
Monitoring the Dynamic Web to respond to Continuous
Queries

ABSTRACT
Continuous queries are queries for which responses given to users
must be continuously updated, as the sources of interest get up-
dated. Such queries occur, for instance, during on-line decision
making, e.g., traffic flow control, weather monitoring, etc. The
problem of keeping the responses current reduces to the problem
of deciding how often to visit a source to determine if and how it
has been modified so that a user response can be updated accord-
ingly. On the surface, this seems to be similar to the crawling prob-
lem since crawlers attempt to keep indexes up-to-date as users pose
search queries. We show that this is not the case, both due to the
inherent differences between the nature of the two problems as well
as the performance metric. We also develop and evaluate a multi-
phase solution to the problem. Some of the important phases are:
Themonitoring phase, in which changes, to an initially identified
set of relevant pages, are tracked. From the observed change char-
acteristics of these pages, a probabilistic model of their change be-
haviour is formulated and weights are assigned to pages to denote
their importance for the current queries. During the next phase,
theResource Allocationphase, based on these statistics, resources,
needed to continuouslyprobe these pages for changes, are allo-
cated. Given these resource allocations, theschedulingphase pro-
duces an optimal achievable schedule for the probings. An exper-
imental evaluation of our approach compared to prior approaches
for crawling dynamic web pages leads to some interesting obser-
vations pertaining to the differences between the two problem of
crawling—to build an index—and the problem of change tracking—
to respond to continuous queries.

1. INTRODUCTION
The World Wide Web consists of an ever-increasing collection

of decentralized web pages that are modified at unspecified times
by their owners. Current search engines try to keep up with the dy-
namics of web by crawling it periodically, in the process building
an index that allows better search for pages relevant to a topic or
a set of keywords. Clearly, any good crawling technique needs to
consider the change behaviour of web pages. Even in the best-case
scenario, a crawler visits a web site only once in a few hours. This
type and frequency of crawling is insufficient to handle a class of
queries known asContinuous queries[12] in which the user ex-
pects to be continuously updated as and when new information of
relevance to his/her query becomes available. For example, con-
sider a user who wants to monitor a hurricane in progress with the
view of knowing how his/her town will be affected by the hurri-
cane. Obviously, a system which responds taking into account the

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

continuous updates to the relevant web pages will serve the users
better than another which, say, treats the query as adiscrete query,
i.e., returns an answer only when the query is submitted.

Not surprisingly, the problem of keeping track of the dynamics
of the web becomes inherently different for thecontinuous query
case compared to classical(discrete) query case. Forcontinuous
queries, since the system should maintain thecurrencyof responses
to users, the problem translates to one of (a) knowing which pages
are relevant, (b) monitoring the pages, to determine the characteris-
tics of changes to these pages, and from these (c) deciding when to
probethe pages for changes, so that responses are current. The last
problem has several subproblems: allocating the resources needed
for probing the pages, scheduling the actual probings, and then car-
rying out the probing. The work involved in handling continuous
queries is portrayed in Figure 1. Here, the feedback arcs from the
probing phase to the earlier phases indicate that observations made
during the probing phase are used to tune subsequent decisions. We

Scheduling
Determining

Relevant Pages
Resource
Allocation

Probing Monitoring

Figure 1: Different phases of our approach

use the termprobingsto explicitly account for the differences from
the classical crawling problem. Aprobefetches a web page, much
like what a crawler does, but with the goal of fetching new informa-
tion relevant to one or more queries while acrawl is not done with
any specific user request in mind. Specifically, in this paper, our
problem reduces to the distribution of a given number ofprobings
among the pages whose changes need to be tracked to respond to a
set ofcontinuousqueries.

It could be argued thatdiscretequeries asked periodically with
some time interval can be considered to be equivalent tocontinu-
ousqueries but the following reasons should help in dispelling this
misconception: Firstly, determining the next time when thediscrete
query should be posed by the user is highly non-trivial. If the time-
interval is kept small then it may induce unnecessary load on the
system, particularly when the updates are not frequent. If we set
the time-interval to be large, it may lead to loss of information if
more frequent updates, than expected, take place. Secondly,con-

tinuousqueries have a non-zero lifetime and so a query system can
study a query’s characteristics carefully and can answer it better
than in the case wherediscretequeries, which have zero lifetime,
are continuously posed. Furthermore, unlike in the case of discrete
queries, the time taken to provide the system’s first response to a
continuous querymay not be as important as the maintenance of
currency during all the responses. To this end, our optimization
metric is defined to minimize the information loss compared to an
idealprobingalgorithm which probes upon every change of a page.

So it should be clear by now that not only the nature of the crawl-
ing problem but optimization goals also become different when we
move fromdiscreteto continuousquery case.

The rest of this paper is structured as follows: In Section 2, we
define the problem formally and also provide an overview of the
solution ???

2. OVERVIEW OF OUR SOLUTION
Consider a user who is worried about a hurricane in progress and

wants to keep abreast of the hurricane-related updates. To achieve
this, he poses a continuousm-keyword queryq = {w1,w2, . . .wm}.

Identifying Pages relevant to a set of queries:Based on the
keywords specified by a user, we need to first identify pages rele-
vant to this query. The query is considered as a bag of terms and
is fed to a classical search engine which in turn returns back a set
of pages it finds relevant to queries usinginverted index. We find,
say, thatthe National Hurricane Center, National Weather Orga-
nization, and other tropical cyclone sites as well as news sites are
relevant. The relevance of a page to a query can be measured by
standard IR techniques based on theVector-Spacemodel: Given
a n-word documenta = {w1,w2, . . .wn} and a set ofn recognized
words, one can representq anda each as a vector of word frequen-
cies~q and~a. A common measure of similarity between two word
frequency vectors~a and~q weighted by inverse document frequency
(id f) is the cosine distance between them:

score(q,a) =
∑w∈q,a λ2

w · fq(w) · fa(w)√
∑w∈q(λw fq(w))2 ·∑w∈a(λw fa(w))2

,

where fd(w) is the number of times wordw appears in the docu-
mentd andλw is the inverse document frequency of the wordw
defined as:

λw = log

(
|D|

|{d ∈ D : fd(w) > 0}|

)
whereD is the document set in consideration.

Monitoring the Relevant Pages to Characterize Changes:Once
relevant pages have been identified, by visiting each page at fre-
quent intervals during a monitoring period, changes to these pages
are monitored, update statistics collected, and the relevance of the
changes, vis a vis the queries, is assessed. This is used to build
a statistical model of the changes to the pages relevant to a set
of queries. These statistics include page update instances, page
change frequency, and relevance of pages for queries.

With this information in hand, we can move to the next set of
phases where resource allocation and scheduling decisions are made
concerning the probings to be done for an interval of lengthT. The
basic idea is that these scheduling intervals of lengthT repeat every
T units of time and we will make decisions pertaining to the prob-
ings to be carried out in one scheduling interval using both new
data and the results from the previous scheduling intervals.

In general, based on the results of probings carried out forT time
units, scheduling, resource allocations, change statistic computa-
tions, and page relevance can all be revisited. These, as mentioned

earlier, correspond to the arcs going from the “probings” phase to
the earlier phases of Figure 1.

Let C denote the total number ofprobingsthat can be employed
in a single scheduling interval.C is derived as an aggregation of
the resources needed for probing, including CPU cycles, commu-
nication bandwidth, and memory.1 With this information in hand,
decisions are made about the allocation of a given number ofprob-
ingsamong a set of pages while also decidingwhenthese allocated
probingsshould ideally occur.

Resource allocation phase: This phase decides the time in-
stances at which these allocatedprobingsshould be done. Inschedul-
ing phase, we take these time instances as inputs and prepare a fea-
sible schedule to meet our optimization measures. The overall goal
of these two phases is to probe in such a way that the probes oc-
cur just after updates are expected to take place. The number of
lost updates is an indication of the amount of lost information and
minimizing this is the goal of the system.

We now give a summary of theresource allocationandschedul-
ing phases using the following model (The basic general model is
adopted from [16] and is modified to suit our problem definition.)
We denote by N the total number of web pages that need to be
monitored, which shall be indexed byi. Let P denote the set of
web pages relevant to the continuous queries.λi is the estimated
number of changes that occur in pagei in T time units. Henceforth
we will refer it as change frequency for pagei. page may get up-
dated.

SupposeUi denotes the sequence of time instancesui,1, ui,2......ui,pi

at which possible updates occur in pagei. Here,pi is the total num-
ber of update instances forith page, i.e., cardinality of sequenceUi
(Pi=|Ui |). Note that it is not certain that a page would be updated
at these time instances and so there is a probabilityρi, j associated
with each time instanceui, j that denotes the chances of getting this
ith page updated at thejth instance.

We assume 0≤ ui,1 ≤ ui,2.....ui,pi ≤ T andui,0 = 0 andui,pi = T.
It should be clear that if we decide toprobeat some instance, then it
should be at the potential update time instance only because there is
no reason to delay it beyond when a update might occur. If number
of probingsallocated for a page is equal to the number of update
instances, then we can always maintain a fresh copy of this page
by probingat all possible update instances. But in practice we will
not be able to perform as many probings as the number of update
instances. So we need to pick a set of update instances at which
only this page would be probed and not at others. Hence with every
update time instance, we associate a variableyi, j where

yi, j = 1 if probingof ith is done at timeui, j 0, otherwise
if we probethe ith pagexi times, then∑pi

j=0(yi, j) = xi holds.
Scheduling the probes:This involves taking the ideal timings

for the probings of each page and obtaining an optimal achievable
schedule out of it. We map this problem toflow-shopscheduling
problem [13] with the goal of minimizing the averagecompletion
time. Though this problem has been proved to beNP-Complete
[11], there are fast approximation algorithms [2] that provide an
approximate bounded solution. Next weprobethese pages accord-
ing to the designed schedule and when thisscheduling intervalis
finished, we go back to query system and update the characteristics

1For example, the authors of [9] report that with two 533 MHz Al-
pha processors, 2 GB of RAM, 118 GB of local disk, and a 100
Mbit/sec FDDI connection to the Internet,Mercatorunder srcjava,
their crawler crawled at an average download rate of 112 docu-
ments/sec and 1,682 KB/sec. Similarly the capabilities of a given
infrastructure can be mapped to the number ofprobingsthat it is
capable of on average.

of these pages on the basis of the observations done in thepreced-
ing scheduling interval.

3. OPTIMAL RESOURCE ALLOCATION
As noted earlier, we need to distinguish between pages on the ba-

sis of two metrics. One is the nature of page-change behaviour and
the other is importance of page for queries. Page-change behaviour
is studied during amonitoringphase and is denoted by associating
a probability of change with every update instance. Next we would
show the way in which pages can be ranked by assigningweights
to them using relevance measures. These relevance measures are
determined for each page for each query duringmonitoringperiod.

3.1 Importance of Specific Pages
Glossary

Q : Set of all queries submitted in the system.
Qpi : Set of queries for whichith page is found to be relevant in
monitoring period.
wi, j : Estimated relevance ofith page for jth query. It would be
positive for all queries qεQpi and zero for allqεQ Qpi . It would be
computed duringmonitoringperiod.
ωi : Importance ofith query. This would be an input to the system.
Wi : Weight of ith page. It is computed as shown below.

It is clear that not all pages would be equally important for each
query in the system. So we would rank pages by assigningweight
to each page using its relevance measures for queries. Theweight
of a page denotes the value of current copy of page and if page gets
updated before the current copy isprobed, we assume that it incurs
us a loss ofWi value. Suppose there areQ queries submitted in
the system. Each page would be relevant for a set of queries. Say
the ith page is relevant for a query set denoted byQpi . Also the
sequence of values measuring relevance ofith page for each query
is wi,1, wi,2......wi,|Qpi |. Note that these relevance measures would
be calculated during monitoring period and after everyT time units
when a scheduling interval is finished, it would be updated based
on the earlier values and values found in last scheduling interval.

Also let there beImportancemeasure associated with each query
because of the classification of users submitting the query or clas-
sification of query domains, sayω1, ω2.....ωQ . So now we can
measure theweight Wi of ith page as

Wi = ∑ jεQ(ω jwi, j)

where Q is a set of queries in the system,
ω j is importanceof jth query,
wi, j is relevance measure ofith page forjth query and is greater

than 0 only ifq j εQpi

3.2 Goals of the Resource Allocation Phase
For Continuousqueries, our aim is to minimize weighted im-

portance of changes that are not reported to users . It could be
formulated as

min∑iεP(WiEi)

whereEi denotes expected number of lost changes forith page

As we have assumed that each update instance is independent of
others,

soEi = ∑ jεUi
ρi, j (1−yi, j)

Resource constraint is given by

∑iεP ∑ jεUi
yi, j = C

Note that here we are assuming that inT duration, relevance
of each updated copy of page for queries remains the same as es-
timated duringmonitoringperiod. After ascheduling intervalis
finished,we will update these relevance measures on the basis of
relevance measures actually found in the interval preceding it. So
unlessT is kept very large or page updates are very erratic, our as-
sumption remains very practical. Also we are assuming that with
each update of page, information of update preceding it is com-
pletely lost. That is, the number of lost updates is an indication of
the amount of lost information. While this may not always be true,
it gives us a simple way to state the goal to be accomplished.

In certain cases, it is possible that we would be having more in-
formation than the case described above. For example, if we can
measure change behaviour ofith page with respect tojth query, then
it would be possible to allocate resources even more efficiently.
For example, suppose we get to know during monitoring period
that a particular news site mainly declares health updates only once
at the start of day and in rest of the time, it remains mainly con-
cerned about political and sports updates, then we can characterize
change behaviour of this page with respect to queries concerned
with sports, medical and political domain.

Supposeρi, j,k denotes the probability of change ofith page atjth

update instance where this change is relevant for queryk. Then our
resource allocation problem can be formulated as

min∑iεPEi

whereEi denotes the weighted expected number of lost changes
for ith page

SoEi = ∑kεQ ωk.wi,k.∑ jεUi
ρi, j,k(1−yi, j)

with resource constraint as

∑iεP ∑ jεUi
yi, j = C

If we can extract even more information by measuring not only
probability of change ofith page at update instanceui, j but also
average importance of change at this time instance, then it would
make resource allocation even more efficient. For example, sup-
pose we found that a particular research site compiles and announces
all its previous day’s research updates daily at 10:00 a.m. in the
morning and in rest of day, it updates its page only when some new
research breakthrough takes place. Then it is clear that visit to this
page at 10:00 a.m. is certainly more fruitful than any other visit to
this page. It is easy to accommodate aforementioned extension in
the above model, and so we won’t concern ourselves with it due
to lack of space.Is this last paragraph ok as it seems quite im-
practical. We may argue that though above extension seems to
assume very much information, it may possible in continuous
query case to actually have this much information because we
do get a lot of time to observe pages in continuous query case.

3.3 The resource Allocation Algorithm
Both of the above formulated resources allocation problem are

discrete, separable and convex.

1. Discrete: because variableyi, j can take only discrete values.
Our problem is inherently discrete due to discrete nature of

probings. Either a probing would be allocated to a page or it
won’t be. There can’t be anything between these.

2. Separable: because optimizing function could be expressed
in terms ofyi, j only.

3. Convex: due to convex nature of optimizing function.

Discrete, Separable and Convex problems have been well-studied
in theoretical Computer Science [10]. Formally it can be stated as
shown below:

min ∑N
i=1Fi(xi)

with resource constraint
∑N

i=1xi = R
wherex′is are discrete andF ′

i s are convex. Agreedyalgorithm
exists for the discrete case [7]. There is a faster algorithm also
for our problem, due to Galil and Megiddo, which has complex-
ity O(N(logR)2). The fastest algorithm is due to Frederickson and
Johnson [8] and it has complexity
O(max{N,Nlog(R/N)}). In our case, the output of these algo-
rithms is a set ofyi, j ’s which get a value of 1 to meet our opti-
mization measure. This set in turn gives us the number ofprob-
ings allocated to a page (xi=∑pi

j=0(yi, j)) as well as the ideal time
instances at which these allocatedprobingsshould be done.

4. SCHEDULING OF PROBINGS
At this point we know the number ofprobingsallocated to each

page and also the ideal time instances at which theseprobingsare
supposed to be done. In practice, we have a set ofM parallel pro-
cesses which continuously perform these probings. Now our task
is to schedule theprobingsamongM parallel probes. While deter-
mining any schedule, our aim is to minimize the total delay occur-
ring between the ideal time instances and the actual scheduled time
instances.

Let pagePi be allocatedxi number ofprobesin an optimal re-
source allocation. Also the time instances at which thesexi probes
should be employed aret1, t2, t3........txi . Let f etchi be the average
fetching time forith page. The scheduling problem can be easily
mapped to parallel shop scheduling problem.

In this problem, eachjob has to be processed on exactly one
of M identicalmachines. Eachprobingcould be regarded as ajob
whereas the probing processes are equivalent tomachines. Suppose
there are a total ofn such jobs. In scheduling problems, the time at
which a job becomes available for processing is called therelease
time(rj) and the time for which it needs to be run on a machine
is called theprocessing time. So in our case, idealprobing time
instancest1, t2, t3........txi would be therelease timesand fetching
times of pages would act asprocessing times(pj) for jobs. Our goal
is to minimize the delaydi between idealprobingtime instance(r i)
and actual time instancesi of scheduling.

In our case all jobs are equally important as there is no weight
assigned with eachprobing. So our problem could be formulated
in scheduling notation asR|M|r j ≥ 0|∑ j Cmj meaning thatR jobs
of non-trivial release times are available for scheduling atM ma-
chines with goal as minimization of average completion time. Here
Cmj denotes completion time for jobj. It might not be clear how
minimizing average completion time would lead to minimization
of average delay time. It is because of the following equality :

Total Completion Time

= ∑R
i=1(Cmi)

= ∑R
i=1(si + pi)

= ∑R
i=1(r i +di + pi)

= ∑R
i=1(di)+∑R

i=1(r i)+∑R
i=1(pi)

As ∑R
i=1(r i) and∑R

i=1(pi) are constants, minimizing average com-
pletion time is same as minimizing delay time. Note thatCmi is
the same assi + pi because ofnon-preemptivescheduling. Unfor-
tunately even simpler problemR|1|r j ≥ 0|∑ j Cmj don’t have any
polynomial time algorithm and has been proved to beNP-Complete
[11]. So we have to look forapproximation algorithms. As our
problem isoffline, there is 1.58-approximation algorithm [11] that
could be used for it. We have used this algorithm in conducting our
experiments.

5. EXPERIMENTAL EVALUATION
In this section, after explaining the setup for the experiments, we

describe the results.

5.1 Experimental setup and Performance Met-
ric

Comparison with Alternative Algorithms:
In previous sections, we proposed an optimalresources alloca-

tion policy for probing changes in pages relevant tocontinuous
queries. Here we evaluate our policy by comparing it with some
classical policies using synthetic a data set. These policies are
Uniform andProportionalpolicy [4] in which resources(probings)
are allocated uniformly across all pages or proportional to change-
frequencies of pages respectively. As suggested in [16] , it would be
fair to compare with the weighted version of these policies than the
unweighted ones: In theWeighted Uniformscheme, the number of
probings(xi) allocated to a page depends on theweights(Wi) associ-
ated with the page but is independent of its change frequency(λi):
xi ∝ Wi . In the proportional scheme,xi ∝ (λi ∗Wi).

Parameters of the Experiment:As mentioned earlier, each page
has an estimated change frequency(λi) associated with it which de-
notes the expected number of changes that occur in a page inT
time duration. Also there is a sequence of update instances(ui, j)
for each page(Ui) which enumerates the time instances at which
changes can occur in a page. With each update instance(ui, j), there
is an associated probability(ρi, j) which denotes the probability with
which a change can occur at this instance. In our experiments, to
make it simple, we make this sequence of update instances(U) the
same for each page. Other parameters are decided as below :

1. Nq : number of queries submitted in the system. It is set to
500.

2. N : number of pages found relevant for queries submitted. It
is also set to 500.

3. C : number ofprobingsavailable. It is varied from 1000 to
50000 in our experiments.

4. Change frequency distribution: The change frequencies(λi ’s)
are chosen according toZipf distribution with parametersN
andθ. θ varies from 0 to 2. Such distributions run the spec-
trum from highly skewed (whenθ=2) to uniform (whenθ=0).
This distribution is henceforth referred aschange frequency
distribution. Unless otherwise specified,θ is set to 2 in ex-
periments.

5. Update probability distribution: As said above, we have
used a universal sequence of update instances(U) in our ex-
periments. In this universal sequence, update instances are
uniformly distributed throughout the durationT everyδ time
units. In our experiments, we have dividedT in 480 up-
date instances. Probabilities(ρi, j) associated with these up-
date instances(ui, j) are varied between 0 and 0.3 and follow a

Zipf distribution. Henceforth we will refer to this distribution
asupdate probability distribution. Zipf is chosen because of
the fact that most of the web pages have time durations when
they are updated with greater probabilities in comparison to
the rest of the time durations. News sites can have multi-
ple hot time durations and that can be modeled by generating
many “humps” in theirupdate probability distributionwith
probability varying in the vicinity of every hump inZipf fash-
ion. Note that the probabilities(ρi, j) for all update instances
of a page should sum up to expected change-frequency(λi)
of that page. Also note that we vary thezipf parameter of
thisupdate probability distributionfrom 0 to 2 in our experi-
ments and so we get a correspondingupdate probability dis-
tribution for a page inT varying from a uniform to a highly
skewed distribution. This makes our experiments free from
any a priori assumptions about page change behaviour and
helps in evaluating our policies for all possible scenarios.

6. Weight of queries: All queries are assigned the sameim-
portance measure(ωi). It means that there is no distinction
made among queries and they are defined to have equal im-
portance.

7. Page Weight Distribution: Recent studies [15] show that
popularity of pages vary inzipf fashion as shown in Fig 2.
Drawing an analogy, we make relevance of pagej for a query

0 2 4 6 8 10 12 14 16 18

Frequency of Access

0

500

1000

1500

2000

2500

N
um

be
r

of
 p

ag
es

Figure 2: Observed Popularity Distribution

i (wi, j) to be distributed according tozipf distribution in our
experiments. This distribution will be referred asquery rele-
vance distribution. Also the more dynamic a page, the more
more popular it is too, as shown in [17]. So we make the
important pages be more dynamic in our experiments by as-
signingmaximumvalue ofpage relevance distributionto a
page in abiasedrandom manner. The summation of rel-
evance measures of a page for all the queries gives us the
weight(Wi) for this page as shown in section 3. The distri-
bution according to whichWi varies is referred to aspage
weight distribution.

8. probing ratio: denotes the ratio of the total number ofprob-
ingsto, (∑iεP λi), i.e., the number of actual changes expected
in timeT time.0

Performance Metric: Returned Information ratio: Part of thein-
formationthat is returned by a policy in a fixed number of probes

is called asReturned Information Ratio. Using section 3, it turns
out to be

∑iεPWi∗∑ jεU (ρi, j∗yi, j)
∑iεP(Wi∗λi)

whereyi, j is defined in the same way as in section 3. Note that
the maximum possible value ofreturned information ratiois 1 and
it is attained when all thosey′i, js are made 1 for which correspond-
ing ρ′i, js are non-zero. This is the performance metric on the ba-
sis of which we compare various allocation policies in our experi-
ments.

5.2 Comparison of resource allocation policies
In this experiment, we compare three aforementioned resource

allocation polices and also observe the effects ofupdate probability
distributionandpage weight distributionon their performance.

5.2.1 When both page weights and update probabil-
ities are uniformly distributed

We make both these distributions uniform and setZipf parameter
of change frequency distributionto 2 as shown in Fig. 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Change Frequency

0

50

100

150

200

250

300

350

N
um

be
r

of
 p

ag
es

Figure 3: Change frequency distribution

Uniform page weight distributionmeans that all pages are hav-
ing equal importance while uniformupdate probability distribution
leads to equal probability of change to a page at any update instance
in T. Fig. 4 shows the performance of different resource allocation
policies. There are 2 important observations.

1. Proportional policy performs better than its Uniform coun-
terpart. This is very surprising as all earlier studies showed
the reverse to be true [4] [16]. The reason becomes pretty
clear when we look into the nature of the crawling vs. the
probing problem. In our case, we are answeringcontinuous
queries and naturally our aim is to detect as many changes
as possible. So when all other parameters are uniform(page-
weight and update probability distribution), one would cer-
tainly expect more benefit byprobing those pages which are
having high change frequency(λi) because ultimately only
these pages are having maximum chances of changing. This
is what Proportional policy does and so it performs better
than Uniform policy. Earlier studies solved the problem for
answering discrete queries and aimed to maximizefreshness

2.0 3.0 4.0 5.0 6.0 7.0 8.0

Monitoring-Change Ratio

0.00

0.10

0.20
R

et
ur

ne
d

In
fo

rm
at

io
n

R
at

io
CAM
Proportional
Uniform

Figure 4: Under uniform weight and update probability distri-
bution

of page which is found to be ofconvexnature. So the perfor-
mance of Uniform becomes better than Proportional in their
case. We offer a formal proof of why Uniform does not work
as well as proportional at the end of the paper.

0 50 100 150 200 250 300 350 400 450 500

Page Bins (50 pages in a bin)

0.000

0.100

0.200

0.300

0.400

pa
rt

 o
f

to
ta

l i
nf

or
m

at
io

n

Total Information of a bin

Returned by CAM

Returned by Proportional

Returned by Uniform

Figure 5: Characteristics of resource allocation policies

2. Optimal policy also allocates moreprobingsto more dynamic
pages but it does it even more aggressively than Proportional.
Fig. 5 shows that Optimal allocates all itsprobingsto only a
few pages (for clarity, for the sake of this graph 50 pages of
consecutive page indices have been grouped into a bin) and
delivers most of theinformationto queries from these pages.
Again the pagesprobedare those which have high probabil-
ities of actually showing changes. Proportional too does this
but it allocatesprobingsin proportional manner only while
Optimal does it in more biased way and so it gets even bet-
ter performance. As it is evident from the graph that op-
timal policy performs 300% better than proportional policy
and around 600% better than uniform policy!

Obviously now if we start decreasing the skewness, i.e., thezipf
parameter, ofchange frequency distributiontoo, then policies start
coming closer and in the extreme case, they all become the same
when frequencies are made to be distributed in a completely uni-
form manner (Zipf parameter = 0).

5.2.2 When page update probabilities are skewed
Here, we skew theupdate probability distributionwith zipf pa-

rameter being set to 1. So pages are still of equal importance but
for each page, the update instances are no more equi-probable, in
experiencing a change. Fig. 6 shows the performance graph. for
this data set. Again, optimal performs best leaving other allocation
policies far behind. It is 12 times better than uniform policy. But
in this case, the pages which areprobedunder optimal allocation
turn out to be quite diversified as pages with even lesser change fre-
quency have some update instances with a good chance of actually
changing as shown in Fig. 6.

2.0 3.0 4.0 5.0 6.0 7.0 8.0

Monitoring-Change Ratio

0.00

0.10

0.20

0.30

0.40

0.50

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io CAM

Proportional
Uniform

Figure 6: Under skewed update probability and uniform page
weight distribution

0 50 100 150 200 250 300 350 400 450 500

Page Bins (50 pages in a bin)

0.000

0.100

0.200

0.300

0.400

pa
rt

 o
f

to
ta

l i
nf

or
m

at
io

n

Total Information of a bin

Returned by CAM

Returned by Proportional

Returned by Uniform

Figure 7: Characteristics of resource allocation policies

5.2.3 When page weights are skewed
If we makepage-weightdistribution skewed while keepingup-

date probability distributionuniform, we find that optimal again
performs far better than others as shown in Fig. 8. Also, now it
allocatesprobingsto those pages which have high importance and
a higher probability of getting changed.

2.0 3.0 4.0 5.0 6.0 7.0 8.0

Monitoring-Change Ratio

0.00

0.10

0.20

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

CAM
Proportional
Uniform

Figure 8: Under skewed page weight and uniform update prob-
ability distribution

5.3 Effect of varying the skewness of the up-
date probability distribution

In this experiment, we compare our resource allocation policy
with proportionalanduniformpolicies under varying skewness of
update probability distribution. This will also help us investigate
the drawbacks of these classical approaches inprobingweb pages
for answeringcontinuousqueries.

0.0 0.5 1.0 1.5

Zipf parameter

0.00

0.20

0.40

0.60

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

CAM
Proportional
Uniform

Figure 9: Under varying skewness of update probability distri-
bution

Fig. 9 compares performance of different resource allocation
policies whenprobing ratio is kept at 9 andpage weight distri-

bution is uniform. It is clear from the curves that for this data
set, optimal resource allocation policy always performs better than
other resource allocation policies. To emphasize the difference, we
varied theupdate probability distributionkeeping other parameters
same as before. As evident from Fig. 9 that optimal resource allo-
cation policy starts performing even much better than other policies
asupdate distributionis made more and more skewed. It exhibits a
5-fold improvement over uniform resource allocation policy at zero
zipfparameter but whenzipfparameter is set to 1.5, its performance
sees a 10-fold improvement.

This is because of the fact that in optimal resource allocation
policy, aprobingis made at those update instances which have high
probability of returning relevant information and so asupdate prob-
ability distributionis made more and more skewed, it copes up with
the skewness of data by selecting the most beneficial instances for
probing and performs even better than before. But this is not the
case withuniformandproportionalpolicies as they do not look at
the granularity level of update instances and decideprobingsonly
based on weight and change frequency. Note that whenzipfparam-
eter is set to zero, it does not mean that update probabilities become
uniformly distributed, instead of this it means that all update prob-
ability values occur equal number of times.

5.4 Identifying Parameters that produce Bet-
ter Results for Continuous Queries

0.0 3.0 6.0 9.0 12.0 15.0

Monitoring-Change Ratio

0.000

0.200

0.400

0.600

0.800

1.000
R

et
ur

ne
d

In
fo

rm
at

io
n

R
at

io
zipf parameter=2.0
zipf parameter=1.0
zipf parameter=0.5

Figure 10: With varying skewness of update probability distri-
bution

In the previous experiment, we observed that even when we have
9 times moreprobingsavailable than expected number of changes
in T, the loss of information remains significant. We feel that this is
because of the distributed and uncertain nature of page change be-
haviour which make number ofprobingsrequired for good perfor-
mance very large(section 5.2.1). In the ideal case, we will require
continuous monitoring of web pages and so even a large number
of probings(until they become comparable to number of update
instances) won’t be of much help.

Fig. 10 shows how performance varies with theupdate proba-
bility distribution of page change behaviour. It is also evident that
pages with almost uniformupdate probability distributionwould
affect the performance forcontinuousqueries. We find thatpage
weight distribution also affects the performance in a significant

2.0 4.0 6.0 8.0

Monitoring-Change Ratio

0.00

0.10

0.20

0.30

0.40

0.50

0.60

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

zipf parameter=1
Uniform weights

Figure 11: With varying skewness of page weight distribution

way. It is justified too because if we can somehow figure out during
monitoring phasethat a particular set of pages is serving a major
part of reportings to users for answering query, then we can im-
prove our performance by assigning them a major share ofprob-
ingsalso. Fig. 11 shows the effect ofpage-weightdistribution on
the performance of allocation techniques.

Continuous queries can be responded to even more efficiently
by extracting meta-information about the change behaviour of web
pages. We need to have more knowledge of page characteristics to
get a good performance for answeringcontinuousqueries .

5.5 Effect of Probing Ratio on Continuous Queries

0 10 20 30 40 50

Monitoring-Change Ratio

0.000

0.200

0.400

0.600

0.800

1.000

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

CAM

Figure 12: Performance curve for optimal policy

Here we evaluate the practical application of our proposed scheme.
As evident from Fig. 12, 90% of the Information is returned in our
technique whenprobing ratio is 20. Without using our probing
technique, retrieving 90% of the information would requireprob-
ing of at least 420 instances while our scheme reduces this to only
20 probings(5% of blind probings). So it is indeed helping us in

monitoring the pages but it is the uncertain nature of page changes
which is actually impairing the performance.

5.6 Reallocating resources

0.0 30.0 60.0 90.0 120.0 150.0

Run Index

0.00

0.20

0.40

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

Performance Curve

Figure 13: Effect of Resource Reallocation after every run

As we said while describing our technique that after every run of
lengthT, we update page change behaviour and accordingly mod-
ify resource allocation for next run. But this may become very
expensive especially whenT is small. We next study the effect of
the theresource allocation delay.

We making manyprobing runsof periodT assuming that a brief
monitoring periodpreceded it in which page change was fully cap-
tured and then we would show how performance varies with each
run and with varying delays in repeating resource allocation. We
start with update probability distributionof zipf parameter being
set to 1. Then we generate an actual event based on thisupdate
probability distributionby tossing a biased coin at every update in-
stance and declaring a change at that instance if it falls head.

0.0 30.0 60.0 90.0 120.0 150.0

Run Index

0.00

0.20

0.40

0.60

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

After every Run
After 5 Runs
 After 10 Runs

Figure 14: Effect of Varying the Resource Reallocation Delay

Before next run, we modify theupdate probability distribution
based on this last run made by modifying update probabilities(ρi, j)
of those update instances which getprobedin this run. We do this
modification in very naive fashion by estimating average rate of
occurring of updates at this update instance. So if a page got up-
dated on 5 occasions in last 10 probings to this page at a certain
update instance, we assign 0.5 probability of expecting a change at
this update instance. Then we reallocate resources accommodating
this newupdate probability distribution. As Fig. 13 shows that

performance of our allocation policy do increase in initial runs and
then it becomes steady. This is what one would expect because af-
ter a large number of runs, theupdate probability distributionitself
becomes steady. Also we plotted 2 more graphs as shown in Fig.
14 to study the effect of delayed resource allocation. We find that
resource allocation is not required to be done after every run and
can be delayed without incurring any significant loss provided the
monitoring phasedoes capture the page change behaviour nicely
and also only if page change behaviour is not very erratic.
Not putting the other case when monitoring is fallacious be-
cause of no good experiment in support of it

5.7 Performance of Scheduling algorithm

0 8 16 24 32 40 48 56 64

Size(in KB)

0.0

5.0

10.0

15.0

20.0

Pe
rc

en
ta

ge

Figure 15: Size of web documents

In this experiment, we test our scheduling algorithm and show its
performance.Change frequency distribution zipfparameter is set to
2 andupdate probability distribution zipfparameter to 1. Sizes of
the documents are generated as shown in Fig. 15 as found in [9].
Also more popular pages are set to smaller sizes in accordance with
[6]. We define averageprobing capacityas available bandwidth di-
vided by average size of documents. Note that this is average anal-
ysis and it is possible to make more probings than average probing
capacity. As shown in Fig. 16, ourschedulingalgorithm performs
very good and is almostlosslesswhen number ofprobingsis less
than averageprobing capacity. Even when number ofprobingsre-
quired to be scheduled exceeds averageprobing capacity, the loss
of information incurred inschedulingphase remains quite negligi-
ble in comparison ofresource allocationphase. The two kinds of
losses incurred are:

1. As the number ofprobesto be scheduled becomes more than
the averageprobing capacity, someprobesremain undone
and so some loss of information is incurred.

2. Also as number of probes becomes more and more, the chances
of cases where probes scheduled for a instance exceeds the
probing capacityat that instance also becomes high. So these
probingsget delayed for time being and hence loss of infor-
mation is incurred.

6. PROOF
Assumption : Update distributionis uniform.

Aim : Proportional policy always performs better than Uniform pol-
icy under above assumption.
We would be comparing weighted uniform and weighted propor-
tional policies.

Number of crawls allocated toith page in proportional

0.0 3.0 6.0 9.0 12.0

Monitoring-Change Ratio

0.000

0.200

0.400

0.600

0.800

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

Average probing capacity = 7.6*No. of Expected Changes

After Resource Allocation
After Scheduling

Figure 16: Performance Curve for different phases of scheme

policy is
Wi∗λi

∑i Wi∗λi

whereWi andλi are weight and change
frequency ofith page respectively.

So Information gained for this page is equal to

Wi
2∗λi∗ρi

∑i Wi∗λi

whereρi is the update probability forith

page at any update instance.

Information gained in case of Uniform Allocation for
the same page is equal to

Wi
2∗ρi

∑i Wi

So ratio of performance of Proportion to Uniform policy over
all pages becomes

∑i λi∗∑i Wi

∑i Wi∗λi

As we know∑i ai ∗∑i bi ≥ ∑i ai ∗bi for non-negativeai ’s andbi ’s,
above ratio is always greater than 1.

This proves that Proportional policy always performs better than
Uniform policy no matter how page weights and change frequen-
cies are distributed.

7. CONCLUSIONS AND RELATED WORK
As mentioned earlier, in our problem formulation we are not

making any assumptions about the change behaviour of pages. In-
stead we collect and build the above statistics about a page during
a monitoringperiod and only on the basis of this collected infor-
mation, we doresource allocation. Then we keep on updating this
information after everyT time units based on the result of the prob-
ings done. This makes our solution robust and adaptable in any web
scenario.

There have been several studies of web crawling in an attempt
of capturing web dynamics. The earliest study to our knowledge is
by Brewington and Cybenko. In [1], they not only studied the dy-
namics of web but also raise some very interesting issues for devel-
oping better crawling techniques. They showed that page change
behaviour varies significantly from page to page and so crawling
them equal number of times is a fallacious technique. A series
of papers, [4] and [3] addresses a number of issues relating to the
design of effective crawlers. In [5][16], authors approached the
problem formally and devised an optimal crawling technique. A
common assumption made in most of these studies is that page
changes are aPoissonor memorylessprocess. In fact it has shown
to hold true for a large set of pages but it is also found in [?] that
most of web pages are modified during US working hours,i.e., 5
a.m. to 5 p.m. In our case, we go beyond these basic assump-
tions and present anoptimal monitoringtechnique for answering
continuousqueries [12] independent of any assumption about page
change behaviour. We also show that traditional crawling technique
don’t work well for answering ofcontinuous queriesbecause of the
change in nature of problem as well as goal to be achieved. We for-
mally prove thatproportional allocationworks better thanuniform
policywhich differentiates thecontinuousanddiscretequery case.

There is also an altogether different approach possible for an-
sweringcontinuous querieswhere information ispushedfrom web
pages instead ofpulling it as done in our scheme [14]. Here users
submit their query to the query system and then query-system reg-
isters itself to all the web pages it finds relevant to the submitted
queries. Now whenever these web pages get updated, they them-
selves propagate their changes to the query-system which in turn
report back this to the user only if it finds that changes are relevant
for user query. An advantage of this approach is that here query
system is no more required to monitor web pages and so there is no
wastage of resources too but an obvious disadvantage of this would
be dependence on web sites which may or may not propagate infor-
mation at correct time, particularly when there are large number of
query systems that need to be reported. Also some web sites might
not even allow registration of query systems.

To our knowledge, no earlier work has focused on the aspect
of probing the relevant web pages to respond to a set ofcontinu-
ous queries. (1) We present optimum probing techniques and also
show how traditional crawling approaches won’t suffice for answer-
ing continuous queriesand need to be improved. We do not make
any assumptions about the way in which pages change. Most of
the earlier crawling strategies assume aPoissonupdate process. In-
stead of this, what we do is to record information about the nature
of change of pages and keep on evolving it every time a page is
probed. This makes our study more practical and robust as it is not
designed with any basic assumptions. (2) Our optimization metric
is defined to minimize the information loss compared to an ideal
probingalgorithm which probes upon every change of a page. This
metric also differentiate crawling fromprobing. (3) We formally
prove thatproportional allocation policyin which the pages which
are having high frequency of change are allocated moreprobings,
works better thanuniform policywhich allocates equal number of
probingsto each page independent of its change frequency, incon-
tinuousquery case which on the first sight seems to be in contra-
diction with a long held result thatuniform is a better allocation
technique than itsproportionalcounterpart [4]. We justify this sur-
prising behaviour and also give an intuition behind it. This shows
that nature of problem ofmonitoringof web pages for answering
continuousqueries is strikingly different from the problem of de-
vising optimal crawling techniques addressed in earlier studies.

8. REFERENCES
[1] B. E. Brewington and G. Cybenko. How dynamic is the

Web?Computer Networks (Amsterdam, Netherlands: 1999),
33(1–6):257–276, 2000.

[2] C.Chekuri, R.Motwani, B.Natarajan, and C.Stein.
Approximation techniques for average completion time
scheduling.In proceedings of 8th ACM-SIAM Symposium of
Discrete Algorithms, pages 609–618, 1997.

[3] J. Cho and H. Garcia-Molina. The evolution of the web and
implications for an incremental crawler. InProceedings of
the Twenty-sixth International Conference on Very Large
Databases, 2000.

[4] J. Cho and H. Garćıa-Molina. Synchronizing a database to
improve freshness.In Proceedings of 2000 ACM
International Conference on Management of
Data(SIGMOD), 30(1–7):161–172, 2000.

[5] E. Coffman, J. Z. Liu, and R. R. Weber. Optimal robot
scheduling for web search engines.Journal of Scheduling,
1998.

[6] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of
World Wide Web Client-based Traces. Technical Report
BUCS-TR-1995-010, Boston University, CS Dept, Boston,
MA 02215, April 1995.

[7] B. Fox. Discrete optimization via marginal analysis.
Management Science, 13(3):211–216, 1966.

[8] G. N. Frederickson and D. B. Johnson. The complexity of
selection and ranking in x + y and matrices with sorted
columns.Journal of Computer and System Sciences,
24:197–208, 1982.

[9] A. Heydon and M. Najork. Mercator: A scalable, extensible
web crawler.World Wide Web, 2(4):219–229, 1999.

[10] T. Ibaraki and N. Katoh. Resource allocation problems:
Algorithmic approaches.MIT Press, Cambridge, MA, 1988.

[11] J.K.Lenstra, A. Kan, and P.Brucker. Complexity of machine
scheduling problems.Annals of Discrete Mathematics,
1:343–362, 1977.

[12] L. Liu, C. Pu, and W. Tang. Continual queries for internet
scale event-driven information delivery.Knowledge and
Data Engineering, 11(4):610–628, 1999.

[13] M.R.Garey, D.S.Johnson, and R.Sethi. The complexity of
flowshop and jobshop scheduling.Mathematics Operation
Research, 1:117–129, 1976.

[14] C. Olston, B. T. Loo, and J. Widom. Adaptive precision
setting for cached approximate values. InSIGMOD
Conference, 2001.

[15] J. Pitkow and P. Pirolli. Life, death, and lawfulness on the
electronic frontier. InProceedings of the Conference on
Human Factors in Computing Systems CHI’97, 1997.

[16] J. Wolf, M. Squillante, P.S.Yu, J.Sethuraman, and L. Ozsen.
Optimal crawling strategies for web search engines.In
WWW, 2002.

[17] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R.
Karlin, and H. M. Levy. On the scale and performance of
cooperative web proxy caching. InSymposium on Operating
Systems Principles, pages 16–31, 1999.

