Architecture of a Quality Based Intelligent Proxy (QBIX) for
MPEG-4 Videos

Peter Schojer, Laszlo Bdszérmenyi, Hermann Hellwagner, Bernhard Penz, Stefan Podlipnig
Institute of Information Technology
University Klagenfurt
Klagenfurt, Austria

{pschojer, laszlo, hellwagn, berni, spodlipn}@itec.uni-klu.ac.at

ABSTRACT

Due to the increasing availability and use of digital video data on
the Web, video caching will be an important performance factor
in the future WWW. We propose an architecture of a video proxy
cache that integrates modern multimedia and communication stan-
dards. Especially we describe features of the MPEG-4 and MPEG-
7 multimedia standards that can be helpful for a video proxy cache.

QBIX' supports real-time adaptation in the compressed and in
the decompressed domain. It uses adaptation to improve the cache
replacement strategies in the proxy, but also to realize media gate-
way functionality driven by the clients’ terminal capabilities.

Keywords

Video proxy, video caching, media gateway, media adaptation,
MPEG-4, MPEG-7, RTP, RTSP, replacement, LRU

1. INTRODUCTION

Delivering stored video data over the Internet becomes increas-
ingly important for multimedia applications like distance educa-
tion, digital libraries or video-on-demand systems. During re-
cent years the amount of multimedia objects has increased on the
WWW. Especially the number of video objects will increase in the
near future and account for a large fraction of data traffic. Videos
have three main features that make them different from usual Web
objects:

1. They are large, even compressed.
2. They must be streamed under soft real-time conditions.

3. Their content usually does not change, at least not on a short
time scale.

The first two issues hamper the handling of videos on the Web con-
siderably. The third point, however, is good news, because we can
generally ignore the consistency problem in caching of videos. Dif-
ferent techniques have been proposed for appropriate handling of
videos in distributed systems. One important technique is the use of
proxies. Especially interesting are adaptive, quality aware proxies,
which are able to adapt the actual video content

!This project was funded in part by FWF (Fonds zur Forderung
der wissenschaftlichen Forschung) P14788 and by KWF (Kérntner
Wirtschaftsforderungsfonds).

Copyright is held by the author/owner(s).
WWW2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

1. to the given capabilities of the devices/users they serve, act-
ing as a gateway;

2. to the given storage capacity of the proxy itself, acting as a
cache.

As videos are large, simple caching of whole videos will usually
perform poorly. Due to the small video-size/cache-size relation, the
number of videos will be small in a normal sized cache (few Giga-
bytes). Increasing the disk capacity will not alleviate this problem
as currently used videos are still relatively small (short in time and
low in resolution) and will continue to grow in the near future. Sim-
ple Web caching techniques proposed for conventional Web objects
can only be used if a small number of video objects is responsible
for most of the requests. As such strongly skewed popularity distri-
butions are fairly uncommon, the size of video objects introduces
indeed a major problem for video proxy caching.

The answer of the QBIX project to this question is the use of
adaptive, quality aware caching. Instead of replacing a selected
video object in the cache, we reduce its quality (in an integral num-
ber of steps) thus trying to save it for later use in reduced quality.
We introduce the architecture, implementation and evaluation of
such a proxy in this paper. A detailed discussion of quality-aware
replacement strategies can be found in [23].

A nice coincidence is that we can use the same adaptation tech-
niques to implement gateways. If a proxy can identify classes of
usage capabilities, it can serve different classes with different video
quality. It makes e.g. obviously no sense to send high resolution
video frames to a low resolution PDA screen, or a colored video
to a monochrome screen. A gateway can thus save network band-
width and client CPU power. The proxy may store different quality
versions explicitly, or it may apply quality reduction on the fly.

A special emphasis of the QBIX project lies in relying not only
on network-oriented communications standards such as RTP and
RTSP, but also on the communications standards of the ISO/IEC
Moving Pictures Experts Group (MPEG), designed to transport
multimedia data and metadata. This makes the techniques devel-
oped generally available and usable.

The organization of the remainder of the paper is as follows: Sec-
tion 2 describes related work. Section 3 explains adaptation in the
context of MPEG-4 and MPEG-7 and explains these two standards
briefly. Section 4 describes the modular design of the proxy and
explains each module in detail. Section 5 presents benchmarks on
the efficiency of the adaptation algorithms used in the proxy and
Section 6 presents a conclusion and further work.

2. RELATED WORK

Web caching has been a very important topic for several years.
Especially replacement strategies have attracted a lot of attention.
There exist many proposals for replacement strategies; see for ex-
ample [6, 29]. Furthermore, there exist more specific topics like
cache consistency, caching of dynamic content or proxy cache co-
operation (hierarchical caching, distributed caching); see [29] for
a survey of different Web caching topics.

In this article, we want to concentrate on the basic design of a
quality based video caching proxy. One central topic is the cache
replacement. In contrast to Web cache replacement, video proxy
cache replacement has to consider further characteristics of video
data (huge amounts of data, possibility of quality adaptation). Due
to these characteristics and the growing interest in Web videos, a
growing number of video caching strategies has been proposed re-
cently. These strategies can be divided into two categories:

e Full video caching: The whole video is cached at the proxy.

e Partial video caching: A certain part of the video is cached
at the proxy.

Full video caching can be found in many available caching prod-
ucts, where videos are handled like typical Web objects. Spe-
cial commercial solutions for caching streaming videos also cache
whole videos®. Full video caching can be very resource consuming
because videos can be huge compared to conventional Web objects.
Therefore, research has been focused on the development of new
caching schemes that try to cache only certain parts of the videos
near to the clients. We classify these proposals into the following
classes:

e Partial caching in the time domain: The cache stores a certain
time segment of the video (e.g. beginning part, most impor-
tant scene). The rest is delivered from the origin server.

e Partial caching in the quality domain: The cache initially
stores the whole video but changes the quality and therefore
the size of the video according to some criteria.

Examples of partial caching are caching of a prefix [26], pre-
fix and selected frames [17, 15], prefix assisted periodic broad-
cast of popular videos [10], optimal proxy prefix allocation inte-
grated with server-based reactive transmission (batching, patch-
ing, stream-merging) [28], bursty parts of a video [32], hotspot
segments [9], popularity-based prefix [22], segment-based prefix
caching [30], variable sized chunk based video caching [2] and dis-
tributed architectures for partial caching [1, 3] of a video. Some
of these caching schemes do not use any dynamic replacement but
use periodic cache decisions, e.g. cache replacement is triggered
at constant time intervals and not work-load dependent. Some oth-
ers use simple replacement (LRU) combined with partial caching
decisions.

All these proposals are advantageous if reduction of download
latency is the main aim or if the potential users behave in a certain
way (browse the beginning of videos, prefer certain parts). They are
potentially disadvantageous if users try to download whole videos.
First, there exists a synchronization overhead because the video is
distributed over multiple nodes (some parts at the proxy, the rest at
the server). Second, interactivity can be a problem. A jump out of
the prefix into the suffix can cause some intermission, because the
needed data is loaded from the original server.

2 Although there is no detailed technical information about these
products, they seem to apply this kind of caching.

= : o ition and

il
=t
-

Priritive * i

AV Objects 3
Secene Descrip tiom [D

{Scriptor Classes

Composition.
Infozmation

Ll - e

b 4

"Hirarchival, Tnterantive,
- Audiovisual Scene

= oo

& 7] i
Upstream Data | | ! E
(User Events, Class Request, ...)

Figure 1: Example of an MPEG-4 Scene [14]

Other authors propose to cache the whole video but adapt the
quality of the videos according to some criteria. Examples are pe-
riodic caching of layered coded videos [13], combination of re-
placement strategies and layered coded videos [21], quality ad-
justed caching of GoPs (group of pictures) [25], adaptive caching of
layered coded videos in combination with congestion control [24]
or simple replacement strategies (patterns) for videos consisting of
different quality steps [23]. Most of these proposals rely on simula-
tion to evaluate the performance of the caching techniques. There-
fore some assumptions have to be made about the structure of the
videos (e.g. layered videos).

In this paper, we describe a novel architecture of a video proxy.
We decided to use partial caching in the quality domain because of
the aforementioned problems of partial caching in the time domain.
Furthermore, we implemented a first prototype to evaluate our pro-
posed architecture. This is similar to the implementation described
in [24] (the only video proxy implementation we are aware of). But
whereas [24] relies on proprietary systems and protocols we try to
integrate modern multimedia standards like MPEG-4 and MPEG-7
and modern communication standards like RTP and RTSP. Thus, to
the best of our knowledge, this paper introduces the first standard
conform implementation of a video proxy/gateway.

3. VIDEO ADAPTATION IN THE CON-
TEXT OF MPEG-4 AND MPEG-7

In the context of video transmission, adaptation means to trans-
form an already compressed video stream. Media adaptation can be
classified into three major categories: bit rate conversion or scaling,
resolution conversion, and syntax conversion. Bit rate scaling can
adapt to shortages in available bandwidth. Resolution conversion
can adapt to bandwidth limitations, but it can also accommodate for
known limitations in the user device, like processing power, mem-
ory, or display constraints. Syntax conversion is used in a hybrid
network to match sender and client compression protocols. While
older video coding standards didn’t provide extensive support for
adaptation, MPEG-4 is actually the first standard that offers exten-
sive adaptation options.

3.1 MPEG-4

MPEG-4 is an ISO/IEC standard developed by MPEG (Moving
Picture Experts Group). MPEG-4 became an International Stan-

MPEG4
WORLD

MPEG4
WORLD

Figure 2: Adaptation on System Level: Object Based Adaptation (from [27])

dard in 1999. Compared to older MPEG standards, it is the first one
that offers the possibility to structure audio-visual data. MPEG-4
defines the notion of a scene (see Figure 1) relying on similar no-
tions of virtual reality standards. A scene consists of a set of media
objects, each having a position, a size and a shape [14].

Each media object consists of at least one Elementary Stream
(ES). If more than one ES is present for a visual object, the object
offers system level adaptation support; see Section 3.2. The ad-
ditional ESs are used to add spatial, temporal, or SNR scalability
to an object. Fast adaptation happens by simply dropping an ES,
which is equivalent to deleting a file in the proxy.

An ES itself consists of a sequence of Access Units (AU), where
usually one AU encapsulates one video frame. To transfer the AU
over the network, the AU is packetized to SyncLayer packets and
then passed to the delivery layer, where it is packetized to an RTP
packet. Depending on the size of the AU, one or more SL packets
are needed [14].

An MPEG-4 movie (with video and audio) consists of at least
five ESs. One is the Initial Object Descriptor (10D) stream that
keeps references to the objects used in the video. The objects are
described in the Object Descriptor (OD) stream. The third manda-
tory stream is the BIFS stream (Binary Information For Scenes),
that stores the scene description, actually telling the decoder which
object is visible at which point in time and space. Optionally, one
can have several ESs for the video and one for the audio, which
adds natural adaptation support to a video [14]. The following para-
graphs discuss video adaptation possibilities available in MPEG-4.

3.2 Adaptation in MPEG-4
3.2.1 System Level Adaptation

An MPEG-4 system stream can contain multiple video objects.
These video objects may be transmitted with different priorities.
Adapting on this level means dropping video objects during trans-
mission (object based scalability). Figure 2 shows an example. Be-
sides object based adaptation, MPEG-4 systems provides spatial,
temporal, and SNR fine granular (FGS) scalability support. Com-
binations of spatial, temporal, FGS, and object-based scalability
are possible, although not each combination is allowed (e.g. spa-
tial and FGS). The advantage of adaptation at the system level is
that the burden of generating all necessary information for adapta-
tion is in the video production stage. The disadvantage is, however,
that possible adaptation options are fixed during encoding and that
decoding multi-layer bitstreams adds complexity to the decoder.

3.2.2 Elementary Stream Adaptation

Fidelity
/A

AT (===

VIDEO IMAGE TEXT AUDIO

Source _

Modality

Figure 3: MPEG-7 Variations [12]

Elementary stream adaptation can be applied on compressed or
uncompressed video data. In both cases, adaptation is limited to
quality reduction. Adaptation of elementary streams allows for
adaptation options not known during the creation of the video in
the production stage.

Adaptation on compressed data includes mechanisms for tempo-
ral adaptation (frame dropping) and bit rate adaptation (color re-
duction, low pass filtering, re-quantization [20, 31, 11]). These
mechanisms target bit rate adaptation, and can be combined [5]. To
a limited extent, format conversions are also possible if both video
coding formats share common components which can be reused
(e.g. DCT coefficients, motion information) [18, 8].

Finally, adaptation in the pixel domain (on uncompressed video
data) is the conventional method for video adaptation. Again, only
quality reduction is achievable. Since the video stream is decom-
pressed into raw pixels, which will be encoded again, video adap-
tation in the pixel domain involves high processing complexity and
memory. The advantage of these techniques is flexibility. Video
characteristics such as spatial size, color, and bitrate can be mod-
ified. Thus, adaptation in the pixel domain can prepare the video
according to client properties for optimal resource usage.

While MPEG-4 offers support for adaptation, the question re-
mains how the proxy determines which adaptation step will give
the most benefit in a certain situation. This can only be solved by
adding meta-information to a video, as defined by MPEG-7.

3.3 Adaptation in MPEG-7

MPEG-7 is another ISO/IEC standard developed by MPEG,
which became official standard in June 2002. The standard pro-
vides a rich set of standardized tools to describe multimedia con-
tent. MPEG-7 features a Description Definition Language (DDL),
that allows one to generate a Description Schema (DS), which in
turn is used to code Descriptors. Descriptors describe audiovisual
features of a media stream. Besides descriptions of low-level fea-
tures of a media stream such as color histograms or shapes, high-
level semantic information can also be added. In contrast to video
and audio data, meta-data is semi-structured text and thus, easily
searchable.

For the proxy, meta-information regarding adaptation is espe-
cially important. We restrict ourselves to the content adaptation
part of MPEG-7; for further details see [16, 12].

Figure 3 shows a pyramid of different variations. A video ob-
ject could be adapted to a video of lower quality, or it could be
reduced to one single image. Maybe we have a textual description
for this image, so instead of an image, we could send just this tex-
tual description, or an audio rendering of this text — depending on
the capabilities of the client.

34 CC/PP

CC/PP (Composite Capability/Preference Profiles) is a standard-
ized framework developed by the W3C as an extension to the HTTP
1.1 standard. It is a collection of the capabilities and preferences
associated with a user and the configuration of hardware, software
and applications used by the user to access the World Wide Web.
A CC/PP description can be thought of as meta-data of the user’s
hardware and software. A profile of a client consists of two main
blocks. The Hardware block describes the resources of the clients,
as display size, bandwidth, CPU or memory. The Software block
stores information on the installed OS and the software capabilities
like the supported HTML version or sound support or if images can
be viewed.

A small example for a hardware description of a PDA with 16
Mb of memory and a 320x200 display could look like this:

<rdf:Description about="HardwarePlatform">
<prf:Defaults
Vendor="Nokia"
Model="666"
Type="PDA"
ScreenSize="320x200x16"
CPU="PPC"
Keyboard="Yes"
Memory="16mB"
Speaker="Yes" />

</rdf:Description>

More information on CC/PP can be found at http://www.w3.org/
TR/NOTE-CCPP/.

4. ARCHITECTURE

4.1 System Architecture

The proxy cache itself is part of the ADMITS project [4]. The
goal of this project is to realize end-to-end adaptive video transport
from the media server to the clients as illustrated in the scenario in
Figure 4. This scenario includes a multimedia server storing video
data, a multimedia database server providing the MPEG-7 informa-
tion to the media server. In particular, MPEG-7 variation descrip-
tors are being used to control fast adaptation in the network. The
video is streamed via several (adaptive) routers to adaptive proxy
caches. A proxy cache then sends the data to its clients that can

Media Server Streaming video Proxy Cache

s LAN
Route
Business Users
LAN LAN x
Proxy Cache fem

LAN Home Users

[:§= O

o0

Business Users coe

Meta-Database

Figure 4: Distributed Multimedia Scenario

. Cache Manager

Adaptation Engine

Figure 5: Proxy Modules

range from low-end mobile devices to powerful PCs. More infor-
mation on the ADMITS project can be found in [4].

4.2 Proxy Architecture

The proxy cache consists of five large modules (Figure 5). The
10 Layer is used to read and write video data, the Adaptation En-
gine uses the 10 Layer to read/write frames and transforms them.
The MPEG-7 module offers means to parse and generate MPEG-7
descriptions. The Cache Manager manages the cached videos and
uses the adaptation engine to realize its cache replacement strate-
gies. The Session Management module consists of three modules:
The Server Module imitates a media server for the client, the Client
Module imitates a client for the media server and the third is the
Session Manager that controls the video flow.

4.2.1 10 Layer

The IO layer realizes input/output in the proxy, hiding network
and file access behind one abstract class. I/O is frame and Ele-
mentary Stream based, i.e., complete frames of an ES are written
or read. Currently, raw ES and .mp4 files are supported. On the
network, we support multicast and unicast streams packetized with
RFC3016°. Advanced packetization layers like MultiSL or Flex-

Shttp://www.ietf.org/rfc/rfc3016.txt

DataChannel }

@ 0 o

read Frame Adapt(Frame) List<Frame>

@ﬁ

‘Write(Frame)

@ |_w RFC301610
@ RFC301610

Figure 6: Operation of a DataChannel

Mux are features currently not supported; they will be added later.
For a detailed description of the mentioned packetization layers,
see [19].

4.2.2 Adaptation Engine

The adaptation engine uses two important concepts:

e Data Channels

As shown in Figure 6, a DataChannel reads from an IO ob-
ject (1,2) and invokes an adaptor to (possibly) modify the
frame (3). Due to complex adaptors that might require frame
buffering, a list of result frames can be returned (4). To cope
with such a bursty behavior, the DataChannel maintains a
send queue where the result frames are inserted. After the
adaptation, only one frame is sent to all output 10 objects
(5,6,7). In the example, we have three different output ob-
jects. We have two network destinations (RFC3016I0 ob-
jects, two single-cast destinations), and one file destination
(ElementaryStreamlO, in the case the proxy stores the adap-
tation result).

In the worst case, a buffering adaptor will increase the startup
delay, but there should be no additional time penalty after-
wards (assuming the proxy is fast enough for real-time adap-
tation).

e Adaptors

The behavior of an adaptor is quite simple. It expects as in-
put a single frame and returns a list of adapted frames. An
adaptor is allowed to buffer frames, until it has enough data
available to perform one adaptation step. Currently, only vi-
sual media adaptors are supported; system level adaptation
is not yet, nor is audio. We support most of the adaptations
mentioned in Section 3.2.2. The following ones have been
implemented:

— Temporal Reduction: drop B-frames or B- & P-frames

— Color Reduction

Spatial Reduction
- Bitrate Scaling

The TemporalReduction adaptor is implemented as a com-
pressed domain transcoder. It parses the incoming frames,
and according to their frame type it decides to drop com-
plete frames or not. To avoid artifacts in the displayed video,
frame dropping follows the following rule: first, drop all B

ADAPTORCHAIN
G
R
T E s
M Y P
P S A
o c * T
R A I
L A
A
L | L
N
G
‘ YUVFrame (uncompressed) |:| Adaptor (uncompressed domain)
‘ MP4Frame (compressed) |:| Adaptor (compressed domain)

Figure 7: Example of an AdaptorChain

frames within a GOP; if this is not sufficient, drop P frames.
I frames are not dropped.

The three remaining adaptors are implemented as pixel do-
main transcoders. To perform decoding and encoding of an
MPEG-4 Video ES, the open-source MPEG-4 codec devel-
oped in the XviD project (http://www.xvid.org/) is used. A
small wrapper class shields the proxy from the complexity of
the decoder and enhances its capabilities to deal with stream-
ing video. The encoder is also wrapped, and only options an
adaptor may modify are passed to it. Encoder options needed
for adaptation are: desired bit rate, frame rate, and spatial
size of the bitstream. The output picture format of the de-
coder, which is the same as the input format of the encoder, is
set to YV12 colorspace, which is a special case of the YUV
colorspace. In YV12, the spatial dimension of the chromi-
nance components U and V is half the size of luminance (Y
component) and U and V are swapped leading to the fol-
lowing order: YVU. The encoder behavior is set to constant
bit rate (CBR) mode and produces I and P frames only. This
reduces the computational complexity significantly, and real-
time behavior of the encoder is achieved.

With the help of the Decoder and Encoder classes imple-
menting adaptors in the pixel domain is very easy. The Bit-
rateScaling adaptor can be implemented by merely changing
the target bit rate of the encoder. For the ColorReduction
adaptor two steps are necessary: first, the chrominance com-
ponents are set to the value gray; second, the bitstream is
encoded with reduced bit rate. Tests have shown that chromi-
nance amounts to 20% in the bitstream, therefore a bit rate
reduction of 20% is set for the ColorReduction adaptor. The
SpatialReduction adaptor is implemented by downsampling
the original picture to the desired spatial size. Several algo-
rithms like nearest neighborhood, bilinear, or bicubic inter-
polation have been developed [7]. For our implementation,
we have chosen the nearest neighborhood algorithm. Note
that the BitrateScaling, ColorReduction and SpatialReduc-
tion adaptors can be implemented in the compressed domain
as well to increase performance.

To allow for maximum flexibility, all adaptors can be ar-
ranged in an AdaptorChain. Figure 7 shows an example.

4.2.3 MPEG-7 Module
The MPEG-7 module adds support for creating and parsing

MPEG-7 descriptions. In the current implementation, the focus is
on variation descriptors. MPEG-7 describes the internal structure
of the source MPEG-4 file and describes size, type (video, audio
or BIFS) and bit rate for each ElementaryStream. One variation
descriptor contains the name of the adaptation step, the expected
quality loss and the priority of this adaptation step. Additionally, a
modified MPEG-7 description for each ElementaryStream is gen-
erated.

A simplified MPEG-7 description containing an adaptation se-
quence consisting of two variations might look like this:

<Description xsi:type="VariationDescriptionType">
<VariationSet>
<Source xsi:type="VideoType"> [..]

<ComponentMediaProfile id="ES1"> [..]
<ComponentMediaProfile id="ES2"> [..]
<MediaFormat>

<Content href="MPEG7ContentCS">

<Name>audiovisual</Name>
</Content>
<FileFormat

href="urn:mpeg:mpeg7:cs:FileFormatCS:2001:5">

<Name xml:lang="en">mp4</Name>
</FileFormat>
<FileSize>13107200</FileSize>
<BitRate>131072</BitRate>
</MediaFormat>
[..]
</Source>
<Variation id="VARIATION1"
fidelity="0.75"
priority="1"> [..]
<Variation id="VARIATION2"
fidelity="0.45"
priority="2"> [..]
</VariationSet>
</Description>

The “’source part” describes the internal structure of the MPEG-
4 video. For each ES it contains one ComponentMediaProfile
description, for the complete video it contains one MediaFormat
block that describes the total size of the video in bytes and the av-
erage bit rate of the video.

The following example describes one ES of type “visual” with
a dimension of 352x288 and a frame rate of 30 frames per second.
The size of the video is - as specified in the above example - 12.5
MByte and the bit rate is 128 kBit/sec:

<ComponentMediaProfile id="ES1">
<MediaFormat>

<Content href="MPEG7ContentCS">
<Name>visual</Name>

</Content>

<VisualCoding>
<Format
href="urn:mpeg:mpeg7:cs:... [..]"/>
<Name xml:lang="en">MPEG-4 Visual</Name>

<Frame height="288" width="352" rate="30.00"/>

</VisualCoding>
</MediaFormat>
</ComponentMediaProfile>

A variation description is shown in the next MPEG-7 fragment.
The effects of a TemporalReductionAdaptor on the video are de-
scribed.

<Variation id="VARIATION1"
fidelity="0.75"
priority="1">

[..]
<ComponentMediaProfile id="ES1">
<MediaFormat>
<Content href="MPEG7ContentCS">
<Name>visual</Name>
</Content>
<VisualCoding>
<Format href="urn:mpeg:mpeg7:cs:... [..]"/>
<Name xml:lang="en">MPEG-4 Visual</Name>
<Frame height="288" width="352" rate="7.50"/>
</VisualCoding>
</MediaFormat>
</ComponentMediaProfile>
<ComponentMediaProfile id="ES2"> [..]
<MediaFormat> [..]
<FileFormat [..]
<FileSize>6553600</FileSize>
<BitRate>65536</BitRate>
</MediaFormat>
[..]
<VariationRelationship> TemporalReduction
</VariationRelationship>
</Variation>

The proxy knows from this description that applying this adaptor
results in a quality loss of 25% (fidelity="0.75"), but also that 6.25
MByte are gained and the bit rate is halved for the video.

4.2.4 Cache Management

The Cache Manager (CM) manages all the videos stored in the
cache. It uses the adaptation engine to perform the adaptation,
and the MPEG-7 module to extract lists of variation sequences (so
called variation sets) from the MPEG-7 description. In the case no
MPEG-7 description is available, a default variation set is used.

The CM actually creates a DataChannel object reading from a
source, sending the data through the Adaptor created by the MPEG-
7 module, and then saving the output to an ES. As a last optional
step, the source ES is deleted.

Several cache replacement strategies (CRSs) were integrated into
the adaptive proxy. A classical LRU was implemented for compar-
ison reasons, but also advanced CRSs were implemented taking
advantage of the adaptation engine and using the meta-information
provided by the MPEG-7 module.

Horizontal and vertical cache replacement is supported [23].
The vertical CRS (v-CRS) successively chooses quality variations
of the least popular video in the list for replacement. In the worst
case, v-CRS degenerates to a classic LRU, especially when many
adaptation steps have to be performed to free up enough space disk
for one video. As shown in [23], the object hit-rate (hits/requests)
is nearly the same when compared to LRU.

The horizontal CRS (h-CRS) chooses the adaptation candidates
according to their quality. The video with the highest available
quality layer is searched, and adapted. This strategy suffers from
a different problem. While h-CRS has a high object hit-rate, its
quality hit-rate (average quality of all hits) is low. In the long run,
it tends to adapt every object down to its lowest quality layer, even
newly inserted videos [23].

To overcome the disadvantages of these two extreme adaptation
strategies, a third approach was integrated that combines vertical
and horizontal CRSs as illustrated in Figure 8.

The current implementation of CRSs has prototype status. If
more than one variation set is present, simply the first set is chosen
automatically. A truly intelligent proxy has to compare the two
sets and decide which one to use, a feature currently missing but
being added in the future. While current LRU strategies are good
enough for a first prototype, more advanced CRSs are needed that
also consider adaptation costs.

L O
| I
VIVIVIVIVIV]

Videos sorted according to
popularity (left to righf)

Quality steps
Quality steps

(a) Vertical CRS

Quality steps

-
-
-

Videos sorted according to
popularity (left to right)

(b) Horizontal CRS

Videos sorted according to
popularity (left to right)

(c) Combined CRS

Figure 8: Cache Replacement Strategies [23]

4.2.5 Session Management

The SessionManagement module imitates a server for the client
(ServerModule) and a client for the media server (ClientModule).
It is responsible for creating and managing sessions. A Session
always connects two communication partners. Thus, two different
session types exist:

e Server Session: connects client and proxy

e Client Session: connects proxy and server

A Session object manages DataChannels. For each Elementary-
Stream, one DataChannel is created and controlled. A Server-
Session manages all data flows from the local proxy disk, a Client-
Session all data flows that read their input from the network.

An exemplary session for a proxy acting as a gateway is shown
in Figure 9. The MPEG-4 video in the example consists of four
ElementaryStreams (2 video, 1 audio, 1 BIFS, the object descrip-
tor stream is omitted). The client can only accept a video with a
bandwidth of 40 kbit/sec. The source video has an original bit rate
of 136 kbit/sec. The media server does not offer a lower bandwidth
version. Normally, this would exclude the client from viewing that
video.

The proxy cache has seen the video previously, thus it has cached
the MPEG-7 description, the BIFS stream and one video stream.
The second video stream and the audio stream were deleted from
the cache and have to be re-fetched from the media server.

Before starting a Session, the client has to communicate its ter-
minal capabilities to the proxy, including display size and the 40
kbit/sec bandwidth limitation. After this step, the client sends an
RTSP DESCRIBE to initiate the creation of the Session.

The SessionCreator reads the MPEG-7 file from the disk.* It
then invokes the MPEG-7 module which parses the description and
returns a sequence of adaptation steps for this video. The Session-
Creator also knows the properties of the video (sent from the me-
dia server as an answer to a previous RTSP DESCRIBE) and has
detected the mismatch between the bandwidth of the client and the
video. This bandwidth gap is closed by setting at each video stream
an adaptor. We assume that a BitrateScalingAdaptor is set which
reduces the bandwidth from 64 kbit/sec down to 16 kbit/sec for
each video stream. The audio stream is simply forwarded. The to-
tal bandwidth consumption of the adapted streams is reduced to 40
kbit/sec, so the client can watch at least a lower quality version of
the original video. In the extreme case, it could happen that a client

“Ideally, there should be no .mp7 file, only one ElementaryStream
containing the MPEG-7 information that is part of the MPEG-4 file,
but this has not been standardized yet.

has no graphical display and that no video is forwarded at all, only
audio.

Note that Figure 9 is simplified. Actually the DataChannels can
have more than one client, e.g. to store the adaptation result at the
proxy. A media gateway with a well defined set of clients could
be configured not to store the full quality of the video streams at
all but only the adapted versions, whereas a proxy that serves both
mobile users and powerful high-end desktop users could store both
versions.

S. EVALUATION OF ADAPTORS

The computational performance of the implemented adaptors
was tested on different video sequences. The performance mea-
surements presented here are representative for other video se-
quences of the same spatial dimension. Only slight deviations in
the range of 1-2 % occurred for other video content.

The test video has the following parameters:

e Dimension: 352x288 (CIF)
e Frame rate: 25 fps

e Duration: 23 min 44 sec

e Bitrate: 1 Mbit/sec

The hardware used in the experiments was a 1.6 GHz Pentium-IV
system with 512 MB RAM running Windows 2000.

Table 1 and Figure ?? depict where in the adaptation process
most CPU resources are spent. Each adaptor consists of one De-
coder, one Adaptor (SpatialReduction, ColorReduction, or Bitrate-
Scaling) and one Encoder, except Temporal Adaptor where decod-
ing and encoding are not necessary. In the case of BitrateScaling
no adaptor is needed, since bitrate scaling is achieved by setting the
target bitrate at the Encoder. The CIF to QCIF Adaptor downsam-
ples the video to 176x144.

As expected, temporal adaptation is almost cost-free compared
to other adaptors. For all adaptors working in the decompressed do-
main, encoding dominates the transcoding process for large frame
sizes (Color, Bitrate). In case of spatial scaling (CIF to QCIF), the
number of pixels is reduced by a factor of 4, thus encoding time is
rather low.

6. CONCLUSIONS

We have presented a modular design for an adaptive MPEG-4
proxy. The modular design allows us to build an adaptive proxy
cache, a gateway and an adaptive MPEG-4 video server from the
same source code base, just with minor modifications.

RTSP Control Channel —
Server Session
DataChannel

64 kb/s

Media Server

video stream-2
Adaptor

DataChannel

40 kb/s Client Session

BIFS b:

RTSP Control Channel T

DataChannel

stream-1

Adaptor

DataChannel

64 kb/s

Client

stream

8 kbis

Figure 9: Example of a Session

CIF to QCIF Color | Bitrate | Temporal

Decoder 79779 | 79983 | 77100 0
Adaptor 113028 281 0 31
Encoder 101405 | 308183 | 289759 0
Total 294212 | 388447 | 366859 31

Table 1: Time Measurements (in msec) of Different Adaptors
Based on a 23 min 44 sec (=1.424.000 msec) Video in CIF For-
mat

We have shown how an adaptive proxy overcomes the disadvan-
tages of typical Web proxies. Adaptation improves the object hit-
rate in the proxy, reducing network load and initial startup delay.
The same adaptation algorithms can be used to build a gateway,
allowing “’poor” clients — normally excluded from viewing the me-
dia due to CPU, display or bandwidth constraints — to access the
video. Adaptation on videos is an expensive operation. Neverthe-
less, the evaluation shows that real-time adaptation can be realized
with today’s hardware, though the number of adaptations executed
in parallel is limited. In the worst case, we can allow three clients
executing adaptation concurrently, which is acceptable because the
number of clients requiring adaptation is — at the moment — as-
sumed to be rather small. This situation will change as soon as
mobile devices capable of rendering videos will be widely avail-
able and used.

For future work, we have to optimize our adaptation engine and
increase the number of adaptation processes allowed in parallel.
This can be achieved by integrating new adaptors that work in the
compressed domain. Another possibility is system level adapta-
tion, which requires content providers to offer video streams with
native scalability options. A third approach is to extend the cur-
rent single-node proxy towards a distributed proxy architecture or
a content distribution network. For efficient adaptation, a combina-
tion of all three approaches will be necessary. The proxy itself is
still under development, for example resource management is com-
pletely missing. Once implementation is finished, an evaluation of
the complete system will be done.

7. REFERENCES

[1] S. Acharya and B. Smith. Middleman: A Video Caching
Proxy Server. In Proceedings of the 10th International
Workshop on Network and Operating System Support for
Digital Audio and Video, June 2000.

[2] E. Balafoutis, A. Panagakis, N. Laoutaris, and I. Stavrakakis.
The Impact of Replacement Granularity on Video Caching.
In Networking, pages 214-225, May 2002.

[3] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul. Design
and Implementation of a Caching System for Streaming
Media over the Internet. In IEEE Real-Time Technology and
Applications Symposium (RTAS), June 2000.

L. Boszormenyi, M. Doéller, H. Hellwagner, H. Kosch,

M. Libsie, and P. Schojer. Comprehensive Treatment of

Adaptation in Distributed Multimedia Systems in the

ADMITS Project. In Proceedings of the 10th ACM

International Conference on Multimedia, Dec. 2002.

[5] C.Kuhmiinch and G. Kiihne and C. Schremmer and T.

Haenselmann. A video-scaling algorithm based on human

perception for spatio-temporal stimuli. In Proc. SPIE

Multimedia Computing and Networking (MMCN), pages

13-24. SPIE Press, Jan. 2001.

P. Cao and S. Irani. Cost-Aware WWW Proxy Caching

Algorithms. In Proceedings of USENIX Symposium on

Internet Technologies and Systems, pages 193-206, Dec.

1997.

Chuohao Yeo. An Investigation of Methods for Digital

Television Format Conversions. Master’s thesis,

Massachusetts Institute of Technology, May 2002.

E. Amir and S. McCanne and H. Zhang. An application level

video gateway. In Proceedings of ACM Multimedia, San

Francisco, CA, 1995.

H. Fahmi, M. Latif, S. Sedigh-Ali, A. Ghafoor, P. Liu, and

L. H. Hsu. Proxy Servers for Scalable Interactive Video

Support. IEEE Computer, 43(9):54-60, Sept. 2001.

[10] Y. Guo, S. Sen, and D. Towsley. Prefix Caching Assisted
Periodic Broadcast for Streaming Popular Videos. In
Proceedings of ICC (International Conference on
Communications), Apr. 2002.

[11] H. Sun, W. Kwok and J. Zdepski. Architectures for MPEG
compressed bitstream scaling. In IEEE Trans. on Circuits
and Systems for VideoTechnology, volume 6, pages 191-199.
IEEE Press, Oct. 1995.

[12] ISO/IEC. FDIS 15938-5 - MPEG-7 Standard - Multimedia
Description Schemes. page 539, Oct. 2001.

[13] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross.
Distributing Layered Encoded Video through Caches. In
Proceedings of IEEE INFOCOM, Apr. 2001.

[14] R. Koenen. N4030 - Overview of the MPEG-4 Standard.
mpeg.telecomitalialab.com/ standards/mpeg-4/mpeg-4.htm,
Mar. 2001.

[15] W.-H. Ma and D. H.-C. Du. Reducing Bandwidth
Requirement for Delivering Video over Wide Area Networks
with Proxy Server. In IEEE International Conference on
Multimedia and Expo, pages 991-994, Aug. 2000.

[16] J. M. Martinez. N4509 - Overview of the MPEG-7 Standard.
mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm,
Dec. 2001.

[17] Z. Miao and A. Ortega. Proxy Caching for Efficient Video
Services over the Internet. In 9th International Packet Video
Workshop (PVW’99), Apr. 1999.

[18] N. Feamster and S. Wee. An MPEG-2 to H.263 Transcoder.
SPIE International Symposium on Voice, Video, and Data
Communications, Sept. 1999.

[19] M. Ohlenroth and H. Hellwagner. RTP-Packetization of
MPEG-4 Elementary Streams. In IEEE ICME 2002
International Conference on Multimedia, pages 465-468,
Aug. 2002.

[20] P. Assuncao and M. Ghanbari. A frequency-domain video

[4

—

[6

—_

[7

—

[8

—_—

[9

—

transcoder for dynamic bit rate reduction of MPEG- 2 bit
streams. In IEEE Trans. on Circuits and Systems for
VideoTechnology, volume 8, pages 953-967. IEEE Press,
Dec. 1998.

[21] S. Paknikar, M. Kankanhalli, K. R. Ramakrishnan, S. H.
Srinivasan, and L. H. Ngoh. A Caching and Streaming
Framework for Multimedia. In Proceedings of ACM
Multimedia, pages 13-20, Nov. 2000.

[22] S. H. Park and K. D. C. E. J. Lim. Popularity-based Partial
Caching for VOD Systems using a Proxy Server. In
Workshop on Parallel and Distributed Computing in Image
Processing, Video Processing and Multimedia, Apr. 2001.

[23] S. Podlipnig and L. Boszormenyi. Replacement Strategies
for Quality Based Video Caching. In IEEE International
Conference on Multimedia and Expo (ICME), Aug. 2002.

[24] R. Rejaie and J. Kangasharju. Mocha: A Quality Adaptive
Multimedia Proxy Cache for Internet Streaming. In
Proceedings of the International Workshop on Network and
Operating Systems Support for Digital Audio and Video,
June 2001.

[25] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara.
Proxy Caching Mechanisms With Video Quality Adjustment.
In Proceedings of the SPIE Conference on Internet
Multimedia Management Systems, pages 276-284, Aug.
2001.

[26] S. Sen, J. Rexford, and D. Towsley. Proxy Prefix Caching for
Multimedia Streams. In Proceedings of IEEE INFOCOM’99,
pages 1310-1319, Mar. 1999.

[27] A. Vetro, H. Sun, and Y. Wang. Object-based transcoding for
adaptable video content delivery. IEEE Trans. Circuits and
Syst. for Video Tech., Mar. 2001.

[28] B. Wang, S. Sen, M. Adler, and D. Towsley. Optimal Proxy
Cache Allocation For Efficient Streaming Media
Distribution. In IEEE INFOCOM, June 2002.

[29] J. Wang. A Survey of Web Caching Schemes for the Internet.
ACM Computer Communication Review, 29(5):36—46, 1999.

[30] K.-L. Wu, P. S. Yu, and J. L. Wolf. Segment-Based Proxy
Caching of Multimedia Streams. In Proceedings of the Tenth
International World Wide Web Conference, May 2001.

[31] Z. Lei and N. Georganas. Rate Adaptation Transcoding for
Precoded Video Streams. ACM Multimedia 2002, 2002.

[32] Z.-L. Zhang, Y. Wang, D. H. C. Du, and D. Shu. Video
Staging: A Proxy-Server-Based Approach to End-to-End
Video Delivery over Wide-Area Networks. IEEE/ACM
Transactions on Networking, 8(4):429-442, 2000.

