dynamic
voltage assignment to different clock domains for achieving better energy
savings for MCDV when compared to SCDV.

Lemma?2 In case of a 2-clock domain pipeline, if the switched capaci-
tance per clock domain C; is not proportional to the load on the critical
path Lj, MCDV cannot achieve better energy savings than SCDV for the
same slowdown factor, unless the lower voltage is applied to the stage
which satisfies the relation

Cy S Ly
C1+C; " Li+Lo

Proof AsinLemma 1, we have L1V2, | +LoVZ , > (Ly + L)V, if (1)
is satisfied for k = 2. For the MCDV to be better in terms of energy than
the SCDV, we need

2 2
L1Via1 +L2Va 2 V2 C1Via1 +C2Va 2
L+l = %= Ci+G
From the above, we get
Vdd,1 < Vdd,2

This result confirms our intuition that in order to achieve energy sav-
ings in MCDV versus the SCDV design for the same slowdown factor,
lower voltages should be applied to the more power consuming clock do-
mains if they are also contributing the least to the end-to-end latency per
computation. We will consider the results provided by these two lemmas
when we define the control strategy based on the application profile.

We point out that the above results hold only for linear pipelines, with-
out feedback paths. While this is not the case even for the simplest proces-
sor cores (which have to bypass results among different execution stages)
it can be considered as such since usually some of the feedback paths are
not on the critical path, and thus, they don’t affect overall performance.
In addition, if multiple computations are executed in parallel (as in the
case of high-end processors), computations off the critical path can be ex-
ecuted at a lower voltage, without affecting the overall performance, for a
given slowdown factor. We present in the following sections an adaptive
approach for GALS processors which is able to tune the operating voltage
of different clock domains, according to the usage of that clock domain.

3 GALSArchitecture Design

We discuss below some issues involved in GALS design, specifically
focusing on superscalar out-of-order microprocessors, examples of which
are the Alpha and Pentium families of processors. These designs extract
a high level of instruction-level parallelism from the code using out-of-
order and speculative execution and have the capability of issuing and
executing several instructions at the same time. Our focus is on architec-
ture level issues. GALS design involves many other complicated issues
at the circuit and system levels which we do not attempt to address, for
instance:
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Figure 1. Base vs. GALS machine organization

e Metastability resolution: The problem of metastable signals and
techniques for metastability resolution using synchronizers and ar-
biters has been the focus of research in asynchronous design. Our
approach uses asynchronous FIFOs [6] between clock domains and
this in turn relies on synchronizers. For comparison, we have also
included models for FIFOs using arbiters for clock pausing when-
ever metastable conditions occur [9, 13].

e Local clock generation: Each clock domain in a GALS system
needs its own local clock generator; ring oscillators have been pro-
posed as a viable clock generation scheme [4, 7]. We assume that
we can use ring oscillators in each synchronous block in the GALS
processor.

e Failure modeling: A system with multiple clock domains is prone
to synchronization failures; we do not attempt to model these since
their probabilities are miniscule (but non-zero) and our work does
not target mission-critical systems.

3.1 Defining Synchronous Blocks

Hemani et al. have described an automated strategy for defining lo-
cally synchronous blocks in a GALS design [5]. Starting from a hierarchi-
cal RTL description of the system, their method uses iterative refinement
to get an optimal partitioning of the system into a number of synchronous
blocks, using clock power as an objective function for optimization. In
a custom-designed system like a high-end microprocessor core, perfor-
mance requirements justify manual intervention in the partitioning phase.
Since the primary motivation behind GALS design is to avoid distribut-
ing a common clock signal over large areas, the strategy for partitioning
the design into synchronous blocks will largely be dictated by physical
design aspects. However, since asynchrony can lead to higher latencies,
it is crucial to take architecture issues into account when partitioning the
design.

In the traditional superscalar out-of-order processor model shown in
Figure 1 (a), the instruction flow consists of fetching instructions from

the instruction cache, using the branch predictor for successive fetch ad-
dresses. The register dataflow consists of issuing instructions out of the
instruction window to the integer and FP units and forwarding results to
dependent instructions. The memory dataflow consists of issuing loads to
the data cache and forwarding data to dependent instructions. Introducing
high latencies in any of these three crucial flows will have an impact on
the processor’s performance.

The level 1 instruction cache and the branch predictor taken together
are a good candidate for one synchronous block corresponding to the
front-end of the pipeline. In some architectures, notably in CISC archi-
tectures like Intel’s 1A-32, the decode logic has large area and consists of
several pipe stages; in such cases, decode would be a good candidate for
another synchronous block.

Inside the out-of-order execution core, it is difficult to make general-
izations and say which parts of the core may be decoupled without much
overhead and which may not; such decisions are very specific to the mi-
croarchitecture and the instruction set of the processor. Area and clock
distribution considerations obviously suggest a partitioning to some ex-
tent. For instance in the 21264 Alpha the ‘major clocks’ (tapped from the
global clock and distributed locally) are defined this way, based mostly
on the top-level hierarchy of the design; these clocks suggest a partition-
ing system for that specific implementation. The 21264 has the following
major clocks [21]: (1) instruction fetch and branch predict (2) bus inter-
face unit (3) integer issue and execution units (4) floating point issue and
execution units (5) load/store unit (6) pad ring. Guided by this, we have
chosen synchronous blocks for our GALS design, which we describe be-
low.

3.2 The Proposed GALS Architecture

To compare GALS with synchronous microarchitecture organization,
we have chosen to have five clock domains in the GALS design. This
decision was driven by the functional organization of our processor and
by the physical design of similarly organized cores. Figure 1 shows the



Stage | Operation Domains

1 Fetch from I-cache 1

2 Decode 2

3 Register rename, Regfile read 2

4 Dispatch into issue queue 2, 3/4/5
5 Issue to functional unit 3/4/5

6 Execute 3/4/5

7 Wakeup, Writeback 3/4/5

8 Regfile write, Commit 3/4/5, 2

Table 1. Pipeline stages in our processor models

pipeline structure we studied. In the base (synchronous) model, all the
modules run off the same clock. In the GALS model, various regions are
clocked using different clock signals independent of each other. The first
stage of the pipeline consists of an instruction cache and branch prediction
unit (clock domain 1). The next stages are instruction decode and register
rename (clock domain 2). There are three issue queues in the design: one
for integer instructions (clock domain 3), one for floating-point instruc-
tions (clock domain 4) and one for loads and stores (clock domain 5). In
the GALS processor, the integer ALUs and the integer issue queue are in
the same clocking region. This ensures that dependent instructions within
the integer issue queue can be issued back-to-back as soon as operands
are available. Similarly, floating-point ALUs and the floating-point issue
queue share one clock, and the data-cache and memory issue queue share
one clock.

Table 1 gives a summary of the pipeline stages in the processor mod-
els we developed for our experiments, along with a listing of the clock
domains of the GALS machine which are involved in each pipe stage.

3.3 Asynchronous Communication Mechanisms

In the synchronous version, communication between successive logic
blocks is done using regular pipeline registers. In a GALS design, the
choice of an asynchronous communication mechanism is critical. Many
methods have been proposed for clocking GALS systems with stretchable
clocks [4, 7, 8]. Such clocking systems manage asynchronous communi-
cation between two clock domains by stretching one phase of both the
clocks while the handshaking and data transfer takes place. This is typ-
ically done using an arbiter element inside the loop of a ring oscillator.
While this mechanism provides an elegant and fail-safe method of com-
munication, it also stalls both the synchronous blocks during the transac-
tion.

FIFO
req —= =~ red
data —»= D ....... D = data
full<— & i =empty
clk1 — [P ] {—clk2
— valid

Figure 2. Asynchronous FIFO for interfacing two clock
domains

Chelcea and Nowick have presented in [6] a design for a low-latency
token-ring based FIFO which can be used for asynchronous communica-
tion between synchronous blocks. The interfaces to the FIFO are shown
in Figure 2. Their design uses full and empty signals to indicate the oc-
cupancy of the FIFO. The empty signal is controlled by the producer of

Start

Full speed
N consecutive N consecutive
cycles of low cycles of high
occupancy occupancy

Figure 3. Outline of Dynamic Clock Management

data into the FIFO and is synchronized to the consumer’s clock; similarly,
the full signal is controlled by the consumer and is synchronized into the
producer’s clock. A few modifications are made to the circuit to account
for latencies in synchronization and to prevent deadlock. In addition to
providing high throughput in the steady state, the design has low latency
when compared to other methods we tried and tested. Since the focus of
our work is at a higher level of abstraction, a complete description of the
operation of the circuit can be found in [6]. We have included a cycle-
accurate model of this FIFO in our simulation environment.

Semeraro et al. [13] have also used a FIFO-based communication
mechanism for their multiple clock domain implementation. In their case,
metastability is resolved by stopping clocks only when the rising clock
edges of the producer and consumer clock domains are within a certain
threshold. For comparison, we have also included this FIFO model in our
simulation environment.

3.4 Dynamic Clock and Voltage Management

Since there are several independent clocks in a GALS design, we have
the flexibility of designing various logic blocks to operate at different fre-
quencies. In addition, if we have a balanced pipeline design to start with,
we can slow down synchronous blocks that are off the critical path of the
design while keeping the others running at full speed. The slower clock
domains could also operate at a smaller supply voltage, thus producing
additional power savings. The relation between supply voltage Vgyq and
logic delay (or cycle time) D is governed by the following equation:

Vdd

DO ——7——
(Vgg — V)@
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where V; is the threshold voltage of the transistor and a is 1.2 to 1.6 for the
current technologies. Since energy consumption in CMOS is dependent
on the square of the supply voltage, reducing supply voltage can lead to
significant energy benefits.

We propose a multiple-clock dynamic-voltage core processor where
the speed and voltage of each synchronous block are adapted dynamically
based on the application profile. Our method for dynamic clock manage-
ment involves changing the operating frequencies (and supply voltages)
of the integer, memory and floating-point clock domains in the GALS
processor (indicated as clock domains 3, 4 and 5 in Figure 1). We do
not try to slow down the front-end stages since the front-end bandwidth is
critical to most applications.

Figure 3 shows the outline of our method. The processor starts up with
all clocks running at full speed. To minimize the performance impact of
clock speed reduction, we monitor the occupancy of each issue queue and
we reduce the frequency to a lower value only when the queue occupancy
drops below a low threshold for N consecutive cycles. Since the execution
characteristics may be different even within different parts of the same



application, we continue monitoring the issue queues for a number of N
consecutive cycles. If the occupancy rises above a certain threshold for
these N consecutive cycles, we switch the clock back to full speed. We
found that 2K is a good value for N; using smaller values leads to many
false alarms in lowering the clock frequency, while with larger values we
lose out on potential power saving opportunities. This implementation is
a simple hysteresis loop with only two clock speeds; we chose to keep
it simple because more complex and finer-grained implementations need
finer-grained voltage supply switching. Further, we assume that useful
work can be done in the intermediate switching periods as shown in [22].
We also assume that level-conversion circuits are built into the drivers of
the asynchronous FIFOs to interface clock domains running at different
voltages.

4 GALS Smulation Framework

4.1 Event-driven Timing Simulation

We have used a general-purpose event-driven simulation engine which
can be used to simulate any asynchronous system, synchronous (clocked)
system, or a system which contains both asynchronous and synchronous
components [23].

To set the system in motion, we need to insert one or more starting
events into the event queue. The queue contains events sorted in increas-
ing order of their scheduled times. To process the queue, we read succes-
sive events from the head of the queue and execute them by calling the
appropriate action functions. To simulate systems with multiple clocks,
we need to insert one event for each clock domain; for each such event,
we need to specify a period of execution. When the execution engine
processes such a periodic event, it schedules another instance of the same
event into the queue, thus representing the next cycle of execution of the
clocked system. Using this system, we can simulate any mixture of mul-
tiple clocks running at different speeds with specific or random starting
phases.

4.2 Performance and Power Modeling

To evaluate the architecture proposed above, we wrote models of both
the synchronous and GALS processors based on the SimpleScalar toolset
[15]. To simulate the GALS machine, we made use of the event-driven
simulation engine described above. We have set up five clock domains in
our simulator and in the first set of experiments, had all the clocks running
at the same speed. The starting phase of each clock was set to a random
value at runtime.

We have used the Wattch framework [14] to add power models to
our processor simulation framework, including power consumption of the
asynchronous FIFOs. Wattch is an activity-driven power simulator which
has been shown to be within 5 to 10% accurate when compared to real pro-
cessors. Wattch provides switching capacitance modeling for structures
like ALUs, caches, arrays and buses in a processor. These are integrated
into our base and GALS simulators to provide energy statistics. We have
also modeled unused units as consuming 10% of their total power con-
sumption to account for leakage and the overheads associated with clock
gating.

In addition to modeling the switching capacitance of memories and
buses inside the processor, we have also modeled the switching capaci-
tance of clock grids. For the synchronous base processor model, we as-
sumed a clock distribution hierarchy resembling that of the 21264 Alpha
processor. We modeled one global clock grid and five local clock grids
corresponding to the five clock domains discussed above. The areas and
metal densities of each clock grid were approximated by the numbers

Fetch and decode rate 4 inst/cycle
Integer issue queue size 20

FP issue queue size 16

Memory issue queue size 16

Integer registers 72

FP registers 72

L1 data cache 16KB 4-way

1 cycle latency
16KB direct-mapped
1 cycle latency
256KB 4-way

6 cycles latency

L1 instruction cache

L2 unified cache

FIFO Size 4 entries, up to 4 inst/entry
Integer issue queue thresholds 719
FP issue queue thresholds 3/5

Memory issue queue thresholds | 5/8

Threshold for clock pausing 30% of the

largest clock period
FP 2.4 slowdown
Mem 1.2 slowdown
Int 1.8 slowdown
FP 1.2 slowdown
Mem 1.2 slowdown

Aggressive mode

Moderate mode

Table 2. Microarchitecture organization

published for the 21264 processor. For the GALS processor, since there
is no global clock, we eliminated the switching capacitance of the global
clock grid and retained the five major clock grids, corresponding to the
distribution networks for each of the synchronous blocks. In all cases, we
have assumed that clock gating is used to reduce the power consumption
of unused modules.

Table 2 shows some details of the microarchitecture. The low and
high occupancy thresholds for the three queues were chosen close to half
of their maximum size, and less in the case of FP queue where a higher
threshold may trigger a larger performance loss. We have used two dif-
ferent modes of operation: an aggressive mode for benchmarks that have
a low number of FP operations which don’t affect much performance, but
do affect energy (in this case Lemma 2 is applicable); and a moderate
mode for applications with an almost equal mix of integer, FP and mem-
ory operations. The aggressive mode was used for all benchmarks, except
swim, fpppp and epic.

5 Experimental Results

To assess the performance and power of our proposed GALS processor
design, we have used both the base and GALS simulators on a subset of
Spec95 and Mediabench benchmarks. To this end we have performed two
sets of experiments:

1. Base versus GALS (MCSV) performance and power analysis with
all synchronous blocks of the MCSV system running at the same
clock frequency and supply voltage. Both the synchronizer (MCSV)
and pausible clock (MCSV-P) cases have been considered.

2. Base versus a multiple-clock, dynamic-voltage GALS design
(MCDV), implemented as discussed in section 3.4. Both the syn-
chronizer (MCDV) and pausible clock (MCDV-P) cases have been
considered.



5.1 Power and Performance Analysis

On the base and MCSV models, we ran benchmarks from the Spec95
and Mediabench CPU benchmark suites to obtain indications of power
and performance trends. In the first set of experiments, we kept all the
local clock frequencies in the MCSV model equal. The relative stag-
ger between the clock signals was set at runtime to random values. Not
surprisingly, the MCSV processor is slowed down by asynchronous com-
munication and does not perform as well as the synchronous processor.
Figure 4 shows the relative slowdown of various benchmarks running on
the MCSV processor when compared to the synchronous processor. On
an average, the benchmarks we ran on MCSV were slower by 10% for
MCSV and by 9% for MCSV-P. As expected, the fppp benchmark had
the lowest performance hit. This is due to the application’s exceptionally
small proportion of branch instructions; on an average only one in every
67 instructions is a branch in this benchmark, while most other applica-
tions have one branch for every five or six instructions. This indicates that
the asynchronous FIFO models used in our design have good throughput
in the steady state when there are no branch mispredictions. This also sug-
gests that branch mispredictions will prove more expensive in the MCSV
model due to its longer recovery pipeline.
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Figure 4. Performance of the GALS model relative to the
base model

Figures 5, 6 and 7 show the relative average power and total energy
consumption of the MCSV processor, normalized against the total en-
ergy and average power consumption of the synchronous processor re-
spectively. With the removal of the global clock, we get in some cases
up to 5% reduction in the total energy, whereas in some cases the power
savings due to global clock grids is offset by the extra power consumption
due to longer execution times. In fact, the increase in total energy in these
cases (notwithstanding the reduction in average power) can be attributed
to the extra time taken for program execution (e.g., mpeg2 and pegwit).
For the benchmarks we tested, though, the total energy is higher on aver-
age by 1% for MCSV and about the same for MCSV-P, while the average
power consumption is reduced by 10% and 12%, respectively.

On close examination of other statistics in the processor pipeline, we
can see that the introduction of asynchronous communication latencies
inside the design has led to various other overheads which in some cases
offset the power gains due to the absence of global clock. For instance, the
the average time taken by each instruction from the fetch to the commit
stage increases by 65% on average for all benchmarks in the GALS pro-
cessor, out of which 25% is spent in the FIFOs and 40% is the overhead
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Figure 5. Normalized power
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Figure 6. Normalized energy (FIFOs with synchronizers)

due to the longer recovery pipeline and due to slower result updates. This
is because the addition of asynchronous communication channels leads to
an increase in the effective length of the pipeline. This increase in pipeline
length in the MCSV processor also leads to 17% higher speculative ex-
ecution on the average across the benchmarks we tested. Similarly, the
average number of in-flight instructions in the pipeline is higher in the
GALS model; so is the average occupancy of the register allocation tables
and issue queues. For instance the integer register allocation table occu-
pancy went up from 15 in base to 23 in MCSV for the ijpeg benchmark.
All these factors lead to higher switching activity in the MCSV machine
and the power savings we get from eliminating the global clock grid may
be offset by this extra switching. Hence, we conclude that eliminating
the global clock and using several local clocks cannot by itself lead to
dramatic power savings.

5.2 Analysis of MCDV cores

For this set of experiments, we have compared the base (fully syn-
chronous) and the MCDV machine which is capable of dynamically
changing the clock speeds and voltages for various synchronous blocks.
In this case, we have implemented the scheme described in Section 3.4
with a value of a = 1.6. We have considered a window size of 2K cycles
for monitoring the size of the three queues. As it can be seen in Figures 4,
5, 6 and 7 (columns MCDV and MCDV-P), the average power is reduced
by an additional 12% on average, with an average additional decrease in
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Figure 8. Breakdown of total energy for base vs. GALS

performance of only 2%. Total energy is also decreasing by an additional
average of 12%.

To compare the efficiency of using dynamic clock and voltage manage-
ment, we report under SCDV (Single Clock, Dynamic \oltage) in Figures
6 and 7 the normalized energy values obtained for the same performance
penalty as the MCDV design if the fully synchronous core were run at a
lower supply voltage. As it can be seen, the SCDV core is more energy-
efficient than the MCDV core for 7 of the total of 11 benchmarks tested.
In case of gcc, perl, fpppp and epic MCDV and MCDV-P are either com-
parable, or up to 8% better than their synchronous counterpart.Overall, an
average power reduction of 22% is achieved at 12% loss in performance.

Finally, we show the breakdown of average power values for a
few benchmarks considered in the base (fully synchronous) and GALS
(MCSV) cores. As it can be seen in Figure 8, the total clock power is
reduced due to the elimination of the global clock. However, due to in-
creased execution time and higher speculation, the power consumed by
the front-end increases slightly, as does the power consumption for the
D-cache and execution core.

6 Conclusion

In this paper, we have used a power/performance modeling and anal-
ysis framework for high-end, superscalar out-of-order processors using
multiple clocks, and possibly multiple, dynamically adjustable voltages to

show a direct comparison of power and performance of a GALS (MCSV)
design against a comparable synchronous design. The experimental ev-
idence shows that the overhead associated with GALS processors can
sometimes offset the power savings achieved in the clock power, although
in a few cases, the average power cost is decreased by up to 12% and on
average by 10% for the benchmarks considered. Nevertheless, the pres-
ence of independent clocks in the design permits a fine-grained trade-off
between speed and power. We have shown that MCDV designs may be
up to 8% more power efficient than their fully synchronous counterpart in
select cases. Overall, by using fine grain clock speed and voltage adapta-
tion, an average power savings of 22% (up to 32%) can be achieved with
12% average loss in performance.
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