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ABSTRACT
With the advent of fast computer systems, Scientists are now able
to generate terabytes of simulation data. Unfortunately, the shear
size of these data sets has made efficient exploration of them
impossible. To aid scientists in gathering knowledge from their
simulation data, we have developed an ad-hoc query
infrastructure. Our system, called AQSim (short for Ad-hoc
Queries for Simulation) reduces the data storage requirements and
access times in two stages. First, it creates and stores
mathematical and statistical models of the data. Second, it
evaluates queries on the models of the data instead of on the entire
data set. In this paper, we present two simple but highly effective
statistical modeling techniques for simulation data. Our first
modeling technique computes the true mean of systematic
partitions of the data. It makes no assumptions about the
distribution of the data and uses a variant of the root mean square
error to evaluate a.model. In our second statistical modeling
technique, we use the Andersen-Darling goodness-of-fit method
on systematic partitions of the data. This second method
evaluates a model by how well it passes the normality test on the
data. Both of our statistical models summarize the data so as to
answer range queries in the most effective way. We calculate
precision on an mlswer to a query by scaling the one-sided
Chebyshev Inequalities with the original mesh’s topology. Our
experimental evaluations on two scientific simulation data sets
illustrate the value of using these statistical modefing techniques
on large simulation data sets.

Categories and Subject Descriptors
E.4 [Data]: Coding and Information Theory - data compaction
and compression. G.3 [Mathematics of Computing]: Probability
and Statistics - distribtaion functions, multivariate statistics.
nonparametric statistics’, statistical computing. H.2.4 [Database
Management]: Systems - query processing. H.2.8 [Database
Management]: Database Applications - data mining, scientific
databases. H.3.1 [hfformation Storage and Retrieval]: Content
Analysis and Indexing - indexing methods.

General Terms
Algorithms, Management Measurement, Performance,
Experimentation.

Keywords
statistical modeling, large-scale scientific data sets, approximate
ad-hoc queries.

1. INTRODUCTION
Scientific experiments ran on the latest super computers are
producing large-scale simulation data. The size of these data sets
is typically on the order of terabytes, which makes even the best
visualization tools inadequate. The need to efficiently explore
these large simulation data sets has led to a surge of interest in
scalable modeling and visualization tools [ 1 ] [2] [3] [4] [7] [9].

In the DataFoundry Project, we have created a system, called
AQSim (s!aort for Ad-hoc Queries for Simulation). Figure 
illustrates AQSim’s tWO processors. The first processor (a.k.a,
model generator) builds statistical and mathematical models of
the data. Subsequently, the second processor (a.k.a, query
processor) executes user queries on the generated models to
explore the data set.

Since most scientific sinmlation code generate mesh data, AQSim
uses data in mesh format to build its models. A mesh data set
consists of interconnected grids of small zones (see Figure 2).
Data points are stored in the zones. Mesh data sets usually vary
with time, contain multiple dimensions (i.e., variables), and have
a huge number of irregular grids. Musick and Critchlow provide
a nice introduction to scientific mesh data [3].

The main advantages of AQSim are two-folds. First, the model
generator reduces the data storage requirements since models take
less space than the original data set, which typically resides on
tertiary storage. Second, the query processor decreases the access
times since models of the data are queried.
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Figure 1. AQSlM Architecture

In this paper, we describe and evaluate two statistical modeling
techniques for AQSim. The first model captures the true mean of
systematic partitions of the data. We call this model the mean
modeler. The error on this model is a variant of the root mean
square error (RMSE). The main advantages of mean modeler are
as follows: (i) it makes no assumptions about the distribution 
the data, and (it) it calculated its model parameters through one
sweep of the data. Our second model captures thenormality of
systematic partitions of the data by utilizing the Anderson-Darling
goodness-of-fit test [5]. This model is called the goodness-of-fit
modeler. The error on this model is the Type I error associated
with the goodness-of-fit test.

Figure 2, A Mesh Data Set Representing a Star

Despite their simplicity, these models have performed extremely
well on our empirical studies of range queries. The answer to a
query is judged by its precision to the original data. We calculate

precision associated with a query’s answer by scaling the one-
sided Chebyshev inequality with the original mesh topology.

In the next section, we will describe our modeling algorithms.
Then, we will present two case-studies, which illustrate the value
of our modeling techniques, in section 3. We follow that with a
discussion of some related, current, and future work. Finally, the
paper concludes with some final remarks.

2. AQSIM’S MODEL GENERATOR
AQSim’s model generator systematically partitions the data and
builds models on each partition. This section describes two
partitioning strategies and two statistical modeling techniques for
AQSirn.

2.1 Partitioning Strategies
AQSim’s model generator builds models on partitions of the
original data. Partitioning stops when models are accurate within
a user-defined error threshold.

AQSim has two distinct partitioning strategies. The first is a top-
dora1 approach, where the data is divided in a four-way bisection
on the spatial-temporal space (see Figure 3). The second
approach is a bottom-up strategy, where the data points are
conglomerated based on their zones in the mesh topology (see
Figure 4).
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Figure 3. Top-Down Partitioning of
the Data at a Particular Time Step

Table 1 summarizes the advantages of the two approaches. The
bottom-up strategy is preferred over the top-down approach since
it is cheeper computationally and it captures the mesh topology.

Table 1. Properties of AQSim’s Partitioning Strategies

Strategies Bottom-Up Top-Down

Mesh Topology
Captured ,

Computationally
Expensive

Yes

No

o(N~o,o × Iog(N~,,~))

No
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Figure 4. Bottom-Up Partitioning of
the Data at a Particular Time Step

2.2 Mean Modeler
Each partition of the data has a set of variables associated with it.
For each variable vi, the mean modeler is/zl, where/.ti is the mean
of the data points associated with vl in partition p~.

For the mean modeler, partitioning of the data stops when either
one of the following two conditions is true:

1. Vv~ NonPartitioningVariables in node ;7, o,, = 0.
2. Vv~ NonPartitioningVariables in node ;7,

(llv - c.o~. _< rain,.) & (max,, _< ~t,, + c.o,,).

The first stopping criterion represents the simple case of partitions
with either I data point or a set of data points with standard
deviation of zero. In the second stopping criterion, the partition
threshold, c, is a real number greater than or equal to zero. This
user-defined threshold is a scaling factor for the standard
deviation of variable v. For example, c = 1 means that the
minimum and maximum values for each non-partitioning variable
must be within l standard deviation of the mean of the data points

~in the node. The advantage of the above stopping criteria is that it
does not assume any distribution on the data points.

For the mean modeler, standard deviation is the same as RMSE
(root mean square error) since the true mean, which is an
unbiased estimator, is used as the model. The RMSE represents
the error associated with tlle mean modeler.

2.3 Goodness-of-Fit Modeler
For each variable v,. in partition Pk, the goodness-of-modeler is
N(//~, o’~). That is, the model I~or v,. is a normal distribution with
mean,/zi, and standard deviation, cri.

For the goodness-of-fit modeler, partitioning stops when the
hypothesis test for normality is not rejected. We use the
Anderson-Darling test ./br normality (which is considered to be
the most powerful goodness-of-fit test for normality) for our
goodness-of-fit test [5].

The Anderson-Darling test involves calculating the A2 meiric for
variable vi ~ N(,ui, o-i), which is defined to be

1 n
a~ j=l J

where n = number of data points for vl and z/ = O( x j-It i ).
o-i

~(.) is the standard nomaal distribution function.A2~l+ 0.75+ 2.25"] exceeds the critical value

We reject no if [, ~ ---~-)

associated with the user-specified error threshold. Otherwise, we
accept/4o.

For each variable v;, the error on this model is defined to be
Pr(reject Ha / 14o is true), where Ha is the null hypothesis and
states that the distribution of a variable 1:1 is nonnal. In other
words, the model error is equal to the Type I error.

3. AQSIM’s QUERY PROCESSOR
AQSim’s query processor takes a user’s query and a value for the
amount of time that the user is willing to wait for an answer.
Then, while .its running time is less than the user’s constraint, the
query processor searches the hierarchical partitions (which were
made by the model generator) for the partitions that answer the
user’s query with the highest precision.

Preeision(Q,~.~,., model./, partitionl) is defined to be the precision of
the answer that modelj ofpartitioni would produce for the query,
Q,~, as a percentage of partitioni’s mesh topologv. Specifically,
Precision(Q ...... modelj, partitionl) = (partition:--~filled volume) 
P(Q ...... mode!/, paritioni), where filled_volume corresponds to the
percentage of non-empty space in the partition’s spatial bounding
box and is defined to be

# of children
Z (filled _ volumechild X volumechild )

filled_volumep,,.~,~ child =1
volume parent .

P(Q ..... modelj, nodei) is calculated by using the one-sided
Chebyshev inequalities [6], which are defined to be

o-2
¯ P(X </.t-a) <-o-2 + 

o-2
¯ P(X >/z +at) < o-2 +a,2

Here is a simple example of how precision is calculated. Suppose
we are given the following query, pressure < 0.5. Then, for a
partition, sayp, the precision is equal to

Precision(pressure <_ 0.5, mean modeler, p) = (p~filled._volume)
× P(pressure < 0.5) = (p---t./Hled_volume) × P(pressure -<#p,,~,,e-

2
o-pressure where aa) <_ (p-.--trilled_volume) 2 ’

o-pressure + (,U pressure - 0.5)

= ,ueQps - 0.5.

For more complicated queries, we make new random variables
and calculate mean and standard deviations for them based on the
original mean and standard deviations. The advantage of using
the Chebyshev inequalities is that no assumption is made on the
distribution of the data in a node.
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4. EXPERIMENTAL EVALUATION
4.1 The Can Data Set
Our first data set represents a wall crushing acan. It has 14
variables,1 44 time steps, and 443,872 data points. Figure 5
depicts this data set in its first time step when all the points 440K
points are plotted.

~.’~;.~=."~
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Figure 5. Can Data Set at its First Time Step

Table 2 lists the compression results on the can data for the mean
modeler. Recall that for the partition threshold for this modeler
restricts the distance between minimum and maximum values of a
variable and its mean value with respect to RMSE.

Table 2. Mean Modeler’s Compression Results
on the Can Data

Partition % of
Threshold Compression

1.00 4.2

1.50 33.0

1.75 40.1

2.00 51.5 I

2.25 62.4

2.50 71.6

2.75 78.1

3.00 82.6

% of non- Avg. # of
Total # ot leaf % of leaf data point
~artitions partitions partitions in a

partition

425,075 19.4 80.6 1.3

297,566 13.4 86.6 1.7

265,939 12.5 87.5 1.9

215,255 I 1.1 88.9 2.3

166,986 10.3 89.7 3.0

125,912 9.6 90A 3.9

97,410 9.1 90.9 5.0

77,277 8.6 91.4 6.3

i The can data set’s variables are as follows: time, x axis, y axis, z

axis, pressure, acceleration in x axis, acceleration in y axis,
acceleration in z axis, velocity in x axis, velocity in y axis,
velocity in z, displacement in x axis, displacement in y axis,
displacement in z axis.

For our mean modeler experiments, Figures 6 through 8 show the
can data set at its first time step when the query time > 0 is posed
with no constraint on execution time (that is precision equals
100%) and with partition thresholds of 1.00, 2.00, and 3.00,
respectively. As expected, we get better compression as the
partition threshold for the mean modeler gets larger (since we are
allowing the range of values for a variable to me larger).
However, as you see in Figure 8 even with 82.6% compression,
we are able to return an answer with 100% precision.
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Figure 6. Can Data Set at its First Time Step with Partition
~Threshold of 1.00, Query Time > O, and Precision = 100%

;.:.~.L~.e o’-

Figure 7. Can DataSet at its First Time Step with Partition
Threshold of 2.00, Query Time > 0, and Precision = 100%
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Figure 8. Can Data Set at its First Time Step with Partition
Threshold of 3.00, Query Time > 0, and Precision = 100%

Table 3 lists the compression results olm the can data for time
goodness-of-fit modeler. The partition thresbold in this table
represents time confidence region of our normality test, which is
equal to 100 x (1 - Type I error)¯

Table 3. Goodness-of-Fit Modeler’s Compression Results .
on the Can Data

% % of non-
Avg. # of

% of leaf data point% of Total # ot leaf partitions in a
Partition Compression ~artitions partitions

Threshold partition

50.0 39.6 272,583 12.6 87.4 1.9

80.0 57.3 189,533 10.1 89.9 2.6

85 60.9 173,766 9.7 90.3 2.8

90.0 65.8 151,818 9.3 90.7 3.2

95.0 73.7 116,948 8.8 91.2 4.2

99.99 91.4 38,344 7.3 92.7 12.5

For our goodness-of-fit modeler experiments, Figures 9 through
l 1 show the can data set at its first time step when the query time
> 0 is posed with no constraint on execution time (that is
precision equals 100%) and with partition thresholds of 99.99%,
95%, and 50% respectively. Again not surprisingly, we get better
compression as the partition threshold tbr the goodness-of-fit
modeler gets larger (since time confidence region shrinks).
However, as you see in Figure I 1 even with 91.4% compression,
we are able to remm an answer with 100% precision.

e

Figure 9. Can Data Set at its First Time Step with Partition
Threshold of 50%, Query Time > 0, and Precision = 100%

~m4 ,grin

Figure 10. Can Data Set at its First Time Step with Partition
Threshold of 95%, Query Time > 0, and Precision = 100%
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Figure I 1. Can Data Set at its First Time Step with Partition
Threshold of 99.99%, Query Time > 0, and Precision = 100%

4.2 The Astrophysics Data Set
Our second data set represents a star in its mid-life. It has 18
variables,2 16 time steps, and 1,708,852 zones. Figure 12 depicts
this data set in its first time step when all the points 1.7 million
points are plotted.

Table 4 lists the compression results on the astrophysics data for
the mean modeler. Again, recall that the partition threshold for
this modeler restricts the distance between minimum .and
maximum of a variable and its mean value with respect to RMSE.

For our mean modeler experiments, Figure 13 shows the can data
set at its first time step when the query time > 0 is posed with no
constraint on execution time (that is precision equals 100%) and
with partition thresholds of 3.00. Similar to our experiments on
the can data set, we get better compression as ’the partition
threshold for the mean modeler gets larger (since we are allowing
the range of values for a variable to me larger). However, as you
see even with 92.1% compression, we are able to return an answer
with 100% precision.

F

Figure 12. Astrophysics Data Set at its First Time Step

Table 4. Mean Modelers’ Compression Results
on the Astrophysics Data

% of non- Avg. # ot
Partition % of total # of leaf % of leaf data poinl
Threshold Compression partitions ~artitions )artitions in 

partition

1.75 67.4 728,081 17.9 82.1 2.9

2.00 70.1 511,395 17.8 82.2 4.1

2.25 79.7 347,471 17.7 82.3 6.0

2.50 85.8 242,840 18.7 81.3 8.7

2.75 89.6 177,448 19.0 81.0 11.9

3.00 92.1 135,548 17.8 82.2 15.3

2 The astrophysics data set’s variables are as follows: time, x axis,

y axis, z axis, distance, grid vertex values, grid movement in x
axis, grid movement in y axis, d(energy)/d(temperature), density,
electron temperature , temperature due to radiation, pressure,
artificial viscosity, material temperature, material velocity in x
axis, material velocity in y axis, material velocity in z axis.



Figure 13. Astrophysics Data Set at its First Time Step with
Partition Threshold of 3~00, Query Time > 0, and

Precision = 100%

Table 5 lists the compression results on the can data for the
goodness-of-fit modeler. Recall that the partition threshold in this
table represents the confidence region of our normality test, which
is equal to 100 × (1 - Type I error).

Table 5. Goodness-of-Fit Modeler’s Compression Results
on the Astrophysics Data

% % ofPartition Compression
Threshold

80.0 66.7

85 71.2

90.0 76.4

95.0 82.8

99.99 94.3

Avg. # of
% of non- % 0fleaf data pointiTotal # of leaf

)artitions partitions partitions in 
partition

564,718 16.8 83.2 3.6

492,029 16.7 83.3 4.2

404,136 16.9 83.1 5.1

293,585 16.8 83.2 7.0

97,819 13.3 86.7 20.2

For our goodness-of-fit modeler experiments, Figures 14 shows
the astrophysics data set at its first time step when the query time
> 0 is posed with no constraint on execution time (that is
precision equals 100%) and with partition thresholds of 99.99%.
Again not surprisingly, we get better compression as the partition
threshold for the goodness-of-fit modeler gets larger (since the
confidence region shrinks). However, as you see in Figure 14
even with 94.3% compression, we are able to return an answer
with 100% precision.

p ¯i~a ca ̄  I~,II-N tlll~

Figure 14. Astrophysics Data Set at its First Time Step with
Partition Threshold of 99.99%, Query Time > 0, and

Precision = 100%

4.3 Discussion
Our experimental results illustrate the value of using simple

/-.
statistical modeling techniques on scientific smaulat[on data sets.
Both of our approaches require only one sweep of the data and
generate models that compress the data up to 94°,/0.

The goodness-of-fit modeler performed better than the mean
modeler on the two data sets presented in this paper. This is not
surprising to us since our two data sets describe physical
phenomena and the goodness-of-fi! modeler is biased towards
such normally distributed data sets. In general, we prefer the
mean modeler since it makes no assumption on the data.

5. RELATED WORK
Our work is similar to Freitag and Loy’s work at Argonne
National Laboratory [7]. Their system builds distributed octrees
from large scientific data sets. They, however, reduce their data
by constraining the points to their spatial locations. They also
don’t allow the user to query the octree. Instead, the user can
view the tree at different resolutions.

STING [9] is also similar to AQSim except that it assumes that
the distribution of the data is known. It has also been rested only
on small data sets containing only tens of thousands of data
points.

AQUA [2] uses cached summary data in an OLAP domain.
Unfortunately, they using sampling and histogram techniques,
which are not good for scientific data sets because by sampling
you might miss outliers (which are important in scientific data
sets) and histograms are computationally expensive when you
have high dimensional data.



6. CURRENT AND FUTURE WORK
We are investigating other modeling techniques for AQSim’s
model generator. Specifically, we are constrained to models that
(i) require only one sweep of data, (ii) are good at finding outliers,
(iii) can be easily parallelized, and (iv) can efficiently answer non-
range queries (see [3])

We are also interested in optimal disk layout of the index tree. In
particular, we are investigating techniques which will minimize
seek time. Moreover, parallelizing AQSim’s query processor is
also part of our future work. Finally, we are conducting
experiments on other larger data sets.

7. CONCULSION
To help scientists in gathering knowledge from their large-scale
simulation data, we have developed an ad-hoc query
infrastructure, called AQSim. Our system reduces the data
storage requirements and access, times in two stages. First, it
creates and stores mathematical and statistical modeis of the data.
Second, it evaluates queries on the models of the data instead of
on the entire data set. In this paper, we present two simple but
highly effective statistical modeling techniques for simulation
data. Our first modeling technique computes the true mean of
systematic partitions of the data. It makes no assunlptions about
the distribution of the data and uses a variant: of the root mean
square error to evaluate a model. In our second statistical
modeling technique, we use the Andersen-Darling goodness-of-fit
method on systematic partitions of the data. This second method
evaluates a model by how well it passes the nonnality test on the
data: Both of our statistical models summarize the data so as tol
answer range queries in the most effective way. We calculate
precision on an answer to a query by scaling the one-sided’
Chebyshev Inequalities with the original mesh’s topology. Our
experimental evaluations on two scientific simulation data sets
illustrate the value of using these statistical modeling techniques
on large simulation data sets.
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