Agent-based Semantic Web Services

Nicholas Gibbins *, Stephen Harris, Nigel Shadbolt

Department of Electronics and Computer Science, University of Southampton,
Highfield, Southampton, SO17 1BJ, UK

Abstract

The Web Services world consists of loosely-coupled distributed systems which adapt
to changes by the use of service descriptions that enable ad-hoc, opportunistic ser-
vice discovery and reuse. At present, these service descriptions are semantically
impoverished, being concerned with describing the functional signature of the ser-
vices rather than characterising their meaning. In the Semantic Web community, the
DAML Services effort attempts to rectify this by providing a more expressive way
of describing Web services using ontologies. However, this approach does not sepa-
rate the domain-neutral communicative intent of a message (considered in terms of
speech acts) from its domain-specific content, unlike similar developments from the
multi-agent systems community.

We describe our experiences of designing and building an ontologically motivated
Web Services system for situational awareness and information triage in a simulated
humanitarian aid scenario. In particular, we discuss the merits of using techniques
from the multi-agent systems community for separating the intentional force of
messages from their content, and the implementation of these techniques within the
DAML Services model.

Key words: Web Services, Semantic Web, DAML-S, Agent Communication
Languages, Ontologies

1 Introduction
The world of Web Services may be characterised as a world of heterogeneous
and loosely-coupled distributed systems where adaptivity to ad-hoc changes

* Corresponding author.
Email addresses: nmg@ecs.soton.ac.uk (Nicholas Gibbins),
swh@ecs.soton.ac.uk (Stephen Harris), nrs@ecs.soton.ac.uk (Nigel Shadbolt).

Preprint submitted to Elsevier Science 31 October 2003

in the services offered by the components of the systems is considered advan-
tageous. By loosely-coupled, we mean that the interactions between system
components are not rigidly specified at design time, but that system compo-
nents may opportunistically make use of new services that become available
during their lifetime without having been explicitly told of their existence from
the outset.

The task of searching for a system component which can perform some given
service, or service discovery, is the enabling technique that makes loosely-
coupled systems possible, and provides a process by which system components
may find out about new services on offer. An essential adjunct to service dis-
covery is service description, by which names or descriptive expressions are
attached to services, allowing both the advertisement of services by providers
and the formulation of queries about services by users. Service discovery ser-
vices (in which we include matchmakers) have been seen as an essential com-
ponent of loosely coupled systems such as (but not limited to) multi-agent
systems [1,2].

A typical service discovery service (also often referred to as a directory service)
consists of a registry (possibly distributed) which provides two services. The
first allows service providers to advertise the services that they offer in the
registry, while the second enables service users to query the registry and so
determine which service providers can provide relevant services.

One rough characterisation of the technologies used for service discovery in
the Web Services world can be made by studying the difference between ap-
proaches which could be considered semantically poor and those which are
semantically rich. In the former case, services are often referred to by opaque
names or function signatures which give little or no indication of the nature
of the services being managed. In the latter, however, service descriptions are
more complex expressions which are based on terms from agreed vocabularies,
and which attempt to describe the meaning of the service, rather than simply
ascribing a name to it. For example, a semantically poor description of a ser-
vice might be that it takes a string as input and returns two integers, while
a semantically rich description could be that it takes the name of a football
team and returns the score from their last match.

A key component in the semantics-rich approach is the ontology, the formal,
agreed vocabulary whose terms are used in the construction of service de-
scriptions. An ontology is a conceptualisation of an application domain in a
human-understandable and machine-readable form, and typically comprises
the classes of entities, relations between entities and the axioms which apply
to the entities which exist in that domain. Ontologies are currently a fast-
growing research topic, with interest from several communities, not least the
agent-based computing, Semantic Web and knowledge management commu-

nities, because they offer a more formal basis for characterising the knowledge
assets held by software agents, Semantic Web services or organisations [3,4].

Although such an ontology defines the agreed meaning for the application
domain-specific terms used in the content of messages, it does not define the
meaning of the message types themselves, or their effects upon the recipient.
The current approach in the Semantic Web to Web Services, such as that
taken by DAML Services, does not provide a common basis for defining the
pragmatics of different message types, as we might expect from a speech act-
like treatment of messages [5]. Such a basis would provide a way to ease
the introduction of new types of messages, since there would be a common
understanding of what was meant by, for example, a directive message (which
instructs a system component to perform an action) or an assertive message
(which informs a system component of some fact) which was independent of
any domain specific meaning.

The technique of factoring out the common attributes of message types and
ascribing them to different classes of speech acts or performatives is commonly
used in the design of agent communication languages (ACL) for multiagent sys-
tems [6,7], where there is a clear separation made between the domain-specific
and domain-independent aspects of communication. For example, a message
which asks a hypothetical meteorological agent for the weather forecast for a
certain region may be divided into two distinct parts. The domain-independent
part identifies this message as belonging to a particular class of utterances (or
speech acts), in this case a directive (a question is a request that the recipi-
ent inform the sender of some fact). The domain-specific part indicates that
this message is concerned with weather reports for a certain region, and is
expressed in an ontology specific to the application domain.

Given that the multi-agent systems and Web Services communities hold sim-
ilar aspirations with respect to loose coupling, we believe that an approach in
which an ACL component is integrated into semantically rich service descrip-
tions can be applied to Web Services. Such an approach could have benefits
beyond the immediate Web Services community, given the interest in Web
Services technologies in the Grid Computing community [8,9]. There are a
number of other studies on the integration of multiagent systems with Web
Services, but these are predominantly concerned with enabling the agents in
existing systems to use, provide or broker Web services [10,11], rather than
attempting to adapt a core agent technology into the Web Services infrastruc-
ture.

In this paper we outline our experiences of building semantically rich Web Ser-
vices based on the integration of ontologically-motivated DAML-S-based Web
Services and an agent communications language, and describe our prototype
demonstrator, a situational awareness application based on a humanitarian

aid scenario.

2 Semantic Web Services

The aim of this work has been to investigate the integration of the nascent
Web Services infrastructure with the richer semantics of the Semantic Web,
in particular through the use of more expressive languages for service descrip-
tion. In their implementation of service descriptions, the existing Web Services
specifications are more concerned with the signature of services. Such signa-
tures comprise the types of the parameters of the service (typically expressed
in terms of XML Schema datatypes), rather than with any form of ontological
classification of the services.

The notion of an ontology is central to the Semantic Web, which uses lan-
guages such as RDF Schema [12] or DAML+OIL [13] (or in future, the Web
Ontology Language OWL, a current work in progress) to describe ontologies.
An integration of Web Services with the Semantic Web should involve the use
of these languages to describe and characterise services in a manner which the
existing Web Services service description languages cannot.

There are two options for the form of this integration. We could choose to
layer RDF or DAML+4OIL on top of an existing XML-based service descrip-
tion language (such as the Web Services Description Language or WSDL [14],
for example), so that the description includes an RDF expression that char-
acterises the service. Alternatively, we could choose to build on a service de-
scription language which is itself written in RDF or DAML+-OIL, such as the
DAML Services ontology [15].

We have chosen the latter approach, and have used DAML Services as the ba-
sis for our design because it allows the definition of classes of related services,
which makes service reuse more feasible (because agents are better able to
reason about the relationships between services) and the system more adapt-
able as a whole (because rich service descriptions give agents the means to
determine whether they can use new types of service).

In addition to reuse and adaptability concerns, DAML Services also allows
the types of service parameters to be specified as DAML class expressions,
in addition to the XML Schema datatypes [16] that are used by WSDL and
other Web Services languages, so the parameter values that are passed when
a service is invoked may be objects from a knowledge base as well as literal
values.

At the time this work was carried out, DAML Services was (and to some

extent still is) a ‘moving target’. Our description of agent-based semantic web
services is based on version 0.7 [15], and predates the introduction of the OWL
vocabulary for service description introduced in version 0.9.

3 Agent Web Services

In the conventional Web Services approach exemplified by WSDL [14] or even
by DAML Services, the communicative intent of a message (for example,
whether it is a request or an assertion) is not separated from the application
domain. This is at odds with the convention from the Multi-Agent Systems
world, where there is a clear separation between the intent of a message, which
is expressed using an agent communication language, and the application do-
main of the message, which is expressed in the content of the message by
means of domain-specific ontologies.

This separation between intent and domain is beneficial because it reduces the
brittleness of a system. If the characterisation of the application domain (the
ontology) changes, then only that component which deals with the domain-
specific information need change; the agent communication language compo-
nent remains unchanged. In addition, the domain-neutral performatives in an
ACL may be combined to form common patterns of interaction (protocols, in
effect) such as contract nets, markets or auctions which enable the behaviour
of a system to be considered in more abstract terms (a limited form of this
protocol-level description is also possible in the emergent Web Services chore-
ography languages, but the resulting protocols are not domain-neutral as they
are here).

The use of agent communication languages to describe Web services has a par-
allel with systems for the description and brokering of problem solving methods
(PSMs) from the knowledge acquisition community, an example of which is the
IBROW3 system [17]. IBROW3 makes a similar distinction between domain-
specific and -independent characterisations of reasoning services by separating
the description of the particular problem solving method used by a reasoner
(expressed in the UPML language [18]) from the application domain-specific
ontology to which the PSM is to be applied.

The division of service descriptions into a profile and a process component, as
in DAML Services, provides a means to compartmentalise Web Services in a
manner similar to that found in agent systems. We describe the pragmatics
of message types in the process component, giving an abstract ontology of
message types that corresponds to the agent communication language, while
the more application-specific details of the abilities of a particular agent (ex-
pressed as constraints on the content of messages) are expressed in the profile

service description

domain-specific FIPA ACL
profile process ontology
profile | | process

DAML Services

Fig. 1. Service Description with ACL Process Ontology

<daml:Class rdf:ID="Query-Ref">
<rdfs:subClass0f ref:resource="&damlsproc;#AtomicProcess"/>
<rdfs:comment>The action of asking another agent for the object
referred to by a referential expression. Query-ref is the act of
asking another agent to return the object idientified by a
descriptor.</rdfs:comment>

</daml:Class>

<rdf:Property rdf:ID="query-ref-descriptor">
<rdfs:subProperty0f rdf:resource="&damlsproc;input"/>
<rdfs:domain rdf:resource="&fipa;Query-Ref"/>
<rdfs:range rdf:resource="&daml;Thing"/>

</rdf :Property>

<rdf:Property rdf:ID="query-ref-response'>
<rdfs:subProperty0f rdf:resource="&damlsproc;output'/>
<rdfs:domain rdf:resource="&fipa;Query-Ref"/>
<rdfs:range rdf :resource="&daml;List"/>

</rdf :Property>

Fig. 2. FTIPA ACL Process Ontology Fragment

component, as shown in Figure 1.

To this end, we have designed a simple process ontology of message types
based on the FIPA agent communication language [6]. In this ontology, ACL
message types are represented as atomic processes (see Figure 2 for a fragment
of this ontology containing the query-ref performative), with the content
of the message as a parameter of the process. The Query-Ref process has
two properties, one a sub-property of input which is used to pass the query
expression that forms the content of the message, and one a sub-property of
output which is used to return the entities which satisfy the query.

In addition to input and output parameters, DAML Services also provides
a facility for specifying the necessary preconditions and the side-effects of a
service. While a full description of the FIPA performatives could make use of
this facility to fully describe the pragmatics of the messages (as described by
FIPA in the appendix to [6]), the facility is not yet fully specified. Likewise, the
expression in DAML of the FIPA theory of agency and the mentalistic stance
it adopts (a necessary prerequisite for expressing the pragmatics of individual
performatives) is not the focus of this work.

Another important difference between multi-agent systems and Web Services
concerns the manner of their communications with respect to synchrony. In
FIPA, the performatives (query-if and query-ref, for example) are treated
as asynchronous messages. A query does not return an answer directly, but
causes the formation of an intention in the recipient to send an inform mes-
sage (containing the answer) to the sender of the query. These message types
may be combined to form more complex interaction patterns, such as the

FIPA Request protocol, but the basic notion is that agents communicate as
peers, with all agents able to both send and receive messages. This message-
passing idiom is at odds with the predominant communication idiom found in
the Web Services environment (procedure-calling, effectively synchronous) as
exemplified by the Simple Object Access Protocol [19]. There are exceptions
to this in the Web Services choreography literature, such as the Web Services
Conversation Language [20], but this models interactions at a higher level,
rather than at the level of the messaging protocol itself.

In our adaptation of the FIPA ACL for a procedure-calling Web Services en-
vironment, we have chosen to amend the semantics of the query performatives
and make them synchronous messages which return the answer to the query
(this decision was made necessary by the lack of suitable facilities for service
choreography in the DAML-S ontology). An advantage of this approach is that
we no longer need to track the conversations in which a service is participating
(in order to determine which response message corresponds to which query)
because a response message cannot be separated from the the query to which
it is providing an answer. This has the effect of simplifying the service’s im-
plementation of the ACL (at the expense of protocol descriptions), and allows
us to concentrate instead on the service profiles which are used to determine
whether or not a service will be of use to us.

From our experiences of using an agent communication language characterisa-
tion of web service process descriptions, we have come to similar conclusions
to those drawn in [21]. By itself, the underlying RPC-like invocation model as-
sumed by Web Services is insufficient to express the sort of interactions found
in multiagent systems. In particular, while the DAML Services model allows
a service provider to specify the effects of invoking a service (as part of the
service profile, in addition to its inputs, outputs and preconditions), there is
no standard way to state that the effect of a particular service invocation is
that another service is invoked (as would be the case in even a simple FIPA
protocol, such as FIPA Request). The ability to represent a chain of service
invocations is not covered by the process composition features of the DAML
Services process model; the request service invocation and the response service
invocation are both atomic processes, but the notion of a composite process
defined in DAML Services does not cover the relation between them.

The profile component of the DAML Services expression is used to express
the service being offered or requested. This profile description defines the pa-
rameters of the service, cross-referenced to the corresponding parameters of
the process of which the service is an instantiation. In conventional DAML
Services usage, the parameter type restriction in a service’s profile (expressed
using the restrictedTo property) should be consistent with the range of the
parameter properties on the process on which the service is based, but there
is no logical constraint expressed within DAML-S which requires this.

<profile:0fferedService rdf:ID="UNHCR-Query-Ref-Profile">
<profile:has_process rdf:resource="&fipa;Query-Ref"/>
<profile:input>
<profile:ParameterDescription>
<profile:parameterName rdf:resource="query-ref-descriptor"/>
<profile:refersTo rdf:resource="&fipa;query-ref-descriptor"/>
<profile:restrictedTo>
<daml:Class>
<daml:intersection0f rdf:parseType='"daml:collection">
<daml:Class rdf:about="&flood;Report"/>
<daml:Restriction>
<daml:onProperty rdf:resource="&flood;reportsOn"/>
<daml:toClass>
<daml:Class>
<daml:intersection0f rdf:parseType='"daml:collection">
<daml:Class rdf:about="&flood;MovementEvent"/>
<daml:Restriction>
<daml:onProperty rdf:resource="&flood;actor"/>
<daml:toClass>
<daml:Class>
<daml:intersection0f rdf:parseType='"daml:collection'>
<daml:Class rdf:about="&flood;Vehicle"/>
<daml:Restriction>
<daml :onProperty rdf:resource="&flood;member0f"/>
<daml:hasValue rdf:resource="&flood;UNHCR"/>
</daml:Restriction>
</daml:intersection0f>
</daml:Class>
</daml:toClass>
</daml:Restriction>
</daml:intersection0f>
</daml:Class>
</daml:toClass>
</daml:Restriction>
</rdfs:intersection0f>
</daml:Class>
</profile:restrictedTo>
</profile:ParameterDescription>
</profile:input>
<profile:output>
<profile:ParameterDescription>
<profile:parameterName rdf:resource='"query-ref-response"/>
<profile:refersTo rdf:resource="&fipa;query-ref-response"/>
<profile:restrictedTo ref :resource="&daml;List" />
</profile:ParameterDescription>
</profile:output>
</profile:0fferedService>

Fig. 3. Sample Profile

We have adapted this usage so that the range of the process parameter is a
superclass of the profile parameter restriction. The process therefore gives an
abstract, domain-neutral description of the ACL performative which charac-
terises the service, and the profile gives a more domain-specific description of
the service which constrains the parameter type. For example, Figure 3 gives
the profile of a service from our situational awareness system for a simulated
humanitarian aid scenario (see Section 5 for further details of this system).
This service allows an agent to ask queries about reports on UNHCR vehicle
movements (terms from the humanitarian aid domain ontology are indicated
by the use of the f1ood namespace). The restriction on the input parameter of
this service is the class of reports about the movements of vehicles belonging to
the UNHCR, which is a subclass of the range of the corresponding parameter
on the abstract Query-Ref process (Thing, the most general class) as shown
in Figure 2.

The profile in Figure 3 is of type 0fferedService, indicating that this is a
service advertisement; an agent requesting a service would construct a service
profile of type NeededService. This use of offered and needed services allows
service brokers to support interactions that are driven both by the clients

<damls:Service rdf:ID="UNHCR-Subscribe">

<!-- Reference to the UNHCR-Subscribe Profile -->
<damls:presents rdf:resource="&flood;UNHCR-Subscribe-Profile"/>
<!-- Reference to the FIPA Subscribe Process Model -->
<damls:describedBy rdf:resource="&fipa;#Subscribe"/>

<!-- Reference to specific grounding for this service -->
<damls:supports rdf:resource="..."/>

</damls:Service>

Fig. 4. Sample Service

(those requesting services) and the services (those providing services).

The process and profile components of the service description are referenced
together in a top-level service description (see Figure 4) which also includes a
reference to the means which is to be used to access the service, known as the
service grounding. In our example, we have chosen to omit the details of the
grounding because they are not directly relevant to this work. The supports
property references a service grounding, expressed in DAML-S, which relates
the description of this service to a WSDL [14] description of the service which
contains the specific information required to invoke the service (protocol, port
and so on).

At the time at which this work was carried out, this area of DAML Services was
still largely undefined, and there was no standard vocabulary for grounding
DAML-S services using WSDL. This has subsequently been addressed in the
most recent version of the DAML-S specification, but these additions to the
specifications have not yet been reflected in our software.

In Figure 5, we have constructed a simple SOAP message (using the FIPA
inform performative) which contains a report from a UNHCR vehicle (about
itself) that is moving with a certain bearing and speed from a certain location.
It should be stressed that the manner in which we have written this message
is the result of an informed guess as to how one would pass RDF fragments
as parameters to Web Services, and as to how a service specified by DAML
Services might be grounded in SOAP.

4 Query Language

When the service in the Subscribe example is invoked, the value of the input
parameter should be an instance of the class restriction which is given as the
input parameter types in both the profile and the process descriptions. For
the various query performatives (query-if, query-ref and subscribe), this
input parameter contains the query expression which would be contained in the
message content in a conventional agent-based system. However, there is as yet
no standard query language for RDF, DAML+OIL or OWL, although there
are several under development, including DAML Rules [22] (which builds on
DAML+4OIL and expresses queries as Horn clause-like structures), the DAML

<?xml version="1.0" 7>
<env:Envelope xmlns:env="http://www.w3.org/2001/12/soap-envelope">
<env:Body>
<fipa:inform-proposition xmlns:fipa="http://www.fipa.org/ontology/acl#">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:flood="http://www.example.org/ontology/flood#">
<flood:Report rdf:about="">
<flood:reportsOn>
<flood:MovementEvent>
<flood:actor>
<flood:Vehicle rdf:about="&flood;UNHCR-2323">
<flood:memberQf rdf:resource="&flood;UNHCR"/>
</flood:Vehicle>
</flood:actor>
<flood:headingTowards>
<flood:Direction>
<flood:bearing>284.5</flood:bearing>
<flood:velocity>43</flood:velocity>
</flood:Direction>
</flood:headingTowards>
<flood:locatedAt>
<flood:Location>
<flood:longditude>32.23427</flood:longditude>
<flood:latitude>16.33871</flood:latitude>
</flood:Location>
</flood:locatedAt>
<flood:occursAt>2002-04-12T12:23:48</flood:occursAt>
</flood:MovementEvent>
<flood:reportsOn>
<flood:reporter rdf:resource="&flood;UNHCR-2323"/>
<flood:certainty>1.0</flood:certainty>
<flood:occursAt>2002-04-12T12:23:48</flood : occursit>
</flood:Report>
</rdf :RDF>
</fipa:inform-proposition>
</env:Body>
</env:Envelope>

Fig. 5. Sample SOAP message
Query Language [23], RDQL [24] and SeRQL [25].

Due to this lack of any standard format for expressing queries, we have cho-
sen to express queries as anonymous resources, also known as blank nodes or
bNodes. These are instances which are not identified by a URI, but by the
values of their properties. As a result, they can be considered to be existen-
tially quantified query expressions which denote objects of interest. In effect,
the query is a template subgraph which is matched against the RDF graph,
with the query solutions being the locations where the template matches. The
resource at the root of the RDF /XML document fragment (possibly a bNode)
is considered to be the object of the query. This allows us to express the ca-
pabilities of a service by describing the class of queries which may be asked
of that service. The class expression given as the input parameter type in the
profile should contain as instances all the possible queries (expressed using the
bNode technique) that may be asked of the service.

The main limitation of this approach is that it is only applicable to queries of
a certain structure. The item about which the query is phrased (the anony-
mous resource) must be the subject of the RDF triples, not the object, if more
than one property of the resource is to be specified (this is largely a limita-
tion brought about by the RDF syntax [26]). This is a significant limitation,
but also one which can be mitigated against by a suitable design of the do-
main ontology in which the objects which are most likely to be the subject of
queries appear as the subjects of RDF triples rather than as the objects (see
Section 5.2 and Figures 8 and 9).

10

<?xml version=’1.0’ encoding=’IS0-8859-1’7>
<!DOCTYPE rdf:RDF [
<IENTITY rdf ’http://www.w3.0rg/1999/02/22-rdf-syntax-ns#’>
<!ENTITY flood ’http://example.org/ontology/flood#’>
1>
<rdf:RDF xmlns:rdf="&rdf;" xmlns:flood="&flood;">
<flood:Report>
<flood:reportsOn>
<flood:MovementEvent>
<flood:actor>
<flood:Vehicle>
<flood:member(Qf rdf:resource="&flood;UNHCR"/>
</flood:Vehicle>
</flood:actor>
</flood:MovementEvent>
<flood:reportsOn>
</flood:Report>
</rdf :RDF>

Fig. 6. Sample Query

As an example, the domain ontology which we have designed for this ap-
plication is centred around events and reports of events. We have taken the
approach that communication in the system will be about these events and
reports (rather than about any persistent world state which the reports might
suggest), so the queries can be expressed using the anonymous resource tech-
nique by specifying the properties that the report (and the event it contains)
must possess. It should be noted, however, that we did not specifically de-
sign the ontology in this report to circumvent the expressive limitations of
our chosen query language, but rather that the query language was chosen
because it was appropriate for use with the domain ontology that we had
already designed.

In Figure 6 we show an RDF fragment which expresses the notion that there
exists some report which reports on the movements of vehicles owned by the
UNHCR; this may be interpreted as a query about reports with those prop-
erties.

An additional limitation of this approach to query construction, which is un-
fortunately also shared with several of the other query languages currently un-
der development, is that it is not possible to specify literal ranges in queries.
An example of such a literal range might be a query of movement reports
about entities that were north of a particular point, or to put it a different
way, whose latitude was greater than a certain value. This limitation arises
because the RDF and DAML+OIL models have no notion of how different lit-
eral datatypes behave (particularly with respect to ordering and inequalities).
The most likely solution to this problem is based on the use of oracles, entities
which have specific knowledge of the behaviour of different literal types (inte-
gers, latitude/longitude pairs, dates, etc.) and which may be used by inference
and query engines to evaluate tests based on those types.

At present, the development and standardisation of query languages for the
Semantic Web is largely immature. As Semantic Web development in general
becomes more mature, we expect that the current Burgess Shale-like diversity
of query languages will come to a close with standardisation on a small number

11

of languages. The investigation and design of suitable query languages for use
with the style of agentified Web Services that we discuss in this paper therefore
remains an open direction for future research.

5 A Prototype Agent Web Services System

As a proof of concept of the technologies discussed above, we have designed a
system which demonstrates the use of Agent Web Services in the application
domain of situational awareness in a humanitarian relief scenario.

The scenario for this study is set in a river delta region which has experienced
flooding due to unseasonally heavy rainfall. The people who have been dis-
placed from their homes by the flooding are being sheltered in relief camps.
The timeline for the scenario includes a rapid flooding event which forces the
creation of new relief camps, and a hostile event upon a relief convoy which
requires military intervention and support.

The system contains a number of agents which generate reports on the state
of the world (e.g., refugee movements, meteorological reports and forecasts)
with differing degrees of certainty. A feature of this scenario is that it includes
a number of different types of user, each of which has different information
needs, and so each of which should be sent a different subset of the reports
generated by the entities in the system. The aim of this system is the provision
of filtered report streams to these users in a timely manner, a process often
referred to as information triage.

In addition, the sets of agents which produce and consume reports are not
static; agents may join and leave the system while it is running. The require-
ment for the system both to adapt to the loss of agents, and to opportunis-
tically integrate new agents provides a motivation for the semantically richer
service descriptions that were discussed earlier in this paper.

5.1 System Architecture

In our system architecture, illustrated in Figure 7, the flow of information
is from left to right. On the left are various data sources which correspond
to entities in the domain environment and generate streams of reports about
different types of events, while on the right are consumers which take the
reports and present them to the user (the map panel), or which perform some
further processing on the reports.

The key component of the system is the central broker which mediates the

12

GPS-equipped []_movement reports
. movement reports map
entities
panel
. sighting
sighting reports
gne observer
- 'L, sighting reports .
entities ghting rep . . B infrastructure .
information | infrastructure reports aggregation
nfrastructure reports observer
e — broker agents
flood level
flood reports
observer
water level [1. flood reports
A flood reports |
monitor flood level
overlay agent
R — flood overlay Y ag

Fig. 7. System architecture

interaction between the other system components. Data consumers use the
broker to find sources which can satisfy their information needs, which typ-
ically depend on the user view which is being presented, by registering a
service requirement (expressed as a NeededService in the DAML Services
profile model) with the broker. Similarly, the data sources register a service
advertisement describing their capabilities with the broker (expressed as a
OfferedService in the DAML Services profile model). The broker compares
the service requirement to the service advertisements that it has received from
the data sources and responds with the matching services. The consumers then
communicate directly with the data sources, typically by formulating a sub-
scription to some subset of the reports that the source offers, as was illustrated
in Figure 3.

At present, the broker matches advertisements to requirements in a naive
fashion based on the types of the parameters in the profile. The parame-
ter restrictions in NeededService and OfferedService are translated into
triple patterns (we implement only a reduced expressivity subset of class ex-
pressions consisting of class intersection and the toClass and hasValue re-
strictions), and then tested for graph subsumption. A NeededService will
match an OfferedService if the graph derived from its parameters (that
is, resulting from the translation into triple patterns of the class expressions
used to restrict its parameters) is subsumed by the corresponding graph in
the 0OfferedService. We do not perform full DAML+OIL class subsumption
reasoning on the service profiles; integration with a description logic reasoner
such as FaCT has been left for future work. In particular, the development
of a system component which can broker composite processes based on sim-
ple processes expressed using an ACL process ontology (effectively interaction
patterns which involve several agents) was beyond the scope of this work.

The data sources in the system are grouped into three rough categories. The
first category consists of entities which have GPS devices and so can produce
high-certainty reports of their own positions and movements. The second cat-
egory consists of entities which are able to observe their immediate environ-

13

Entity

Abstract Physical
Entity Entity
[} ~
N
Il N
! N
/ N
partOf Group 7 N
N
! N
=~ ymemberOf N
-~ N
Il =~ ./
o Physical -
Organisation Individual
Group
’,,/—,"l >~ _ A
-7 - / > -7 ! S
_ - - / ~ - | ~
Military Media Governmental .
s - NGO . Vehicle Person Sensor
Organisation Organisation Organisation

Fig. 8. Domain ontology - entity

ment, and so are able to generate moderate certainty reports on the movements
of other entities, on hostile, support and relief events or on changes to the in-
frastructure present in the environment (damage to roads and bridges, for
example). The final category consists of meteorological sensors which provide
reports on the level of the flood waters.

5.2 Domain Ontology Design

As a demonstration of our approach to Agent Web Services, we have designed
an ontology to describe the application domain and scenario that we have
outlined earlier. This domain has a number of features which are interesting
from an information management point of view. An agent in such a system
is unlikely to have direct knowledge of the status of entities in the domain
environment, since almost all knowledge is mediated through reports of events
(entity state changes) which are issued by other entities in the system. For
this reason, the provenance and certainty of the reports become of prime
importance, and the role of the agents through which users interact with the
system becomes one of information triage and filtering.

Therefore, the queries which agents ask of the system are less likely to be
about domain entities directly, and are more likely to be about reports about
those entities. In a scenario where there may be many conflicting and partial
reports, the query idiom would be to ask only for high certainty reports from
trusted sources about those entities which are of interest, but one has the
ability to configure or change this assumption. To this end, the ontology that
we have designed comprises two main parts. The first part consists of the
entities in the domain environment and their invariant properties, as shown
in Figure 8

14

reportsOn

Event

- - S

—

EAS

|
~ | ~ - - -

=
~

Movement Report Hostile Relief Support Infrastructure Meteorological
epol

Event Event Event Event Event Event
[
actor actee actgl actee located) S~
heading Towards actor actor actee locatedAt _
I dA Flood Rainfall
ocatedAt Event Event
— . Physical X
Direction Location reporter N Location
Entity

Fig. 9. Domain ontology - event

The other part of the ontology consists of the events which describe changes to
the state of the entities, as shown in Figure 9. The key class in this hierarchy is
the Report, which represents information which has been gleaned from some
source (newsfeed, satellite image, etc.) about some event which has occurred
in the environment. For example, if the movement of an entity (a relief convoy)
has been observed by a third party (a journalist from CNN), this datapoint
is represented by a report about a movement event by the convoy, which has
been reported by the journalist. This approach captures the provenance of
the report (as the entity which reported it), as well as the degree of certainty
that the reporter has in the report. We have adopted the Stanford Certainty
Factor Algebra [27] for dealing with certainty measures; although this has
some shortcomings, it is a well-understood formalism and provides a general
representation of confidence.

The separation of reports from events makes it possible to separate the time at
which the event occurred from the time at which the report was made, which
allows us to represent both the timeliness of reported events (yet another
report, facet which can be used to filter the stream of incoming reports) and
also to represent event predictions as reports about future events. Finally,
by making Report a type of Event, we make possible secondary reporting
(reports about reports).

We have designed this ontology using the Protege ontology editor [28] which
uses RDF Schema as its output format, but in the examples that follow in this
report, we use DAML+OIL constructs to define new (unnamed) classes based
on the primitive classes in the RDF Schema ontology. An example of these
unnamed classes can be found in the parameter restriction in Figure 3. These
unnamed classes are especially useful because they allow us to specify classes
which were not explicitly created by the ontology designer by describing the
necessary and sufficient conditions for class membership. The ability to specify
unnamed classes simplifies ontologies by removing the need to formally name
classes that are only used in the definition of other classes (for example, in
local property range constraints), and is a particular strength of description
logic characterisations of ontologies.

15

V| =13
Time rate (times realtime)

L] 3 0 60 120 180 240 300 360 420 <480 540 600
Required Confidence

10 20 30 40 S0 60 70 60 S0 100
10:39 Covenay | viewks | viewTaxonomy |

Logistics reports
[convay-2 dispached o camp-2 =]
convay-1 dispached o camp-1

camp-3 created a1 303417
camp-1 relacating 10 354:96

Bfriendi-1 ®carp-1

Civil enginearing reports

Met reports
et oifice’ Regular Met Report 1 B
Met Office: New water level overlay created
Mt Cffice: Rapid rise in water level

Met Office: New water level overiay created

i " . B
MapPanel <- (hitp. / faktors.org /flood#tonay-2, hitp://akters, org—
MapPanel <~ (http: //aktars org /flooc#convoy-1, http:f/aktors, ort

MapPanel <~ (http: {{aktors org [flancicony-2, hitp: [/ aKrors. oy
MapPanel <~ (htp: /faktors.org flooci#convoy-1, ip://akiors. ord|
MapP:
<

Fig. 10. Simulator Interface

5.8 Simulator Software

Our proof of concept implementation is a Java application which simulates
a day of events for the situational awareness system. The events and reports
themselves are predetermined and are served according to a script, but the
behaviour of the information agents (requesting services and responding to
service requests) is not fixed beforehand.

The application consists of two parts, a map panel which provides an overview
of the entities in the simulated environment and the current whereabouts, and
a control panel which provides a more detailed view of the flow of reports in
the system and contains a number of report consumers (users).

The map panel shown on the right of the diagram in Figure 7 is a canonical
example of a consumer; it registers its service requirement with the broker,
and then subscribes to movement reports from the relevant sources (see the
screenshot on the left in Figure 10). The next three consumers provide an
aggregation service to the system (and so are not ‘pure’ consumers) by sub-
scribing to certain types of report, cross-correlating those reports which deal
with the same event, and then generating new composite reports which de-
scribe those events (often with greater certainty, due to the combination of
knowledge from different sources). Finally, the flood level overlay agent takes
flood reports and generates an overlay for the map panel which indicates the
areas of the map which are under flood waters (again, see the screenshot in
Figure 10).

The control panel for the simulator, shown on the right in Figure 10, provides

16

an overview of the system. For this simulation, we assume a context in which
users have an interest in supply, an interest in keeping the bridges up and a
requirement to understand the state of the weather. Consequently, the three
panes in the middle of the panel show the filtered streams of reports which
are being delivered to the various users in the system (respectively, logistics,
civil engineering and meteorological). The scrolling pane at the bottom shows
an aggregated feed of all the reports that have been made in the system
(effectively a user who subscribes to all reports).

As a proof of concept and illustrative example, our demonstration implemen-
tation of this system differs from the description above in several important
ways. We have chosen not to implement the interactions between system com-
ponents using Web Services technologies such as SOAP. In our implementa-
tion, the agents communicate using standard Java method invocation. This
choice is largely unimportant because the process of transferring the system
to use SOAP as a message transport technology instead of Java is straightfor-
ward, given the procedure-call approach that we have taken in the FIPA ACL
process ontology.

The hybrid WSDL-based service grounding in the most recent version of
DAML-S is sufficiently expressive for us to be able to use SOAP instead of
Java method invocation for communication; our future plans for this system
include a migration to a SOAP-based message transport layer.

Even though we do not currently use Web Services technologies for message
transport, our implementation is still ontologically informed; the reports and
events are described using our domain ontology, and expressions from the
domain ontology are used as service requests, demonstrating that a formal
ontology of a domain can be effectively used to filter and aggregate knowledge
and services.

6 Conclusion

In this paper, we have described our experience of building a flexible agent-
based Web Services system which performs information triage on heteroge-
neous streams of data in order to provide a situational awareness capability
in a simulated humanitarian aid scenario.

A key aspect of the system design is the separation of the intentional force of
the messages from their application domain-specific content, and the embodi-
ment of this separation in the process and profile components (respectively) of
a DAML Services service description. The resulting rich service descriptions
provide a powerful way of assembling information resources in contexts that

17

require the agile construction of virtual organisations. This agent-based per-
spective on Web Services is very consistent with the views on the construction
of distributed information systems to be found in the Semantic Web and also
the Semantic Grid [9].

This work has highlighted the need for expressive query languages which fit
well with existing Web Services and Semantic Web technologies. In addition
to the migration of the message transport layer to SOAP as mentioned in the
previous section, our plans for future work on this system include the investi-
gation of such query languages and their interactions with service brokerage,
particularly where compisite processes are involved.

In addition to the issue of query languages for the Semantic Web (and Se-
mantic Web Services), this work also demonstrates a mismatch between the
approaches taken to the combination of services in the Web Services and mul-
tiagent systems communities. The models of service composition assumed by
ontologies such as DAML Services appear to be insufficient to express the
agent protocols found in FIPA and other agent systems; the investigation
of techniques for representing such stereotypical interactions within the Web
Services environment is a strong candidate for future research.

7 Acknowledgments

This work was supported by QinetiQQ contract CU016-016492 and the Ad-
vanced Knowledge Technologies (AKT) Interdisciplinary Research Collabora-
tion (IRC). The AKT IRC is sponsored by the UK Engineering and Physi-
cal Sciences Research Council under grant number GR/N15764/01 and com-
prises the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and
the Open University.

The authors would like to thank Peter Hoare of Qineti() for his comments on
an earlier draft of this work.

References

[1] L. Gasser, MAS Infrastructure: Definitions, Needs and Prospects, in:
Infrastructure for Agents, Multi-Agent Systems and Scalable Multi-Agent
Systems, Vol. 1887 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
2001, pp. 1-11.

[2] K. Decker, K. Sycara, M. Williamson, Matchmaking and Brokering, in:
Proceedings of the Second International Conference on Multi-Agent Systems

18

(ICMAS-96), 1996, p. 432.

[3] N. Guarino, P. Giaretta, Ontologies and Knowledge Bases: Towards a
Terminological Clarification, in: N. Mars (Ed.), Towards Very Large Knowledge
Bases, 10S Press, 1995, pp. 25-32.

[4] A. Gémez-Pérez, O. Corcho, Ontology Languages for the Semantic Web, IEEE
Intelligent Systems .

[6] J. Searle, Speech Acts: An Essay in the Philosophy of Language, Cambridge
University Press, 1969.

[6] FIPA, FIPA Communicative Act Library Specification, Tech. Rep. XC00037I,
Foundation for Intelligent Physical Agents (Oct. 2002).
URL http://www.fipa.org/specs/fipa00037/

[7 KQML Advisory Group, An Overview of KQML: A Knowledge Query and
Manipulation Language (Mar. 1992).

[8] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration (Jan.
2002).

URL http://www.globus.org/research/papers/ogsa.pdf

[9] D. de Roure, N. Jennings, N. Shadbolt, The Semantic Grid: A future e-Science
infrastructure, in: F. Berman, A. J. Hey, G. Fox (Eds.), Grid Computing:
Making the Global Infrastructure a Reality, John Wiley and Sons, 2003, pp.
437-470.

[10] M. Lyell, L. Rosen, M. Casigni-Simkins, D.Norris, On software agents and
web services: Usage and design concepts and issues, in: Proceedings of
the AAMAS2003 Workshop on Web Services and Agent-based Engineering
(WSABE2003), 2003.

[11] Z. Maamar, Q. Z. Sheng, B. Benatallah, Interleaving web services composition
and execution using software agents and delegation, in: Proceedings of
the AAMAS2003 Workshop on Web Services and Agent-based Engineering
(WSABE2003), 2003.

[12] D. Brickley, R. Guha, Resource Description Framework (RDF) Schema
Specification 1.0, Tech. Rep. CR-rdf-schema-20000327, World Wide Web
Consortium (Mar. 2000).

[13] D. Connolly, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, L. A. Stein, DAML+OIL (March 2001) Reference Description, W3C
Note, World Wide Web Consortium (Dec. 2001).

URL http://www.w3.org/TR/daml+oil-reference

[14] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services
Description Language (WSDL) 1.1, W3C note, World Wide Web Consortium
(Mar. 2001).

URL http://wuw.w3.org/TR/wsdl

19

[15] The DAML Services Coalition, DAML-S: Semantic Markup for Web Services
(Dec. 2002).
URL http://www.daml.org/services/

[16] P. V. Biron, A. Malhotra, XML Schema Part 2: Datatypes, W3C
Recommendation, World Wide Web Consortium (May 2001).
URL http://wuw.w3.org/TR/xmlschema-2/

[17] V. Benjamins, E. Plaza, E. Motta, D. Fensel, R. Studer, B. Wielinga,
G. Schreiber, Z. Zdrahal, IBROW3 - An Intelligent Brokering Service for

Knowledge-Component Reuse on the World Wide Web, in: Proceedings of
KAW’98, 1998.

[18] D. Fensel, V. Benjamins, E. Motta, B. Wielinga, UPML: A Framework for
Knowledge System Reuse, in: Proceedings of the International Joint Conference
on Al (IJCAI-99), 1999, pp. 16-23.

[19] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, D. Winer, Simple Object Access Protocol (SOAP) 1.1, W3C note,
World Wide Web Consortium (May 2000).

URL http://wuw.w3.org/TR/SOAP/

[20] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp,
H. Kuno, M. Lemon, G. Pogossiants, S. Sharma, S. Williams, Web Services
Conversation Language (WSCL) 1.0, W3C Note, World Wide Web Consortium
(Mar. 2002).

URL http://www.w3.org/TR/wsc110/

[21] L. Ardissono, A. Goy, G. Petrone, Enabling conversations with web services,
in: Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS2003), 2003.

[22] S. Decker, DAML Rules - An RDF Query, Inference and Transformation
Language, draft available online at http://www-db.stanford.edu/~stefan/
daml1/2001/07/03/rules/damlrules.ps (2001).

[23] R. Fikes, P. Hayes, I. Horrocks, DAML Query Language (DQL), Tech. rep.,
DAML Joint Committee (Apr. 2003).
URL http://www.daml.org/dql/

[24] H.-P. Labs, RDQL - RDF Data Query Language (2003).
URL http://www.hpl.hp.com/semweb/rdql.htm

[25] Aidministrator, User Guide for Sesame (Sep. 2003).
URL http://sesame.aidministrator.nl/publications/users/

[26] O. Lassila, R. Swick, Resource Description Framework (RDF) model and syntax
specification, Tech. Rep. REC-rdf-syntax, World Wide Web Consortium (Feb.
1999).

[27] B. Buchanan, E. Shortliff (Eds.), Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project, Addison-Wesley,
1984.

20

[28] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, M. Musen, Creating
Semantic Web Contents with Protege-2000, IEEE Intelligent Systems 16 (2)
(2002) 60-71.

21

