
IS IT NOT TIME TO DEFINE "STRUCTURED PROGRAMMINGI'? 

Peter Jo Denning 

Department of Computer Science 
Purdue University 

Lafayette, Indiana 47906 

I was amused by a statement in Mike Schroeder's report on 
the SIGPLAN/SIGOPS Interface Meeting [OSR 7, 3(July 1973), 4-9.] 
Mike reports that the participants seemed to agree that "it is 
not yet clear precisely what structured programming is, [but] there 
is general agreement that such a thing is possible and would be 
extremely useful in constructing large, complex systems." (I 
think Mike meant to say that it would be extremely useful for 
avoiding the construction of unnecessarily large and complex 
systems.) If no one knows what it is, how is it possible ration- 
ally to agree that it would be "extremely useful"? Do the parti- 
cipants at this meeting mean to imply that, whatever turns out to 
be "extremely useful" for simplifying the construction of large 
systems will by general agreement be considered as "structured 
programming"? If it is not known what "structured programming" 
is, how is it possible to conclude with certainty that it is 
"possible"? 

I have read and heard statements of this type frequently in 
the last year. No one knows what the words "structured program- 
ing" mean, exactly. Yet we find those arguing strongly in its 
favor and those arguing strongly against it: How does one argue 
for or against something when one is not even sure what it is? 
How can one be sure it is useful or useless without being able to 
describe it? Progress has been made in operating systems in re- 
cent years because there has been a general desire for precision 
of definition and clarity of thought. Were a project manager 
today, on being asked what type of operating system he is con- 
structing, to utter the words so often heard a few years ago, 
"Well, we're not sure exactly, but we do know the system is possi- 
ble and will be extremely useful," -- he would not long have his 
job. It is incongruous for us to be striving for precision and 
clarity in every aspect of operating system design, and ye t seem- 
ingly to permit imprecision and unclarity to be propagated with 
respect to one of our most important tools, programming. 

But what is "structured programming"? The following seem to 
encompass most of the impressions people seem to have of it: 

i. It is a return to common sense, an awakening to the real- 
ization that we are about to choke on the myriad of "features" 
and "options" we have been building into languages and 
systems. 

-6- 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F775265.775266&domain=pdf&date_stamp=1974-01-01


2. It is the general method by which our leading programmers 
program. 

3o It is programming without the use of goto statements. 

4. It is the process of controlling the number of inter- 
actions between a given local task or block and its environ- 
ment, so that the number of interactions is some linear 
function of some parameter or parameters of the task or block. 

5. It is top-down programming° 

There seems to be truth in all of these impressions. (I use 
the word "impression" because it does not imply a definition.) It 
is apparently true that many of our languages and systems are too 
flexible, having so many features and options that their misuse 
is more likely than their efficient use. It is true that our 
better programmers have realized this and have limited themselves 
to a small number of simple constructions and have avoided the use 
of every possible feature in the languages or systems they use. 
It is true that there exist languages in which intelligent and 
comprehensible programming without ~oto statements is possible; 
however, the absence of goto statements cannot of itself be taken 
as an indication that "structured programming" has been used. It 
is true that limiting the number of interactions between a task 
or block and its environment generally leads to more comprehensi- 
ble programs; however, a limited number of interactions cannot 
of itself be taken as an indication that "structured programming" 
has been used. I am not sure what "top down programming" means; 
I have seen the phrase used in at least two ways: 

a. It is a method of decomposition into modules by 
stepwise refinement. 

b. It is the goal of evolving a program so that its 
final structure can be presented or described as a 
hierarchy of tasks or blocks. 

I hope most of those who use the phrase mean b) rather than 
a), as all the evidence I have seen suggests that a) if applied 
literally will fail when applied to large programming projects. 

If we are going to be so enthusiastic in our pursuit of 
happiness by the path of "structured programming", should we not 
at least preface our discussions of it with a definition? Should 
we not apply our (newfound) criteria of precision and clarity to 
our discussions of programming too? 

-7- 


