
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

INS
Information Systems

 INformation Systems

Towards a multimedia formatting vocabulary

J.R. van Ossenbruggen, H.L. Hardman, J.P.T.M. Geurts,
L.W. Rutledge

REPORT INS-E0301 JUNE 30, 2003

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711

Towards a Multimedia Formatting Vocabulary

Jacco van Ossenbruggen Joost Geurts
Lynda Hardman∗ Lloyd Rutledge

CWI
P.O. Box 94079

1090 GB Amsterdam, The Netherlands
email: Firstname.Lastname@cwi.nl

ABSTRACT
Time-based, media-centric Web presentations can be described de-
claratively in the XML world through the development of languages
such as SMIL. It is difficult, however, to fully integrate them in a
complete document transformation processing chain. In order to
achieve the desired processing of data-driven, time-based, media-
centric presentations, the text-flow based formatting vocabularies
used by style languages such as XSL, CSS and DSSSL need to
be extended. The paper presents a selection of use cases which
are used to derive a list of requirements for a multimedia style and
transformation formatting vocabulary. The boundaries of applica-
bility of existing text-based formatting models for media-centric
transformations are analyzed. The paper then discusses the advan-
tages and disadvantages of a fully-fledged time-based multimedia
formatting model. Finally, the discussion is illustrated by describ-
ing the key properties of the example multimedia formatting vocab-
ulary currently implemented in the back-end of our Cuypers multi-
media transformation engine.

Categories and Subject Descriptors
H.5.1 [Information Systems]: Multimedia Information Systems;
I.7.2 [Computing Methodologies]: Document and Text Process-
ing—Document Preparation; H.5.4 [Information Systems]: In-
formation Interfaces and Presentation—Hypertext/Hypermedia

General Terms
Design, Languages

Keywords
Document transformation, formatting objects, multimedia, hyper-
media, Cuypers

1. INTRODUCTION
The large amount of Web content that currently needs to be de-

signed, authoredandmaintained, has made the need for document
engineering technology clear to Web developers. While once con-
sidered technical jargon used only by SGML-zealots, after the suc-
cess of HTML [31], CSS [6], XML [7], XSLT [8] and related spec-
ifications, terms such asstructured document, stylesheetanddoc-

∗Lynda Hardman is also affiliated with Eindhoven Technical Uni-
versity.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005..

ument transformationhave become fundamental and well-known
ingredients of everyday Web development.

With the growing diversity of devices and increasing amount
of non-text information available on the Web, multimedia content
providers also have growing needs for being able to style their Web
content and use transformation techniques to adapt their presen-
tations for a variety of delivery contexts. The goal of the work
reported here is to extend the current suite of Web document engi-
neering tools to enable their application to time-based multimedia
presentations. This would allow the application of style to XML-
based multimedia presentations, such as SMIL, and the generation
of multimedia presentations using document transformations such
as provided by XSLT. Both depend on an underlyingformatting
vocabulary.

Formatting vocabularies are used in many different ways on the
Web. When an HTML page is styled using CSS, a style sheet de-
signer uses the CSS formatting vocabulary to describe the intended
result. When an XML source document in transformed into a print-
able document by XSLT, the author of the transformation sheet has
to choose a target format that adequately describes the intended re-
sult, for example by using XSL’s formatting vocabulary or a com-
bination of HTML and CSS. The same applies to database-driven
websites, where the server pages use a formatting vocabulary to
define the look and feel of, say, a CSS styled HTML template, of
which the content is filled in on the fly by querying a database.

A formatting vocabulary provides the set of terms that can be
used to describe the intended presentation according to a specific
model: this model is called aformatting model. A formatting
model is designed toexplicitly specify the intended presentation
behaviorof a document. Contrast this with, for example, the doc-
ument model of HTML, that was intentionally designed to abstract
from formatting details and to capture only the high-level structures
of a document. CSS [6], XSL [32], and, less common, DSSSL [12]
all define a specific formatting model with the associated vocabu-
lary. All these models, however, have been originally defined for
text-centric documents. To describe the intended behavior of mul-
timedia presentations, designers often need features that are not, or
only partly covered by these models.

In this paper, we claim that the current Web infrastructure can
be extended to allow Web developers to style and transform media-
centric documents in a way that is currently only supported for text-
centric documents. Section 2 explores a number of use cases for
the types of transformations and applications of style that we wish
to make to media-centric presentations. Based on these use cases,
Section 3 describes the requirements for a multimedia formatting
model. Section 4 first discusses the trade-offs for alternative ap-
proaches to the problem, and then describes the example multime-

dia formatting vocabulary implemented by our Cuypers multime-
dia transformation engine [18, 28]. Finally, we discuss the pros and
cons of our vocabulary, and discuss the applicability of multimedia
formatting vocabularies in general.

2. STYLING AND TRANSFORMING MUL-
TIMEDIA: MOTIVATING SCENARIOS

In the early days of the Web, most Web content was static and
manually authored using plain text editors or special-purpose au-
thoring tools. This was before the advent of style sheets, XML
transformations and on-the-fly generated, database-driven HTML
pages. While much has changed since, the authoring process of
Web-based multimedia presentations still looks remarkably similar
to the manual authoring of static HTML pages.

In this section we discuss to what extent the Web’s current doc-
ument engineering infrastructure can be applied to media-centric
documents, and where it needs to be extended. In this discussion,
we describe a number of use cases based upon W3C’s open multi-
media document format SMIL [33]. A large part of the discussion,
however, could also apply to other (proprietary) multimedia docu-
ment formats. In several use cases, explicit extensions to the current
Web infrastructure are proposed. The only goal of these proposals
is to illustrate the possibilities, and none of them should be read as
a serious proposal that could, for example, be standardized “as is”
by W3C.

To illustrate the requirements for styling and formatting vocabu-
laries proposed in this paper, we have implemented some of these
extensions in our prototype formatting model for time-based me-
dia presentations. While this formatting model will be further ex-
plained in section 4, we will motivate the requirements we derive
in the following section through the use cases described in this sec-
tion, many of which are based on the example presentation shown
in Figure 1. The example shows a screen shot of a simple multime-
dia presentation about Abraham Lincoln. The presentation consists
of a short biography to the left of a slide show of images of Lincoln,
where each image is accompanied by a caption. Essential proper-
ties of the presentation include the timing of the presentation (e.g.
the tempo of the slide show, the duration of the display of the biog-
raphy text, etc.), transition effects that are used when moving from
one slide to the other, visual alignment of the image box with the
text, etc. Also note that the semantics of which caption belongs to
which image is also directly communicated by the spatio-temporal
layout (e.g. by aligning the caption and the image).

In the remainder of this section, we use this example to illus-
trate some use cases related to styling multimedia (section 2.1) and
multimedia document transformations (section 2.2).

2.1 Stylable multimedia
The introduction of Cascading Style Sheets (CSS) allowed HTML

authors to separate the description of the intended presentation of
their pages from the main document structure and its contents. Later,
CSS was also applied to other formats, including Scalable Vector
Graphics (SVG [10]). While most multimedia formats, including
SMIL, are not (yet) CSS “stylable”, many of the advantages of us-
ing CSS for HTML or SVG content also apply to SMIL content.

Use case: stylable color schemes
Consider the screenshot of the example SMIL presentation shown

in Figure 1. The overall background color of the presentation is set
in thebackground-color attribute of SMIL’sroot-layout
element, and the darker background color for the slide show is set
in the corresponding SMILregion elements. In a CSS-stylable

Figure 1: Screenshot of a SMIL 2.0 presentation about Abra-
ham Lincoln

version of SMIL, however, these background colors could also be
specified by the CSS property with the same name. The usual ad-
vantages of using CSS would apply: it becomes easier to maintain a
large collection of SMIL presentations with a consistent look using
a shared style sheet; it becomes easier to change the color scheme
without touching the original SMIL files, etc.

In the figure, the background color of the individual text items
matches the background color of the presentation. In this particu-
lar case, the text items are RealText [21] items, that are explicitly
styled to have a matching background color (the same applies to
the foreground color of the text). This is a frequently occurring
requirement when styling composite multimedia documents con-
sistently [22]: either the constituent media items need to be styled
to match the overall style, or, in case the media items are not sty-
lable, the overall style needs to be adapted to match the style of the
media items. In the formatting model discussed in section 4, we
have implemented the first option1 and are investigating the second
option (see [20]).

Use case: stylable transition effects
The slide show in the presentation of Figure 1 uses SMIL 2.0

transitions to fade from one image to the next. The transition ef-
fects used (in this case, a one second fade-in at the start and a “clock
wipe” at the end) are hard coded in the SMIL file. Again, the tran-

1We have made the RealText stylable by using a parameterized
XSP page that generates the RealTexts. The background color of
the global SMIL or HTML presentation is then passed as a param-
eter on the URL that refers to the XSP page.

sition effect would be a good candidate to move to a separate CSS
style sheet. This would make it easier to maintain a large collection
of SMIL files in a flexible way, supporting consistency not only
among SMIL files but also within an individual SMIL file. While
the CSS formatting vocabulary does not currently support transi-
tions, it could be easily extended by, for example, importing SMIL
2.0’s transition vocabulary. An example CSS rule (using such an
extended vocabulary) to apply the fade-in and clock wipe effects to
all images in the presentation could look like:

img { transInType: fade;
transInDur: 1s;
transOutType: clockWipe;
transOutSubtype: clockwiseTwelve;
transOutDur: 1s;

}

Our timed multimedia formatting vocabulary supports these transi-
tion properties. They are normally used on individual media items,
but when specified on composite objects they are applied as a de-
fault value to all children of the composite. For example, to apply
the same transition effect to all images in the slide show, one could
specify this once by attaching the properties to the slide show ob-
ject.

Use case: stylable visual layout
Note the vertical alignment at the top and bottom of the biog-

raphy text on the left of Figure 1 with the dark background of the
slide show on the right. This is realized in SMIL by explicitly spec-
ifying matching values for thetop andheight attributes for the
associatedregion elements. In general, moving the specification
of the dimensions and position of SMIL’s regions to a CSS style
sheet is straightforward when using absolute2positioning — CSS
would not even need to be extended to make this possible.

In this case, however, one might want a higher level specification
for the indented layout. We claim that the text-based alternative to
absolute positioning can, in general, not be applied to multimedia.
The relative formatting of text is based on the assumption that the
text can be broken up in lines, columns and pages without affecting
the semantics of the content. While this is often true for text, it is
not for multimedia, where the semantic relations among the media
items are often communicated via the visual layout [29]. In our ex-
ample, a text-based formatter might insert a page break between the
image and the caption, which would not yield the intended layout
because it destroys the perceived relationship between the image
and its caption. Fortunately, many other methods for higher level
layout of media items have been proposed in the literature, such
as the constraint-based multimedia layout of Madeus [14] and the
constraint-based layout of SVG graphics described in [4]. In our
multimedia formatting vocabulary, it is possible to layout media
items using similar techniques (more details will follow in section
4). In our example, these techniques could be used to replace the
absolute positioning. Instead, one could just specify that the bi-
ography needs to be positioned left of the slide show, and that it
needs to be top and bottom aligned, and leave the rest to the appli-
cation. This would give the formatting more flexibility while still
respecting the semantics that need to be communicated. It would,
however, require a significant extension of CSS.

2Note that the term “absolute” and “relative” positioning often
means different things in different worlds. In text-centric layout
models such as CSS, the “absolute” refers to positioning that is
not relative to the text-flow, while in media-centric models such as
SMIL, the term refers to positioning that is not expressed relatively
to (i.e. as a percentage of) the parent window or other media items.

Use case: stylable temporal behavior
The temporal behavior of the Lincoln presentation is also “hard

wired” in the SMIL markup. For example, the “speed” of the slide
show that is determined by the duration of each slide is specified
using SMIL dur attributes. These durations are also good can-
didates for presentation aspects that could be subject to consistent
styling in a separate CSS style sheet. One could go even further,
and describe the complete temporal behavior in a style sheet. Such
style sheets are sometimes referred to astimesheets[24, 26, 30].

2.2 Multimedia transformations
While CSS allows HTML authors to separate the presentation

details from the main document hierarchy, it is not able to change
the document hierarchy itself. This issue was addressed by the de-
velopment of XSLT, which allowed authors to specify, in a stan-
dardized way, functional transformations from one XML tree struc-
ture to another. With XSLT, developers are able to reorder and
regroup the content of an XML document in the way that is best
suited for a particular presentation. Since SMIL has an XML syn-
tax, the SMIL presentation in Figure 1 could have been generated
from a source XML document using XSLT. Note that, since this
approach would use SMIL 2.0 itself as the formatting vocabulary,
there would be no need to extend existing, or invent new, vocabu-
laries.

Use case: content selection and filtering
An obvious advantage of using a transformation would be the

potential to tailor the SMIL presentation to the needs of the current
application by filtering out all information that is irrelevant in the
current context. Our example presentation could have been gener-
ated from an XML file that contains not only a section with infor-
mation related to Lincoln, but also sections with information about
other U.S. presidents. When one knows in advance that, for this
particular presentation, only the Lincoln section is relevant, XSLT
selectors could be used to select only this material and transform it
to SMIL.

Use case: content grouping and ordering
XSLT allows the structure of the target SMIL file to be com-

pletely independent of that of the input XML file. One can thus
use XSLT to reorder and regroup the content in the way that best
suits the current context. For example, the source XML file may
have ordered the Lincoln images based on ownership, while for the
presentation, a temporal ordering that matches the events described
in the biography would be more appropriate.

Use case: template-driven transformations
Presentations can be either template-driven or data-driven. A

template-driven approach is common when the structure of the pre-
sentation is known in advance, and can be adequately described
using a single template. XSLT (see section 2.3 of [8]) provides an
abbreviated syntax for this special case.

In our example, when we know that the presentation is going to
consist of a short biography text and a slideshow of images with
captions, we can easily define a SMIL template for this structure,
and then fill in the actual content later. When XSLT is used, the
content can be selected from the XML source using XSLT selec-
tors. One could also use many of the currently available database-
driven approaches, including ASP, JSP and XSP [19, 25, 27]. These
are also based on template techniques, where the template is filled
with content selected using database queries.

Specifying the intended formatting based on a single template is
relatively easy and well suited to achieving a consistent layout at

the global level. In formatting languages such as XSL and DSSSL,
and also in other typesetting software, the concept of a “master
page” often functions as a template for achieving the same goal.

Use case: data-driven transformations
The main drawback of using a single template is that this ap-

proach is less suited in situations where the structure of the target
presentation depends on highly variable input. This is often the
case when the input itself is selected at runtime or generated au-
tomatically, as is the case in database-driven websites. For such
websites, the input of the transformation process is the result of
an on-line database query, and the characteristics of the results are
likely to be different for each query. It is unlikely that one could
specify an adequate “one size fits all” template that would match
all different query results. XSLT addresses this by allowing the
transformation to be decomposed into many smaller template rules
instead of a single large template for the entire presentation. Each
template rule contains a selector that matches a particular part of
the input, and is responsible for transforming that part to the target
output format. The main advantage of this approach is that input
is no longer explicitly selected in the main template, but that the
appropriate template rule is implicitly invoked by the transforma-
tion engine based on the input. In our example, the transformation
sheet would no longer assume that the input contained a list of im-
ages that need to be transformed into a slide show. Instead, it would
contain a template rule that matches a list of images and converts
them into a slide show,but this rule would only be invoked when the
actual input contains a list of images. Similar rules would be pro-
vided for other types of input. Note that formatting vocabularies,
such as those provided by CSS, XSL and also our own multimedia
formatting vocabulary, typically support both template-driven and
data-driven presentations.

Use case: media items with size constraints
An obvious advantage of a purely data-driven approach is that

transformations are able to handle a wide variety of inputs, where
the resulting presentation reflects these varieties. A serious draw-
back, however, is that it becomes harder to predict what the results
would look like: unexpected input could result in highly unwanted,
or even incorrect, presentations. Consider the slide show of our
presentation which contains a number of unscaled images of Lin-
coln. These images just happen to be roughly the same size. Imag-
ine what would happen, however, if the input unexpectedly con-
tained an image that was, say, 20 times larger than the others. It
would be very unlikely that adding this image to the slideshow un-
scaled would yield the desired result. Fortunately, languages such
as SMIL, CSS and HTML allow authors to constrain the amount of
screen resource an image is allowed to consume, and also how to
achieve this (e.g. by scaling with, or without, preserving the aspect
ratio, cropping, etc.).

Unfortunately, constraining dimensions of text boxes is more
complicated than for images. CSS allows authors to specify the
width and height of text boxes, but this often leads to unwanted
behavior for overflow (i.e. the specified box is too small for its
content). Currently, CSS options include displaying the content
outside the specified box (overflow = visible), displaying
only the content that happens to be inside the box (overflow =
hidden) or inserting a scroll bar (overflow = scroll). It is
not possible to specify alternative strategies, for example, the ren-
dering engine could reduce the fontsize, kerning or line spacing
until the content fits the prescribed box.

Another feature of XSL that is pertinent to multimedia is the abil-
ity to specify an explicit aspect ratio for an area (this is currently not

supported in CSS). In our prototype multimedia formatting vocab-
ulary, we have found it convenient to be able to use explicit aspect
ratio properties, not only for images, but also for other media types,
including text.

Use case: global resource constraints
The issues related to overflow strategies apply not only to indi-

vidual boxes, but also to more global size constraints. For example,
the presentation might be required to fit within a maximum screen
size. In many multimedia presentations, one wants to ensure that
such constraints are met without resorting to clipping or scrolling.
Sometimes, the same constraints can be met by finding alternative
layouts, for example by “tweaking” other style properties such as
margins, font sizes, padding and border sizes, etc. Specifying these
alternative strategies declaratively is often difficult.

Most readers will be familiar with the situation when preparing a
slide show presentation and the last point of a bulleted list does not
fit on the slide. There are, of course, several options to resolve this
conflict: one could enlarge the list’s text area, or decrease the font
size, or decrease the vertical spacing, or even remove some content.
Stating in the formatting vocabulary that a bulleted list should fit on
one slide is one thing, but stating what combination of style prop-
erties should be tweaked to produce the best result, however, often
depends on the situation and is hard to specify in advance. Similar
problems apply to a page limit for conference papers. Explicitly
stating that this paper should be formatted in 10 pages is relatively
easy, but what measures the style sheet should take when the page
limit is exceeded is significantly harder. Other examples include
poster design, where all content needs to fit a fixed, single area;
(vector) graphics, where subparts need to fit within areas already
defined by higher-level objects; and TV-like media presentations,
where multiple media items that play with potentially overlapping
durations need to fit within the available amount of screen space.

In our example, if the Lincoln images in the slide show presen-
tation were all landscape, it would be more appropriate to position
the biography text under the slide show. For a smaller screen, it
might even be necessary to schedule the biography before the slide
show, or to connect the biography text with the slide show using a
hyperlink. While such options are theoretically possible in XSLT,
finding the most appropriate strategy depends to a great extent on
the number and sizes of the media items in the input. Addition-
ally, once an appropriate strategy has been selected, this potentially
influences every rule in the transformation.

Current formatting models are not very well suited for format-
ting documents with such constrained designs. They often require
designers to run their documents and style sheets through their ren-
dering engine multiple times, each time tweaking the font sizes,
margins, spacing and other style properties, until the style sheet
produces the desired result (but only for that particular document).
Alternatively, they are forced to alter the source document to re-
duce, for example, the amount of content so it will fit. In both ap-
proaches, most of the advantages of structured documents and style
sheets are lost. In fact, the designer may even be better off with-
out the structured-document paradigm and revert to using a direct
manipulation, WYSIWYG (what you see is what you get) tool.

Since these types of resource constraints are very common in
multimedia presentations, we have experimented with a multime-
dia formatting vocabulary that allows designers to explicitly state
the global resource constraints. Creating a formatting object fails
when it would generate a part of the presentation that violates the
constraints. The transformation rule that created the object is no-
tified of the failure and can thus try to create another formatting
object, using a different layout strategy. Note that the formatting

objects are sufficiently “intelligent” to be aware of the amount of
resources they consume, and whether this consumption is within
the limits specified. They are not, however, sufficiently intelligent
to find an alternative solution when the constraints are violated —
this is left to the transformation rules.

Use case: re-evaluation of transformation results
In the example of the bullet point that doesn’t fit on a slide, the

main problem is that if one generates the slide from a structured
document using, for example CSS or XSLT, one cannot know in
advance whether the bullet will fit or not. This is because the actual
space required to render the complete bulleted list depends on too
many parameters. Only some of these parameters are known at the
time the style sheet is applied (including the amount of text, font
sizes, margins, etc.), but others are too low level and implementa-
tion specific (including the hyphenation, justification and kerning
algorithms used to layout the text). In fact, the bullet point might
not fit when using one CSS implementation, but may just fit when
using another, because of these implementation differences.

In theory, it could be convenient if the text-rendering back-end
could provide feedback to the transformation process about the re-
sources consumed when the text is rendered, so that the transforma-
tion process could take appropriate action if certain resource con-
straints are violated.

In practice, however, this would require too close an integration
of the transformation and rendering engines. The rendering of text
is sufficiently complicated that it makes sense to implement the
transformation engine and the rendering engine as two indepen-
dent applications. Even stronger, many developers would like to
keep the transformation and rendering processes completely inde-
pendent, that is, they would like to be able to execute one process
without the need to communicate with the other.

The layout of timed multimedia presentations, however, does not
typically depend on complex, back-end specific formatting algo-
rithms. Rather, it involves calculating the positions and dimensions
of a dozen relatively large media clips instead of calculating the
positions of (tens of) thousands of individual character glyphs. In
many multimedia formats, including SMIL, the size and position of
the constituent media items are specified explicitly in the document.
The calculations required for the layout are thus, in the multimedia
case, traditionally done by the “front-end” authoring application,
and not, as in text, by the “back-end” rendering engine.

In our multimedia formatting model, every time a transformation
rule generates its part of the presentation, the resource consumption
of the partial result is automatically evaluated, so that the transfor-
mation rule can take appropriate action when certain constraints are
violated.

Use case: Supporting multiple target formats
One of the advantages of current document engineering technol-

ogy is that because the input is independent of the target document,
one can support multiple output formats. Our example presenta-
tion was generated by a style sheet that produced SMIL 2.0, but, by
adding other style sheets, one could generate similar presentations
in other timed Web formats, for example, in HTML+TIME [23].

A drawback of this approach is that many design decisions have
to be duplicated across the various style sheets. This is a well
known problem, which is caused by the fact that our transforma-
tion does not separate the concerns of specifying what the presenta-
tion should look like from how it should be realized in a particular
output format. This problem is addressed by formatting vocabu-
laries such as XSL, that allow all design decisions to be made in
a single transformation from the source XML to the intermediate

format described by the formatting vocabulary, which can then be
further transformed by a back-end engine into a number of other
formats. Unfortunately, the current Web infrastructure does not
provide such an intermediate format for timed multimedia presen-
tations. CSS and XSL are not able to describe the timing-related
features of presentations. Note that to be able to produce annotated
presentations, such an intermediary format also needs to be able to
model metadata on the various levels of the presentation hierarchy.
XSL’s role property, for example, allows each formatting object
to refer to RDF metadata for this purposes.

Our multimedia formatting vocabulary is designed, on the one
hand, to be able to describe in sufficient detail the intended presen-
tation behavior of timed multimedia presentations, and, on the other
hand, to be sufficiently abstract to be able to generate final form
presentations in multiple timed formats. It also provides support
for RDF metadata. Objects may refer to an external RDF source
(similar to XSL’s role property), but RDF metadata can also be
included directly on all formating objects. This significantly sim-
plifies the creation of RDF metadata during the transformation and
allows, for example, to reuse information in the source document as
metadata in the presentation. It can also be used to “log” informa-
tion related to the transformation process as metadata in the presen-
tation. Metadata can also be used to provide hints to browsers on
the relationships among media items presented for increasing the
accessibility of a document. For example, whether an audio item is
(non-essential) background music, or whether it is an audible alter-
native to a text item. This functionality is provided in XSL via the
role property.

3. REQUIREMENTS FOR A MULTIMEDIA
FORMATTING VOCABULARY

Our goal is to provide for time-based multimedia presentations
equivalent functionality that we are used to for text transformations.
This requires the ability to style XML-based multimedia presenta-
tions, such as SMIL, and the ability to generate multimedia presen-
tations using document transformations such as provided by XSLT.
Given this goal, we now derive a number of specific requirements
for a multimedia styling and formatting vocabulary, based on the
use cases discussed in the previous section.

Visual layout — A multimedia formatting model needs to be able
to specify thesizes and positionsof the areas in which the content
is to be rendered. Unlike text, however, these calculations cannot
be based on the position of the content in the text-flow. Inserting
line, column and page breaks in a stream of multimedia items will,
in general, not result in a coherent multimedia presentation.Abso-
lute positioningof media items should be supported for authors that
want full control over their layout, just as in text formatting. This
is, however, too low level to be the only mechanism provided. In
addition, explicit and high levelrelative positioningshould also be
supported, both among media items (e.g. “this text label needs to
be horizontally centered under this image”) as well as between par-
ents and their children (e.g. “align all slide objects with the bottom
of their slide show object”).

Consequently, we consider text-flow based layout formats (includ-
ing timed formats such as HTML+TIME) unsuitable for modeling
visual layout in an abstract multimedia formatting model, because
text-based formatting often does not respect the semantics com-
municated by the visual layout. In addition, formats that provide
only absolute positioning (such as SMIL 1.0) or only low-level rel-
ative positioning (such as SMIL 2.0) do not provide sufficiently
high-level support to provide the basis for an abstract multimedia
formatting model.

Visual style— In addition to the position and sizes of the ar-
eas, the model also needs to describe thevisual styleof presen-
tations, including colors, fonts, paddings, borders, background im-
ages etc. Note that, in general, it does not suffice to specify these
style properties at the overall presentation level: the constituent me-
dia items often need to be (re)styled to get the result. For example,
in Figure 1, a consistent background color through-out the presen-
tation can be achieved by enforcing the generation of correctly col-
ored text items. In this particular case, the text content itself can
be styled since it is generated. For applications that also include
“non-stylable” content, it may be necessary to use only colors and
other style properties that match the included content. A format-
ting model thus needs to be able to account for both dependency
directions.

Temporal structure — A multimedia formatting language should
be able to model the full temporal behavior of today’s multimedia
presentation formats. This includes not only the basic orchestration
(i.e. specification of when media items appear on and disappear
from the screen), but also which synchronization relations need to
be maintained (e.g. for audio streams that need to play lip sync with
a video stream) and for controlling the speed and other basic be-
havior of animated content. Also note that interactive multimedia
presentations do not necessarily have a linear temporal structure.
The exclusive element in SMIL 2.0 (excl), for example, allows
multiple timelines to be selected interactively.

Temporal style— In multimedia it often makes sense to speak
of the “temporal style” of the presentation, in addition to the vi-
sual style. Part of that temporal style is already determined by the
orchestration of the document (e.g. the fast cuts of a rock video-
clip style versus the long scenes of a documentary style). Other
temporal aspects, such as the type and duration of the transitions
used between scenes, are also an essential part of the style of the
document and need to be expressible in the formatting vocabulary.
Furthermore, in some cases it is convenient to model background
music not as one of the main media items of the presentation, but
as an optional, and easily changeable style property.

Support for top-down transformations — A template approach
is required to allow the extraction of media items from a known col-
lection to be placed in a consistent layout. Such a template spec-
ified at the top level needs to be sufficiently flexible that it can be
applied to all possible inputs. This is more difficult for multime-
dia than for text (since texts will fit in the template of a reasonably
designed master page, independently of the number of columns,
margin sizes etc.).

Support for bottom-up transformations — In data-driven mul-
timedia applications, where the number, size and type of the media
items that need to be displayed is not known until runtime, template
design is much more difficult. Bottom-up transformation rules al-
low the choice of a particular composite formatting object to de-
pend on the layout of its children. For example, two portrait im-
ages might fit together on the screen only when stacked horizon-
tally, while their landscape counterparts might fit only in a verti-
cal arrangement. A combination of both would fit only when dis-
played one after the other in time. For data driven applications, it
might not be known in advance whether the images are landscape
and portrait, so the style sheet would need to be able to make the
(data-driven) decision at runtime. One can also imagine a hybrid
approach, where a top level template specifies, for example, a small
bar on the top used for logos and other branding purposes, on one
of the sides a sidebar with links for the main navigation, with the

remaining screen space filled in by a bottom-up, data-driven ap-
proach.

Abstract from target output format — A formatting model
should not only allow detailed specifications of intended presenta-
tion behavior, but should enable a designer to specify these inde-
pendently from low level implementation issues that relate tohow
the intended formatting is realized in the final rendering of the doc-
ument. In addition, it should support (RDF) metadata annotations.
These requirements are no different from the text case. XSL’s for-
matting vocabulary, for example, can be rendered to a wide variety
of (annotated) final form output formats. For multimedia, it re-
quires that the formatting model be able to express spatial, temporal
and multimedia linking aspects, detailed in previous requirements,
independently of the target output format. A higher abstraction
level and a declarative model also makes, in general, writing style
sheets easier. At the same time, the (declarative) model should not
prevent the author from using (procedural) approaches for the spec-
ification of behavior that is not covered by the model. For example,
one might allow scripting to specify complicated animations that
go beyond the scope of the formatting model.

Support for resource-constrained presentations— Multimedia
presentations are immediately confronted with the spatial layout re-
source constraints (screens have a fixed size) and temporal resource
constraints are also common. In a text-centric flow object model, a
basically linear sequence of glyph objects can in principle be split
at virtually any arbitrary point. As long as the original order is
respected, the semantics will also remain the same. The order of
multimedia objects, in contrast, can be reshuffled to a much greater
degree, in both space and time. The system, however, needs to have
more information about possible layout configurations in order to
be able to propose acceptable solutions that do not violate the se-
mantics.

Support for generating consistent presentations— A multime-
dia formatting model, just as for text, needs to support designers
in creating a consistent presentation. First, similar content should
be formatted in a similar way, where exceptions can be explicitly
stated by the designer. Second, design decisions made at the be-
ginning of the formatting process should remain valid until a new
decision is made explicitly. Both selectors and property inheritance
from CSS can be reused to provide style consistency in multimedia
presentations, but, as detailed in previous requirements, extensions
are required for consistent styling in composite documents.

4. THE CUYPERS MULTIMEDIA
FORMATTING VOCABULARY

For styling multimedia presentations, we do not intend to rein-
vent CSS’s styling vocabulary, but rather to extend it and provide
extra functionality for multimedia-specific style properties such as
timing and transitions. Adding the extra vocabulary needed could
be part of the currently ongoing work within W3C on new levels of
CSS. The real challenge would be to convince the implementors of
multimedia authoring and player software to support CSS-stylable
versions of SMIL and related document formats.

The requirements discussed in the previous section have a major
impact on the transformation process. As such, a fully-fledged mul-
timedia formatting vocabulary, suitable as a target output for multi-
media document transformations, would require a more significant
extension of the current infrastructure. An approach to satisfying
these requirements is to develop a highly adaptive multimedia for-
matting vocabulary. The presentation language described by Bes

Figure 2: Computational differences between CSS/XSL FO versus multimedia formatting

and Roisin [5] can be regarded as a first attempt towards such a
model. This language not only allows designers to define some re-
source constraints that need to be satisfied, but also provides the
formatting engine with hints that could help choose the most ap-
propriate resolution strategy in case the constraints are violated.
Examples of such hints include assigning priorities to media items
and fall-back rules. This approach has two main advantages. First,
a transformation to such a language can be, as in the case of text,
a relatively simple, functional specification, which can be speci-
fied using standard tools such as XSLT. Second, selecting the most
appropriate adaptation strategy can be deferred to a back-end ap-
plication, for example a player at the client-side. This would both
relieve the server and make optimal use of the delivery context in-
formation available at the client side (e.g. device characteristics,
etc.).

Such a highly adaptive language, however, also has serious draw-
backs. First, the language would need to support a wide variety
of different adaptation strategies that do not change the semantics
of the presentation in an unacceptable way. It should do this in a
single, declarative, application-independent model. This requires a
thorough understanding of the adaptation needs of Web-based mul-
timedia presentations. Second, to achieve a sufficient level of inter-
operability on the Web, such a language needs to be standardized
and supported by players on multiple platforms. To address these
problems, we take a different approach that leaves more room for
experimenting with different strategies and does not need a stan-
dardized multimedia formatting language.

Figure 2 compares the processing chains of HTML, with CSS,
and XML with XSLT/XSL FO, with our approach to multimedia
formatting. At first sight, these processes may look alike. In all
three cases, the major design decisions that define the look and
feel of the final presentation are declaratively specified in the first
step. The task of the second step is merely to realize the declarative
specification in terms of the specific target format. Note that the in-
termediate output should be sufficiently detailed to give the author
full control over the look and feel of the presentation, while suffi-
ciently abstract to allow the look and feel to be realized in different
target formats. For example, CSS styled HTML can be rendered
by browsers on different platforms and different GUI toolkits, and
also to paper. The same applies to CSS styled XML an XSL FO

and a multimedia formatting language. The multimedia formatting
objects discussed below can be rendered in SMIL 1.0, SMIL 2.0
and HTML+TIME with absolute positioning in CSS.

From a computational perspective, however, the multimedia case
differs from both text cases. In the text cases, the first step is com-
putationally relatively simple (e.g. attaching style properties to the
HTML document tree or performing a simple functional transfor-
mation from the source XML tree to the target XML tree), and can
be adequately specified in a CSS or XSLT style sheet. The hard
work is done in the second phase, where a browser or other dedi-
cated rendering engine needs to render the declarative, high-level
specification in terms of the much lower-level facilities provided
by the target format (for example, in terms of the primitives pro-
vided by the GUI toolkit upon which the browser has been built,
or in terms of a final form document format such as PDF). For
text, rendering typically involves the intricate text rendering algo-
rithms discussed before, such as kerning, hyphenation, pagination,
etc. These algorithms are too computationally complex and too low
level to be practically implemented on the style sheet level.

In our multimedia case, we allow the transformation engine to
try a transformation rule, verify the results of applying the rule
against the specified resource constraints and choose an alternative
rule when the constraints are violated. While this makes the first
step computationally complex, it has the advantage that there is
no need to predefine the possibly application-dependent adaptation
strategies in the formatting vocabulary, since such strategies are
part of the (application-dependent) transformation process. Once
this hard work is done, however, the second step is relatively easy:
transforming the multimedia formatting object tree into a concrete
delivery format (e.g. SMIL) can be specified by a simple XSLT
transformation. This second step is straightforward because the
calculations for the visual layout and timing of the media items are
performed during the first step, which has produced a formatting
tree that is known to meet the specified requirements.

Note that this subtle difference has a major impact on the stan-
dardization requirements. For text, standardization of the interme-
diate result (e.g. the CSS-styled HTML or XSL formatting object
model) is crucial, because the processing chain depends on (com-
monly available) browsers or rendering engines to implement them.
The same applies to the approach of Bes and Roisin, where the

adaptation is carried out at the back-end. In our approach, the in-
termediate result does not need to be standardized as long as it has
an XML serialization and is accompanied by a suitable transfor-
mation sheet that transforms the multimedia formatting tree to a
standardized delivery format (for example, SMIL).

To explore the use of application-specific adaptation in resource
constrained multimedia presentations, we implemented a small set
of multimedia formatting objects in our Cuypers multimedia trans-
formation engine3. We focused on the formatting aspects related to
constrained layouts and temporal behavior.

The example presentation in Figure 1 has been generated by our
Cuypers system, using this vocabulary. The presentation is gener-
ated as a response to a query to an on-line database4. The database
has retrieved six relevant media items of which four (title, text, cap-
tion, image) are visible in the screendump. The two not shown are
the image with its caption of the second slide. In Figure 3 (a) the
hierarchical structure of the formatting objects is shown. Figure 3
(b) shows the visual area structure of this hierarchy explicitly. Note
that to avoid transformations having to keep track of a separate tem-
poral and spatial hierarchy, the formatting object tree structure rep-
resents both the temporal and spatial containment relations. That
is, a child object is displayed within the visual area of its parent and
during the temporal duration of its parent.

The following are examples of formatting objects that were used
in the creation of the Lincoln presentation:

hfo:image— This atomic object models an image and contains
contextual information about the image. This includes the usual
information relevant to the presentation rendering such as height,
width, URL etc., but can also include preferred, minimum and max-
imum duration and meta data information such as copyright noti-
fications. Note that the original Dublin Core metadata from the
database is preserved by all atomic objects, and can thus be pre-
served for inclusion in the final presentation.

hfo:text — Text objects are also atomic and used for displaying
all textual items in the presentation. These include titles, captions
and longer text items such as the biographical text presented in the
Lincoln presentation. Finding the right dimensions of the area as-
sociated with the text is of crucial importance, especially when the
length of the content is not known in advance and scrollbars are not
allowed. Cuypers’ text object possesses a wide range of features to
help the style sheet author establish appropriate dimensions, which
may depend on the number of characters in the text, preferred font
sizes, aspect ratios (a relatively large aspect ratio can be used for ti-
tles and captions; longer text, in contrast, can be assigned a smaller
aspect ratio). Similar features are available for establishing a suit-
able duration that allows sufficient time for end-users to read the
text. Most numerical values, such as preferred width, height, du-
ration, fontsize and aspect ratio, can be specified using a single
value, but also by specifying allowed intervals. The latter is of-
ten preferred because it permits a higher degree of adaptation when
necessary.
3The XML serialization of the example presentation’s HFO tree is
available from http://www.cwi.nl/˜media/cuypers/ .
An on-line demo of the system and XSLT transformation sheets
to transform HFOs to SMIL 2.0, SMIL 1.0 and HTML+TIME are
also available from this location.
4In this case a database that is based on the Dublin Core meta-
data provided by the Open Archives Initiative [16]. The metadata
is used not only to find relevant texts and images in the database,
but also to infer semantic relationships among the texts and images
that can be used as a basis for a coherent multimedia presentation
(see [17] for a more elaborate description of the use of Dublin Core
for presentation generation).

Note that creation of all atomics fails immediately when their di-
mensions exceed the global resource limitations. The final dimen-
sions in the presentation are the result of interplay between the
properties of an individual object, and those of other related objects,
e.g., through alignment. Such alignments are modeled as properties
of composite objects, such as the ones described below.

hfo:vbox — A vertical box presents its children in a top-to-bottom
order, and is neutral from a timing perspective (by default, it plays
all its children in parallel, starting at the same time). Properties
such as visual alignment define the characteristic features of the
vbox object. In the example presentation, acenter alignment is
set on the first child (the title) of the outer vbox. This ensures that
the title is centered above the content of the second child (the body
of the presentation). In addition to alignment properties, which
each relate to a single child, theequalHeight , equalWidth
andequalDuration properties describe relations among chil-
dren. For example, anequalDuration relation is established
between the children of the outer vbox in the presentation to ensure
that the title is visible during the whole presentation.

hfo:hbox — A horizontal box is similar to the hfo:vbox with the
difference that the children are ordered in a left-to-right fashion.
In the presentation, bothequalWidth andequalHeight rela-
tions are defined on the biography text and the slideshow. Note that
in some cases the functionality of alignment properties and equal
height, width and duration properties can overlap. For example,
theequalHeight on the biography text and slideshow can also
be achieved by settingtopAlign andbottomAlign properties.
This, however, only holds if the two objects overlap on the y-axis,
which is the case in the presentation. Likewise,leftAlign and
rightAlign requires overlap on the x-axis. This isnot the case
in the Lincoln presentation: the biography text and slideshow have
no overlap on the x-axis. To ensure equal widths, heights and dura-
tion, independent of the positions of the media items involved, the
equalWidth , equalHeight andequalDur are needed.

hfo:slideshow— A slideshow presents its children one after the
other. It is neutral to visual formatting, but by default acenter
alignment property is set to center all its children within the slide-
show. In addition, a defaultequalDuration property ensures
that all children are shown with equal durations. Properties to spec-
ify transitions can also be applied to slideshows. This is realized by
setting the propertiestransIn andtransOut to one of the de-
fined values5. Although transition effect properties are set on the
slideshow, the effect is that all of its children should have the spec-
ified transition. Transition effects set on the parent are inherited by
its children and thus trickle down to the actual media items show-
ing the effect. It should be noted that most output formats, such as
SMIL, define transitions only on the actual media items (c.f. CSS
where inheritable style properties set on a parent are inherited by
their children). Other inheritable properties include padding and
border values, foreground and background color, etc.

hfo:root — The root object forms the base of every presentation.
It represents the outer window that contains the complete presen-
tation and also stores the delivery context of the presentation, in-
cluding the maximum screen size, bandwidth and other relevant
CC/PP [15] parameters. Note that multi-window presentations can
be modeled by creating multiple root objects.

Our formatting implementation uses constraint solving techniques
to calculate the value of the coordinates. Many descriptions of
5The effects supported are dependent on the presentation back-end,
in our case the SMIL player or HTML+TIME browser.

Figure 3: (a) Cuypers’ Hypermedia Formatting Object (hfo) tree corresponding to the Lincoln presentation in Figure 1;
(b) Visual box representation of the presentation (second slide not shown)

constraint-based multimedia presentations have been reported in
the literature, including André’s work on constraints generated by
a planning system [1, 2, 3] and the constraints generated by the
Madeus authoring system [14]. In our approach, a large majority
of the constraints remain hidden from the transformation rules be-
cause they are automatically generated by the implementation of
the formatting objects [11, 18].

5. CONCLUSION
Multimedia content providers need to publish their content for a

wide variety of Web devices and to facilitate the creation of on-line
presentations from content stored in structured XML documents
or multimedia databases. To do this effectively, the well-known
advantages of document engineering techniques need to be made
applicable to multimedia content. The current Web infrastructure,
however, is not yet able to provide the same level of support as for
text. Style sheet and document transformation technology can only
be successfully applied to media-centric presentations when multi-
media style sheet authors can use a multimedia formatting vocabu-
lary that is

1. sufficiently powerful to express the intended presentation be-
havior of their documents, and

2. sufficiently abstract to protect them from the low level details
and syntactic idiosyncrasies of the final form multimedia pre-
sentation language.

This article describes a number of use cases for stylable multime-
dia and multimedia transformations that were used to derive the re-
quirements for a multimedia formatting vocabulary. We discussed
our implementation of a small prototype vocabulary that allows
documents to be transformed to a formatting object tree that de-
scribes the intended behavior of timed multimedia presentations.
Such presentations are often difficult to describe in terms of page
characteristics and text-flow. Instead, their behavior is better de-
scribed in terms of the temporal orchestration and synchronization
of the media items, transition effects and styling of both the global

presentation and its constituent media content. Our formatting vo-
cabulary focuses on these temporal aspects. Because the vocabu-
lary abstracts from the delivery format’s syntax, various delivery
formats can be supported (SMIL 1.0, SMIL 2.0, HTML+TIME are
currently implemented). We are aware, however, that by concen-
trating on these aspects and treating text objects as “black boxes”
we lose the power to do our own text-formatting. This problem is
also reflected in the SMIL and SVG [10] delivery formats.

While the layout model of multimedia formats such as SMIL
are based on explicit specification of the size and position of all
media items, the required calculations can be delegated to the for-
matting objects. If violations of the specified resource constraints
are detected during these calculations, alternative transformation
rules can be selected to resolve the conflict. By moving the se-
lection of adaptation alternatives from the rendering process to the
transformation process, the transformation can make application-
dependent trade-offs during this selection, or implement new, appli-
cation-dependent adaptation strategies. While this requires a more
complex, and non-standard, transformation process, it provides a
greater level of flexibility when exploring adaptation strategies that
cannot be provided when all adaptation strategies need to be pre-
defined by a generic, standardized formatting vocabulary. It also
simplifies converting the formatting object tree to a (standard) tar-
get format, which can be realized using a simple XSLT style sheet.

In future work, we plan on extending our multimedia vocabulary
for more complex presentations that go beyond the TEX-like box-
oriented model presented here. Perhaps more importantly, we will
focus on an architecture for the transformation rules that allows
a more intelligent way to employ this vocabulary. In particular,
we want to be able to use application-specific and design-specific
knowledge on the Semantic Web to allow transformations to make
informed choices when selecting one layout or style strategy above
the other. See [29] for details.

Acknowledgments
Part of the research described here was funded by the Dutch na-
tional Token2000/I2RP and NWO/NASH projects. Oscar Rosell

Martinez implemented the first version of the Cuypers HFO library.
The screen shots are taken from a Cuypers-based demonstrator.
The first version of the demonstrator was developed in the con-
text of the MAENAD project by Joost Geurts and Suzanne Little
in cooperation with Jane Hunter at DSTC, Queensland, Australia.
The demonstrator uses Dublin Core metadata provided by the Open
Archives Initiative. Media content has been adapted from the Web
site of the Abraham Lincoln Presidential Library and Museum, and
the Rare Book and Special Collections Library at the University of
Illinois.

6. REFERENCES
[1] E. Andre, W. Finkler, W. Graf, T. Rist, A. Schauder, and

W.Wahlster. WIP: The Automatic Synthesis of Multimodal
Presentations. InIntelligent Multimedia Interfaces[9], pages
75–93.

[2] E. André, J. M̈uller, and T. Rist.WIP/PPP:
Knowledge-Based Methods for Fully Automated Multimedia
Authoring. London, UK, 1996.

[3] E. Andre and T. Rist. The Design of Illustrated Documents
as a Planning Task. InIntelligent Multimedia Interfaces[9],
pages 94–116.

[4] G. J. Badros, J. J. Tirtowidjojo, K. Marriott, B. Meyer,
W. Portnoy, and A. Borning. A Constraint Extension to
Scalable Vector Graphics. InThe Tenth International World
Wide Web Conference[13], pages 489–498.

[5] F. Bes and C. Roisin. A Presentation Language for
Controlling the Formatting Process in Multimedia
Presentations. InProceedings of Document Engineering
2002, 2002.

[6] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading Style
Sheets, level 2 CSS2 Specification. W3C Recommendations
are available at http://www.w3.org/TR, May 12, 1998.

[7] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible
Markup Language (XML) 1.0 Specification, February 10,
1998. W3C Recommendations are available at
http://www.w3.org/TR.

[8] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C
Recommendation, 16 November 1999.

[9] M. T. M. (Editor). Intelligent Multimedia Interfaces. AAAI
Press, 1993.

[10] J. Ferraiolo. Scalable Vector Graphics (SVG) 1.0
Specification. W3C Recommendation, 4 September 2001.

[11] J. Geurts, J. van Ossenbruggen, and L. Hardman.
Application-Specific Constraints for Multimedia
Presentation Geneneration. Technical Report INS-R0107,
CWI, May 31, 2001.

[12] International Organization for Standardization/International
Electrotechnical Commission. Information technology —
Processing languages — Document Style Semantics and
Specification Language (DSSSL), 1996. International
Standard ISO/IEC 10179:1996.

[13] IW3C2.The Tenth International World Wide Web
Conference, Hong Kong, May 1-5, 2001. ACM Press.

[14] M. Jourdan, N. Layäıda, C. Roisin, L. Sabry-Ismaı̈l, and
L. Tardif. Madeus, an Authoring Environment for Interactive
Multimedia Documents. InProceedings of ACM Multimedia
’98, Bristol, UK, 1998.

[15] G. Klyne. CC/PP Attribute Vocabularies. Work in progress.
W3C Working Drafts are available at http://www.w3.org/TR,
21 July 2000.

[16] C. Lagoze and H. V. de Sompel. The Open Archives
Initiative: Building a low-barrier interoperability framework.
JCDL2001, 2001.

[17] S. Little, J. Geurts, and J. Hunter. Dynamic Generation of
Intelligent Multimedia Presentations through Semantic
Inferencing. In6th European Conference on Research and
Advanced Technology for Digital Libraries, pages 158–189.
Springer, September 2002.

[18] O. R. Martinez. Design dependencies within the automatic
generation of hypermedia presentations. Master’s thesis,
Technical University of Catalonia, June 30, 2002. Published
as CWI technical report INS-R0205.

[19] Microsoft Corporation. ASP.NET Web: The Official
Microsoft ASP.NET Site. See http://www.asp.net/.

[20] F. Nack, M. Windhouwer, L. Hardman, E. Pauwels, and
M. Huijberts. The Role of High-level and Low-level Features
in Style-based Retrieval and Generation of Multimedia
Presentations.New Review of Hypermedia and Multimedia,
7:39–65, 2001.

[21] RealNetworks, Inc. RealText Authoring Guide. See
http://service.real.com/help/library/guides/realtext/realtext.htm.

[22] L. Rutledge and P. Schmitz. Improving Media Fragment
Integration in Emerging Web Formats. InProceedings of the
International Conference on Multimedia Modeling 2001
(MMM01), pages 147–166, CWI, Amsterdam, The
Netherlands, November 5-7, 2001.

[23] P. Schmitz, J. Yu, and P. Santangeli. Timed Interactive
Multimedia Extensions for HTML (HTML+TIME):
Extending SMIL into the Web Browser. W3C Note are
available at http://www.w3.org/TR, September 1998.

[24] P. L. Schmitz. A Unified Model for Representing Timing in
XML Documents. WWW9 Workshop: Multimedia on the
Web, 2000.

[25] Sun Microsystems, Inc. JavaServer Pages. See
http://java.sun.com/products/jsp/.

[26] W. ten Kate, P. Deunhouwer, and R. Clout. Timesheets -
Integrating Timing in XML. WWW9 Workshop: Multimedia
on the Web, 2000.

[27] The Apache Software Foundation. XSP Logicsheet Guide.
See
http://xml.apache.org/cocoon/userdocs/xsp/logicsheet.html.

[28] J. van Ossenbruggen, J. Geurts, F. Cornelissen, L. Rutledge,
and L. Hardman. Towards Second and Third Generation
Web-Based Multimedia. InThe Tenth International World
Wide Web Conference[13], pages 479–488.

[29] J. van Ossenbruggen and L. Hardman. Smart Style on the
Semantic Web. InSemantic Web Workshop, WWW2002, May
2002.

[30] J. van Ossenbruggen, L. Hardman, and L. Rutledge.
Integrating Multimedia Characteristics in Web-based
Document Languages. Technical Report INS-R0024, CWI,
December 2000.

[31] W3C. XHTML 1.0: The Extensible HyperText Markup
Language: A Reformulation of HTML 4.0 in XML 1.0.
W3C Recommendation, January 26, 2000.

[32] W3C. Extensible Stylesheet Language (XSL) Version 1.0.
W3C Recommendation, 15 October 2001, 2001.

[33] W3C. Synchronized Multimedia Integration Language
(SMIL 2.0) Specification. W3C Recommendation, August 7,
2001. Edited by Aaron Cohen.

