Monitoring the Dynamic Web to respond to Continuous
Queries

ABSTRACT continuous updates to the relevant web pages will serve the users
gaetter than another which, say, treats the querydis@ete query
I.e., returns an answer only when the query is submitted.

Not surprisingly, the problem of keeping track of the dynamics

Continuous queries are queries for which responses given to user
must be continuously updated, as the sources of interest get up-
dated. Such queries occur, for instance, during on-line decision ; . -
making, e.g., traffic flow control, weather monitoring, etc. The of the web becomes inherently different for tbentinuous query

problem of keeping the responses current reduces to the problemt@S€ com_paredh to classmi:]&{crﬁ]tle guery case. FO?OHIIHUOUS
of deciding how often to visit a source to determine if and how it dU€ries, since the system should maintaircilveencyof responses

has been modified so that a user response can be updated accordP USers, the problem tra}nslates to one of (a) knqwing which pages
ingly. On the surface, this seems to be similar to the crawling prob- are relevant, (b) monitoring the pages, to determine the_ c_haracterls-
lem since crawlers attempt to keep indexes up-to-date as users posIalCS of changes to these pages, and from these (c) deciding when to

search queries. We show that this is not the case, both due to theP"0Pethe pages for changes, so that responses are current. The last
inherent differences between the nature of the two problems as We”problem has several subproblems: allocating the resources needed

as the performance metric. We also develop and evaluate a multi-0" Probing the pages, scheduling the actual probings, and then car-
rying out the probing. The work involved in handling continuous

phase solution to the problem. Some of the important phases are: . din Fi he feedback p h
The monitoring phasgin which changes, to an initially identified quUErEes IS portrayed in Flgure L. He.re,.t € feedback arcs from the
rproblng phase to the earlier phases indicate that observations made

set of relevant pages, are tracked. From the observed change chaOI ing th bi h p b decisi W
acteristics of these pages, a probabilistic model of their change be- uring the probing phase are used to tune subsequent decisions. We

haviour is formulated and weights are assigned to pages to denote
their importance for the current queries. During the next phase,
theResource Allocatiophase, based on these statistics, resources,
needed to continuouslgrobe these pages for changes, are allo-
cated. Given these resource allocations,dtteedulingphase pro-
duces an optimal achievable schedule for the probings. An exper-
imental evaluation of our approach compared to prior approaches
for crawling dynamic web pages leads to some interesting obser-
vations pertaining to the differences between the two problem of
crawling—to build an index—and the problem of change tracking—
to respond to continuous queries.

Resource
Allocation

Probing Scheduling

Figure 1: Different phases of our approach

1. INTRODUCTION

The World Wide Web consists of an ever-increasing collection
of decentralized web pages that are modified at unspecified timesuse the ternprobingsto explicitly account for the differences from
by their owners. Current search engines try to keep up with the dy- the classical crawling problem. probefetches a web page, much
namics of web by crawling it periodically, in the process building like what a crawler does, but with the goal of fetching new informa-
an index that allows better search for pages relevant to a topic ortion relevant to one or more queries whilerawl is not done with
a set of keywords. Clearly, any good crawling technique needs to any specific user request in mind. Specifically, in this paper, our
consider the change behaviour of web pages. Even in the best-cas@roblem reduces to the distribution of a given numbeprabings
scenario, a crawler visits a web site only once in a few hours. This among the pages whose changes need to be tracked to respond to a
type and frequency of crawling is insufficient to handle a class of Set ofcontinuousjueries.
queries known a€ontinuous querie§l?] in which the user ex- It could be argued thaliscretequeries asked periodically with
pects to be continuously updated as and when new information of Some time interval can be considered to be equivalenbtdinu-
relevance to his/her query becomes available. For example, con-ousqueries but the following reasons should help in dispelling this
sider a user who wants to monitor a hurricane in progress with the misconception: Firstly, determining the next time whendtserete
view of knowing how his/her town will be affected by the hurri-  query should be posed by the user is highly non-trivial. If the time-

cane. Obviously, a system which responds taking into account theinterval is kept small then it may induce unnecessary load on the
Copyright is held by the author/owner(s). system, particularly when the updates are not frequent. If we set

WWW?2003May 20—24, 2003, Budapest, Hungary. the time-interval to be large, it may lead to loss of information if
ACM XXX. more frequent updates, than expected, take place. Secaodly,



tinuousqueries have a non-zero lifetime and so a query system canearlier, correspond to the arcs going from the “probings” phase to
study a query’s characteristics carefully and can answer it better the earlier phases of Figure 1.

than in the case whemiscretequeries, which have zero lifetime, Let C denote the total number pfobingsthat can be employed
are continuously posed. Furthermore, unlike in the case of discretein a single scheduling intervalC is derived as an aggregation of
queries, the time taken to provide the system’s first response to athe resources needed for probing, including CPU cycles, commu-
continuous querynay not be as important as the maintenance of nication bandwidth, and memory.With this information in hand,
currency during all the responses. To this end, our optimization decisions are made about the allocation of a given numbgrobf
metric is defined to minimize the information loss compared to an ingsamong a set of pages while also decidivigenthese allocated
idealprobingalgorithm which probes upon every change of a page. probingsshould ideally occur.

So it should be clear by now that not only the nature of the crawl-  Resource allocation phase This phase decides the time in-
ing problem but optimization goals also become different when we stances at which these allocaf@dbingsshould be done. Iachedul-
move fromdiscreteto continuousquery case. ing phase, we take these time instances as inputs and prepare a fea-

The rest of this paper is structured as follows: In Section 2, we sible schedule to meet our optimization measures. The overall goal
define the problem formally and also provide an overview of the of these two phases is to probe in such a way that the probes oc-

solution ??7? cur just after updates are expected to take place. The number of
lost updates is an indication of the amount of lost information and
2. OVERVIEW OF OUR SOLUTION minimizing this is the goal of the system.

. . . . . We now give a summary of thesource allocatiorandschedul-
Consider a user who is worried about a hurricane in progress and.

wants to keep abreast of the hurricane-related updates. To achievdd phases using the following model (The basic general model is

this, he poses a continuomskeyword query — {wy, Ws, ... W} adopted from [16] and is modified to suit our problem definition.)
y —_ ) PRI m .
Identifying Pages relevant to a set of queriesBased on the We denote by N the total number of web pages that need to be

keywords specified by a user, we need to first identify pages rele- monitored, which shall be indexed by Let P denote the set of

vant to this query. The query is considered as a bag of terms and\r’lvjrzl?;g;scLﬂﬁvzgtt:}%ttgiccﬁr}tr'lnU;F:Tq::;?jﬁ tgheHeesntg:%ﬁg
is fed to a classical search engine which in turn returns back a set 9 pag ’

of pages it finds relevant to queries usingerted index We find, we will refer it as change frequency for pagepage may get up-

say, thathe National Hurricane CenteNational Weather Orga- dated.
nization and other tropical cyclone sites as well as news sites are Supposd): denotes the sequence of time insta " u
relevant. The relevance of a page to a query can be measured byat wh?cph oslsible Undates ogcur in paaBere o isnt%qestol'tglnrll.urlh?'
standard IR techniques based on Wextor-Spacenodel: Given POSSI P ; Pag P |

. ber of update instances ff page, i.e., cardinality of sequende
an-word document = {w1,W>,...Wn} and a set of recognized

words, one can represespinda each as a vector of word frequen- (R=Ui]). _Notg that it i not certain th‘f"t apage wquld be ypdated
ciesg andd A common measure of similarity between two word at. these “”.”e |nstances and so there is a probabﬁ[lf)assoc[ated .
frequency vectord andq weighted by inverse document frequency with each time instance j that denotes the chances of getting this

th . .
(id f) is the cosine distance between them: i page updated at thé" instance.
We assume & Ui 1 < Ujo....Uip, <Tanduig=0andup =T.

Yweqard - fq(w) - fa(w) It should be clear that if we decide poobeat some instance, then it
scoreq,a) = : . R .
’ A fg(W))2 - Sweahut (w))27 should be at the potential update time instance only because there is
\/Zweq( wia wealfwia no reason to delay it beyond when a update might occur. If number

of probingsallocated for a page is equal to the number of update
instances, then we can always maintain a fresh copy of this page
by probingat all possible update instances. But in practice we will

where fg(w) is the number of times word appears in the docu-
mentd andAy, is the inverse document frequency of the werd

defined as: X
not be able to perform as many probings as the number of update
|| inst s d to pick a set of update inst t which
Aw = log instances. So we need to pick a set of update instances at whic
{d € D: fg(w) > O} only this page would be probed and not at others. Hence with every
where? is the document set in consideration. update time instance, we associate a varigjevhere
Monitoring the Relevant Pages to Characterize ChangeOnce ¥i,j = 1if probingof ith is done at timey; j 0, otherwise

relevant pages have been identified, by visiting each page at fre- if we probetheit" pagex; times, theanP‘:O(yiﬁj) =X holds.

quent intervals during a monitoring period, changes to these pages Scheduling the probes:This involves taking the ideal timings

are monitored, update statistics collected, and the relevance of thefor the probings of each page and obtaining an optimal achievable

changes, vis a vis the queries, is assessed. This is used to buildschedule out of it. We map this problem ftow-shopscheduling

a statistical model of the changes to the pages relevant to a setproblem [13] with the goal of minimizing the averagempletion

of queries. These statistics include page update instances, pagéime Though this problem has been proved toNe-Complete

change frequency, and relevance of pages for queries. [11], there are fast approximation algorithms [2] that provide an
With this information in hand, we can move to the next set of approximate bounded solution. Next wmbethese pages accord-

phases where resource allocation and scheduling decisions are madeg to the designed schedule and when sukeduling intervals

concerning the probings to be done for an interval of lefigtfithe finished, we go back to query system and update the characteristics

basic idea is that these scheduling intervals of lefigépeat every

T units of time and we will make decisions pertaining to the prob- *For example, the authors of [9] report that with two 533 MHz Al-

ings to be carried out in one scheduling interval using both new Rﬂhb?t/psré)cclistl(D)lr%oﬁn%Etigfr\chtl\rqé }nlt?a rﬁgng:cggarlhﬂggf ;r(‘:?a\?aloo
data and the results from the previous schedullngllntervalls. their crawler crawled at an average download rate of 112 docu-

In general, based on the results of probings carried odt fone ments/sec and 1,682 KB/sec. Similarly the capabilities of a given
units, scheduling, resource allocations, change statistic computa-infrastructure can be mapped to the numbepmibingsthat it is
tions, and page relevance can all be revisited. These, as mentionec¢apable of on average.




of these pages on the basis of the observations done preced-
ing scheduling interval

3. OPTIMAL RESOURCE ALLOCATION

As noted earlier, we need to distinguish between pages on the ba-

Resource constraint is given by

YieP Y jeu; Yij = Cc

Note that here we are assuming thatTinduration, relevance

sis of two metrics. One is the nature of page-change behaviour and®f €ach updated copy of page for queries remains the same as es-

the other is importance of page for queries. Page-change behaviou
is studied during anonitoringphase and is denoted by associating
a probability of change with every update instance. Next we would
show the way in which pages can be ranked by assigwigights

I[imated duringmonitoring period. After ascheduling intervals
finished,we will update these relevance measures on the basis of
relevance measures actually found in the interval preceding it. So
unlessT is kept very large or page updates are very erratic, our as-

to them using relevance measures. These relevance measures af&!MPtion remains very practical. Also we are assuming that with

determined for each page for each query dunmanitoringperiod.

3.1 Importance of Specific Pages

Glossary
Q: Set of all queries submitted in the system.
Qp: : Set of queries for whiclith page is found to be relevant in
monitoring period
w; j : Estimated relevance of" page forjth query. It would be
positive for all queries €Qp, and zero for algeQ Qp, . It would be
computed duringnonitoringperiod.
wi : Importance oft" query. This would be an input to the system.
W : Weight ofith page. It is computed as shown below.

Itis clear that not all pages would be equally important for each
query in the system. So we would rank pages by assigniight
to each page using its relevance measures for queriesw@igt

each update of page, information of update preceding it is com-
pletely lost. That is, the number of lost updates is an indication of
the amount of lost information. While this may not always be true,

it gives us a simple way to state the goal to be accomplished.

In certain cases, it is possible that we would be having more in-
formation than the case described above. For example, if we can
measure change behavioui$fpage with respect t§" query, then
it would be possible to allocate resources even more efficiently.
For example, suppose we get to know during monitoring period
that a particular news site mainly declares health updates only once
at the start of day and in rest of the time, it remains mainly con-
cerned about political and sports updates, then we can characterize
change behaviour of this page with respect to queries concerned
with sports, medical and political domain.

Suppose; j k denotes the probability of changeib¥page att"

of a page denotes the value of current copy of page and if page getédeate instance where this change is relevant for gkiefen our

updated before the current copypimbed we assume that it incurs
us a loss o\ value. Suppose there a€@queries submitted in

resource allocation problem can be formulated as

the system. Each page would be relevant for a set of queries. Say miny iep Ej

theith page is relevant for a query set denoted@y. Also the
sequence of values measuring relevancé'gfage for each query
IS W1, Wi 2
be calculated during monitoring period and after evetime units
when a scheduling interval is finished, it would be updated based
on the earlier values and values found in last scheduling interval.

Also let there bémportancaneasure associated with each query
because of the classification of users submitting the query or clas-
sification of query domains, say;, wy....g . SO now we can
measure theveight W of ith page as

W =3 jeqlwjwi,j)

where Q is a set of queries in the system,

wj isimportanceof jth query,

wij is relevance measure ith page forjth query and is greater
than 0 only ifgjeQp,

3.2 Goals of the Resource Allocation Phase
For Continuousqueries, our aim is to minimize weighted im-

portance of changes that are not reported to users . It could be

formulated as
mingiep(WE)
whereE; denotes expected number of lost changestfopage

As we have assumed that each update instance is independent
others,

SOEi = Y jeu; Pi,j(1—Vi,j)

of.

whereE; denotes the weighted expected number of lost changes
for ith page

SOEj = T ke kWi k- ¥ jeu; Pi,j k(1 — Vi)

with resource constraint as

YieP 2 jey; Yi,j = C

If we can extract even more information by measuring not only
probability of change oft" page at update instancg;j but also
average importance of change at this time instance, then it would
make resource allocation even more efficient. For example, sup-
pose we found that a particular research site compiles and announces
all its previous day’s research updates daily at 10:00 a.m. in the
morning and in rest of day, it updates its page only when some new
research breakthrough takes place. Then it is clear that visit to this
page at 10:00 a.m. is certainly more fruitful than any other visit to
this page. It is easy to accommodate aforementioned extension in
the above model, and so we won'’t concern ourselves with it due
to lack of spacels this last paragraph ok as it seems quite im-
practical. We may argue that though above extension seems to
assume very much information, it may possible in continuous
query case to actually have this much information because we
do get a lot of time to observe pages in continuous query case.

3.3 The resource Allocation Algorithm

Both of the above formulated resources allocation problem are
discrete, separable and convex.

1. Discrete because variablg j can take only discrete values.
Our problem is inherently discrete due to discrete nature of



probings. Either a probing would be allocated to a page or it
won't be. There can't be anything between these.

2. Separable because optimizing function could be expressed
in terms ofy; j only.

3. Convex due to convex nature of optimizing function.

As 3R (ri) andsR , (pi) are constants, minimizing average com-
pletion time is same as minimizing delay time. Note tGa is
the same as + p; because ofhon-preemptivescheduling. Unfor-
tunately even simpler proble®|1|rj > 0| 3 ; Cm; don’t have any
polynomial time algorithm and has been proved tdNfeComplete
[11]. So we have to look foapproximation algorithms As our
problem isoffling, there is 1.58-approximation algorithm [11] that

Discrete, Separable and Convex problems have been well-studiedcould be used for it. We have used this algorithm in conducting our
in theoretical Computer Science [10]. Formally it can be stated as experiments.

shown below:
min 3, Fi(%)
with resource constraint
SiLy% =R
wherexs are discrete ané/s are convex. Agreedyalgorithm

5. EXPERIMENTAL EVALUATION

In this section, after explaining the setup for the experiments, we
describe the results.

exists for the discrete case [7]. There is a faster algorithm also 5.1 Experimental setup and Performance Met-

for our problem, due to Galil and Megiddo, which has complex-
ity O(N(logR)?). The fastest algorithm is due to Frederickson and
Johnson [8] and it has complexity

O(maxX N,Nlog(R/N)}). In our case, the output of these algo-
rithms is a set of; j's which get a value of 1 to meet our opti-
mization measure. This set in turn gives us the numberral-
ings allocated to a pageq(:zf‘zo(yi,j)) as well as the ideal time
instances at which these allocadbingsshould be done.

4. SCHEDULING OF PROBINGS

At this point we know the number gfrobingsallocated to each
page and also the ideal time instances at which tpesgingsare
supposed to be done. In practice, we have a sbt phrallel pro-

rc

Comparison with Alternative Algorithms:

In previous sections, we proposed an optimeglources alloca-
tion policy for probing changes in pages relevantdontinuous
queries. Here we evaluate our policy by comparing it with some
classical policies using synthetic a data set. These policies are
Uniform andProportionalpolicy [4] in which resourceggrobings)
are allocated uniformly across all pages or proportional to change-
frequencies of pages respectively. As suggested in [16], it would be
fair to compare with the weighted version of these policies than the
unweighted ones: In thé/eighted Uniformscheme, the number of
probings(x) allocated to a page depends onwghts(\W) associ-
ated with the page but is independent of its change freqy&ncy

cesses which continuously perform these probings. Now our task Xi JW. In the proportional schemg;, U (Ai «W).

is to schedule thprobingsamongM parallel probes. While deter-
mining any schedule, our aim is to minimize the total delay occur-

Parameters of the ExperimentAs mentioned earlier, each page
has an estimated change frequengyéssociated with it which de-

ring between the ideal time instances and the actual scheduled timg?0tes the expected number of changes that occur in a page in

instances.

Let pageP, be allocated;; number ofprobesin an optimal re-
source allocation. Also the time instances at which thegeobes
should be employed atg, to, ts....... ty. Let fetch be the average
fetching time forith page. The scheduling problem can be easily
mapped to parallel shop scheduling problem.

In this problem, eacljpb has to be processed on exactly one
of M identicalmachines Eachprobing could be regarded asjab
whereas the probing processes are equivalentithines Suppose
there are a total afi such jobs. In scheduling problems, the time at
which a job becomes available for processing is calleddlease
time(rj) and the time for which it needs to be run on a machine
is called theprocessing time So in our case, idearobing time
instancedy, to, ts....... tx, would be therelease timesind fetching
times of pages would act asocessing times(p for jobs. Our goal
is to minimize the delay; between idegbrobingtime instancer;)
and actual time instancg of scheduling.

In our case all jobs are equally important as there is no weight
assigned with eacprobing So our problem could be formulated
in scheduling notation aM|rj > 0] ¥ ; Cm; meaning thaR jobs
of non-trivial release times are available for scheduliniylatna-
chines with goal as minimization of average completion time. Here
Cm; denotes completion time for jop It might not be clear how
minimizing average completion time would lead to minimization
of average delay time. It is because of the following equality :

Total Completion Time

ZLil(Cm)

Z-hzl(s +pi)

Z'hzl(ri +di + pi)

SRa(dh)+ 3R () + 3R (p)

time duration. Also there is a sequence of update instamggs(

for each page&fi) which enumerates the time instances at which
changes can occur in a page. With each update instangethere

is an associated probability(j) which denotes the probability with
which a change can occur at this instance. In our experiments, to
make it simple, we make this sequence of update instdogeké
same for each page. Other parameters are decided as below :

1. Ny : number of queries submitted in the system. It is set to
500.
2. N : number of pages found relevant for queries submitted. It

is also set to 500.

3. C: number ofprobingsavailable. It is varied from 1000 to
50000 in our experiments.

. Change frequency distributiariThe change frequenciesis)
are chosen according #ipf distribution with parameterl
and®. 0 varies from 0 to 2. Such distributions run the spec-
trum from highly skewed (whe®=2) to uniform (wherb=0).
This distribution is henceforth referred elsange frequency
distribution Unless otherwise specifiefl,is set to 2 in ex-
periments.

. Update probability distribution As said above, we have
used a universal sequence of update instabldes(our ex-
periments. In this universal sequence, update instances are
uniformly distributed throughout the duratidneveryd time
units. In our experiments, we have divid&din 480 up-
date instances. Probabilitigg|) associated with these up-
date instances( j) are varied between 0 and 0.3 and follow a



Zipfdistribution. Henceforth we will refer to this distribution  is called asReturned Information RatioUsing section 3, it turns
asupdate probability distributionZipf is chosen because of  out to be

the fact that most of the web pages have time durations when

they are updated with greater probabilities in comparison to Ziep W jou (1 #Y1)

the rest of the time durations. News sites can have multi- 2iep(Wihi)

ple hot time durations and that can be modeled by generating  wherey, j is defined in the same way as in section 3. Note that
many “humps” in theirupdate probability distributiowith the maximum possible value ofturned information ratids 1 and
probability varying in the vicinity of every hump izipf fash- itis attained when all thosg ;sare made 1 for which correspond-
ion. Note that the probabilitieg(;) for all update instances  jnq P ;s are non-zero. This is the performance metric on the ba-

of a page should sum up to expected change-frequincy(  sis of which we compare various allocation policies in our experi-
of that page. Also note that we vary thgpf parameter of ments.

thisupdate probability distributiofirom 0O to 2 in our experi-
ments and so we get a correspondimglate probability dis- 5,2 Comparison of resource allocation policies

tribution for a page inl’ varying from a uniform to a highly In this experiment, we compare three aforementioned resource

skewed Q|s.tr|but|0n. t'T his rrtl)akets our exr;])erlmegtsh frge from dallocation polices and also observe the effectspafate probability
any a priorl assumptions about page change benhaviour and yiqyip tion andpage weight distributioln their performance.
helps in evaluating our policies for all possible scenarios.

6. Weight of queries All queries are assigned the sarime- 5.2.1 When both page weights and update probabil-
portance measu(ey). It means that there is no distinction ities are uniformly distributed
made among queries and they are defined to have equal im- We make both these distributions uniform andZipt parameter
portance. of change frequency distributidn 2 as shown in Fig. 3.
7. Page Weight Distribution Recent studies [15] show that 350
popularity of pages vary izipf fashion as shown in Fig 2.
Drawing an analogy, we make relevance of paf# a query 300 M
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Figure 2: Observed Popularity Distribution Uniform page weight distributiomeans that all pages are hav-
ing equal importance while uniforopdate probability distribution
_ o _ S leads to equal probability of change to a page at any update instance
i (wi j) to be distributed according pf distribution in our in T. Fig. 4 shows the performance of different resource allocation
experiments. This distribution will be referred @qsery rele- policies. There are 2 important observations.

vance distribution Also the more dynamic a page, the more
more popular it is too, as shown in [17]. So we make the 1. Proportional policy performs better than its Uniform coun-

important pages be more dynamic in our experiments by as- terpart. This is very surprising as all earlier studies showed
sighingmaximumvalue ofpage relevance distributioto a the reverse to be true [4] [16]. The reason becomes pretty
page in abiasedrandom manner. The summation of rel- clear when we look into the nature of the crawling vs. the
evance measures of a page for all the queries gives us the probing problem. In our case, we are answegogtinuous
weightiM) for this page as shown in section 3. The distri- queries and naturally our aim is to detect as many changes
bution according to whic\ varies is referred to apage as possible. So when all other parameters are uniform(page-
weight distribution weight and update probability distribution), one would cer-

tainly expect more benefit hyrobingthose pages which are
having high change frequendy] because ultimately only
these pages are having maximum chances of changing. This
is what Proportional policy does and so it performs better
Performance Metric: Returned Information ratiBart of thein- than Uniform policy. Earlier studies solved the problem for
formationthat is returned by a policy in a fixed number of probes answering discrete queries and aimed to maxirfrizehness

8. probing ratia denotes the ratio of the total numbermbb-
ingsto, (TiepAi), i.€., the number of actual changes expected
intimeT time.O
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Figure 4: Under uniform weight and update probability distri-
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of page which is found to be @bnvexnature. So the perfor-
mance of Uniform becomes better than Proportional in their
case. We offer a formal proof of why Uniform does not work
as well as proportional at the end of the paper.
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Figure 5: Characteristics of resource allocation policies

2. Optimal policy also allocates mopeobingsto more dynamic
pages but it does it even more aggressively than Proportional.
Fig. 5 shows that Optimal allocates all fisobingsto only a
few pages (for clarity, for the sake of this graph 50 pages of
consecutive page indices have been grouped into a bin) and
delivers most of thinformationto queries from these pages.
Again the pageprobedare those which have high probabil-
ities of actually showing changes. Proportional too does this
but it allocatesprobingsin proportional manner only while
Optimal does it in more biased way and so it gets even bet-
ter performance. As it is evident from the graph that op-
timal policy performs 300% better than proportional policy
and around 600% better than uniform policy!

Obviously now if we start decreasing the skewness, i.e zithfe
parameter, o€hange frequency distributidwo, then policies start
coming closer and in the extreme case, they all become the same
when frequencies are made to be distributed in a completely uni-
form manner Zipf parameter = 0).

5.2.2 When page update probabilities are skewed

Here, we skew thepdate probability distributiorwith zipf pa-
rameter being set to 1. So pages are still of equal importance but
for each page, the update instances are no more equi-probable, in
experiencing a change. Fig. 6 shows the performance graph. for
this data set. Again, optimal performs best leaving other allocation
policies far behind. Itis 12 times better than uniform policy. But
in this case, the pages which ggmbedunder optimal allocation
turn out to be quite diversified as pages with even lesser change fre-
guency have some update instances with a good chance of actually
changing as shown in Fig. 6.
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Figure 6: Under skewed update probability and uniform page
weight distribution
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Figure 7: Characteristics of resource allocation policies



5.2.3 When page weights are skewed

If we makepage-weightistribution skewed while keepingp-
date probability distributionuniform, we find that optimal again
performs far better than others as shown in Fig. 8. Also, now it
allocatesprobingsto those pages which have high importance and
a higher probability of getting changed.
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Figure 8: Under skewed page weight and uniform update prob-
ability distribution

5.3 Effect of varying the skewness of the up-
date probability distribution
In this experiment, we compare our resource allocation policy
with proportionalanduniformpolicies under varying skewness of
update probability distribution This will also help us investigate
the drawbacks of these classical approachgsobingweb pages
for answeringcontinuousjueries.
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Figure 9: Under varying skewness of update probability distri-
bution

Fig. 9 compares performance of different resource allocation
policies whenprobing ratio is kept at 9 andbage weight distri-

bution is uniform. It is clear from the curves that for this data
set, optimal resource allocation policy always performs better than
other resource allocation policies. To emphasize the difference, we
varied theupdate probability distributiokkeeping other parameters
same as before. As evident from Fig. 9 that optimal resource allo-
cation policy starts performing even much better than other policies
asupdate distributiois made more and more skewed. It exhibits a
5-fold improvement over uniform resource allocation policy at zero
zipfparameter but wheripfparameter is set to 1.5, its performance
sees a 10-fold improvement.

This is because of the fact that in optimal resource allocation
policy, aprobingis made at those update instances which have high
probability of returning relevant information and sogslate prob-
ability distributionis made more and more skewed, it copes up with
the skewness of data by selecting the most beneficial instances for
probing and performs even better than before. But this is not the
case withuniformandproportional policies as they do not look at
the granularity level of update instances and degidédingsonly
based on weight and change frequency. Note that wlgfparam-
eter is set to zero, it does not mean that update probabilities become
uniformly distributed, instead of this it means that all update prob-
ability values occur equal number of times.

5.4 ldentifying Parameters that produce Bet-
ter Results for Continuous Queries

1.000 Zipf parameter=2.0
o {—-—--|zipf parameter=1.0
B 0800 Zipf parameter=0.5
x
c 4
S -
® 0.600 —
e
:C__) i
£ 0.400 -
8 ]
£
g 0200
r =
0.000 ~ -

i i e B e I
0.0 3.0 6.0 90 120 150
Monitoring-Change Ratio

Figure 10: With varying skewness of update probability distri-
bution

In the previous experiment, we observed that even when we have
9 times moreprobingsavailable than expected number of changes
in T, the loss of information remains significant. We feel that this is
because of the distributed and uncertain nature of page change be-
haviour which make number g@irobingsrequired for good perfor-
mance very large(section 5.2.1). In the ideal case, we will require
continuous monitoring of web pages and so even a large number
of probings (until they become comparable to number of update
instances) won’t be of much help.

Fig. 10 shows how performance varies with tidate proba-
bility distribution of page change behaviour. It is also evident that
pages with almost uniforapdate probability distributiorwould
affect the performance farontinuousqueries. We find thapage
weight distribution also affects the performance in a significant



0.60 monitoring the pages but it is the uncertain nature of page changes

which is actually impairing the performance.
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Figure 11: With varying skewness of page weight distribution
g ying hag 9 Figure 13: Effect of Resource Reallocation after every run

way. Itis justified too because if we can somehow figure outduring  As we said while describing our technique that after every run of
monitoring phasehat a particular set of pages is serving a major |engthT, we update page change behaviour and accordingly mod-
part of reportings to users for answering query, then we can im- ity resource allocation for next run. But this may become very

prove our performance by assigning them a major shargrati- expensive especially whehis small. We next study the effect of
ingsalso. Fig. 11 shows the effect phge-weightistribution on the theresource allocation delay
the performance of allocation techniques. We making manyrobing runsof periodT assuming that a brief

Continuous queries can be responded to even more efﬁciently monitoring periocbreceded |t in Wthh page Change was fu“y Cap_
by extracting meta-information about the change behaviour of web tyred and then we would show how performance varies with each
pages. We need to have more knowledge of page characteristics tun and with varying delays in repeating resource allocation. We
get a good performance for answeritantinuousjueries . start with update probability distributiorof zipf parameter being

55 Effect ofProbing Ratio on Continuous Queriesset to 1. Then we generate an actual event based o pliste
! probability distributionby tossing a biased coin at every update in-

1.000 — stance and declaring a change at that instance if it falls head.
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Figure 12: Performance curve for optimal policy Before next run, we modify thapdate probability distribution

based on this last run made by modifying update probabilfig$(
of those update instances which gedbedin this run. We do this
Here we evaluate the practical application of our proposed schemenodification in very naive fashion by estimating average rate of

As evident from Fig. 12, 90% of the Information is returned in our occurring of updates at this update instance. So if a page got up-
technique wherprobing ratio is 20. Without using our probing dated on 5 occasions in last 10 probings to this page at a certain
technique, retrieving 90% of the information would requireb- update instance, we assign 0.5 probability of expecting a change at
ing of at least 420 instances while our scheme reduces this to only this update instance. Then we reallocate resources accommodating
20 probings(5% of blind probings). So it is indeed helping us in  this newupdate probability distribution As Fig. 13 shows that



performance of our allocation policy do increase in initial runs and
then it becomes steady. This is what one would expect because af- o 0.800 +—————After Resource Altocation
ter a large number of runs, tiupdate probability distributiofitself b ] . After Scheduling
becomes steady. Also we plotted 2 more graphs as shown in Fig. &
14 to study the effect of delayed resource allocation. We find that 5 0.600
resource allocation is not required to be done after every run and &
can be delayed without incurring any significant loss provided the g i
monitoring phasedoes capture the page change behaviour nicely = 0.400
and also only if page change behaviour is not very erratic. =
Not putting the other case when monitoring is fallacious be- -§ i
cause of no good experiment in support of it % 0.200 -
5.7 Performance of Scheduling algorithm o .
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Figure 15: Size of web documents whereW andA; are weight and change
frequency oft" page respectively.

In this experiment, we test our scheduling algorithm and show its So Information gained for this page is equal to
performanceChange frequency distribution zipArameter is set to
2 andupdate probability distribution zipbarameter to 1. Sizes of
the documents are generated as shown in Fig. 15 as found in [9].
Also more popular pages are set to smaller sizes in accordance Wm\/vherepi is the update probability fdf
[6]. We define averagprobing capacityas available bandwidth di- ;

- - - page at any update instance.

vided by average size of documents. Note that this is average anal-
ysis and it is possible to make more probings than average pmbinglnformation gained in case of Uniform Allocation for
capacity. As shown in Fig. 16, oschedulingalgorithm performs the same page is equal to
very good and is almosbsslessvhen number oprobingsis less

W2 #pi
¥ i Wi

than averagerobing capacity Even when number gdrobingsre-
quired to be scheduled exceeds avenagding capacity the loss
of information incurred irschedulingphase remains quite negligi-
ble in comparison ofesource allocatiorphase. The two kinds of
losses incurred are:

1. Asthe number gbrobesto be scheduled becomes more than
the averagerobing capacity someprobesremain undone
and so some loss of information is incurred.

2. Also as number of probes becomes more and more, the chan
of cases where probes scheduled for a instance exceeds th
probing capacityat that instance also becomes high. So these

probingsget delayed for time being and hence loss of infor-
mation is incurred.

6. PROOF

Assumption : Update distributios uniform.
Aim : Proportional policy always performs better than Uniform pol-
icy under above assumption.
We would be comparing weighted uniform and weighted propor-
tional policies.

Number of crawls allocated ' page in proportional

C
e

Wi2spi
iWM

So ratio of performance of Proportion to Uniform policy over
all pages becomes

SihixyiW
Y i WA

As we knowy ;g * ¥ibj > 5 a;*bj for non-negativey’s andby’s,
§Bove ratio is always greater than 1.

This proves that Proportional policy always performs better than
Uniform policy no matter how page weights and change frequen-
cies are distributed.

7. CONCLUSIONS AND RELATED WORK

As mentioned earlier, in our problem formulation we are not
making any assumptions about the change behaviour of pages. In-
stead we collect and build the above statistics about a page during
a monitoring period and only on the basis of this collected infor-
mation, we daesource allocationThen we keep on updating this
information after every time units based on the result of the prob-
ings done. This makes our solution robust and adaptable in any web
scenario.
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