
MCTS CUSTOMER TASK ENVIRONMENT

R, Ro Brown
Computer Science Department

Research L a b o r a t o r i e s
General Motors Corpora t ion

Warren, Michigan

18

http://crossmark.crossref.org/dialog/?doi=10.1145%2F775310.775312&domain=pdf&date_stamp=1975-10-01

THE MCTS CUSTOMER TASK ENVIRONMENT

The customer task# environment on theMCTS system (Multiple Console Time
Sharing System) was designed to attack many of the problems which the MCTS
designers thought were important to a large, multi-faceted corporation
such as General Motors. As such the designers considered such problems as
providing adequate computing capacity for performing significant numerical
analysis computations~ providing high interaction rates for attached graphical
(or other) terminals, providing flexible, safe, and secure access to adequate
volumes of on-line or off-line data, and providing a programming environment
in which it would be very easy to work and which would allow a very broad range
of scientific and commercial problems to be solved. As important as these con-
siderations are they mustbe provided in such an efficient form that the cost
of computing in the customer task environment would be significantly lower than
in previous systems.

The application problem chosen as the model of a large portion of the work load
expected on MCTS was one with which GMR already had considerable experience:
doing automobile design at graphics terminals. In fact the cost/benefit studies
which justified the construction of MCTS assumed that the entfre cost of running
the system would be borne by such graphics design applications. It was hoped
that many other sorts of applications would use MCTS, some at terminals, some
unattended (i.e. batch), and thus nothing in the system restricted its use to
graphics design applications. It was felt that the load characteristics imposed
on a system by a graphics design application were so severe that most other
applications would appear easier. In the paragraphs to follow the major topics
to be described are:

i. Customer Task Space Management
2. Programming Language Support
3. File System Usage in Virtual Memory
4. Support of Physical I/O Devices
5. Customer Task Initialization
6. Communication Between the Customer

Task and the Console User
7. Requests for System Services

% As used in this paper customer task means a dispatchable entity which
supports the execution of applications programs. Said in a slightly
different way, it is the MCTS-maintained control information plus the
executable procedures and the data to be referenced by those procedures,
comprising all portions of the execution support ~or an interactive
terminal or unattended batch job, which are not provided as parts of
the MCTS system.

As used in this paper customer (also referred to as customer task programmer)
refers to the~person who programs the procedures which execute as a part of
a customer task.

19

The order in which these topics are discussed, while partially arbitrary, does
have some significance. The first four topics are properly discussed together
because the system designers did their designs with certain prejudices explicitly
stated as guiding principles, and these led to the MCTS design being created so
that the file system, the programming language, and the space management aspects
of the customer task were all designed as a unit, and therefore are reasonably
discussed as a unit. The discussion of these first four topics shows how system
control is retained over several routine programming chores, and topic six
shows something of the control considerations involved in supporting communica-
tion between the customer task and the interactive terminal which is (ordinarily)
connected to it. Topic five precedes the graphics discussion because some mention
of task initialization is useful in desczibing the flexibility of the graphics
environmentt.

Most of this paper is written with the viewpoint that the user is a
person sitting in front of a graphic console, trying to solve an appli-
cation problem, e.g. selecting a windshield wiper system which will
clean a windshield adequately to provide good forward vision for an
automobile driver. Writing in this way is convenient, because it allows
words to be chosen which reflect this circumstance, rather than attempting
to choose words which reflect the more general situation which is in fact
supported.

Due largely to the fact that a customer task's environment is one which
is ° self-initialized by executable code found in a standard file, there
is actually great variety possible in the choices of both terminals to
be supported and the collection of commands which are to be the command
language for some particular application. In fact, there need not even
be a terminal involved at all, since a predefined sequence of character
strings to be found in some stored file can serve as a "user" and can
control a customer task in batch mode.

This self-initialization process also results in establishing the Console
Operating Subsystem as a set of procedures which obey the same execution
rules as any set of customer-written procedures. It communicates to the
user via CALLs to a small number of interface modules which pass data on
to the ~TS system proper. By changing the file which is attached to
supply the Console Operating Subsystem procedures, different terminal
types can be supported. Similarly, by changing the file which is attached
to supply the set of commands for a customer task, its command language
can be made anything one desires. It is entirely feasible to support a
variety of terminals with a variety of cow,hand languages, simultaneously.

20

A partial list of the aforementioned design prejudices follows.

MCTS should be designed as an integrated whole: Every aspect
of the design must support and be supported by each other aspect.
As corollaries of this: one file management technique in the
system, that one accessible through constructs within the pro-
gramming language; one programming language; space management
performed without customer programmer involvement, and as part
of file management and language support.

Simplicity in all design aspects is necessary, which leads to two
important results: a smaller total system which then is easier and
cheaper to implement, document, understand, and use; and few options
exist for the customer programmer to consider when he is designing
his application program.

In the usual case, one well supported means of accomplishing an objective exists
for the customer programmer to use. In keeping with this situation:

Control over as many as possible of the routine, "housekeeping"
matters involved in supporting the execution of a customer task
should be retained by the various aspects of MCTS.

Finally, probably the most significant of all the design prejudices was:

Design the customer task programming environment first, and
then design the MCTS system to support it well. The system
should serve the customer, not vice versa.

Overview

Tile environment described in this paper is that in which the customer tasks
of MCTS run. It is a software environment designed to support the chosen
programming language, APPLE, and its subset MALUS III. The task environment
features a very large (24s bits) virtual memory /13 - 17/ which is demand
paged by the operating system, and which holds images of the files which
the customer task uses. Thus access to data in a file is gained by executing
language statements which reference virtual memory, such as FIND, INSERT,
OPEN, and assignment statements. No input or output statement is needed in
the language.

The command language is a collection of operators (interpretable files) for
processing by COS (the Console Operating Subsystem), which is an interpreter.
The displays managed by this operator allowed the user sitting at a console
to act in a very flexible manner, interacting with the system and with his
programs in ways which assist both checkout and productive use. The
programmers doing work to develop MCTS found that the customer environment
was a very convenient working environment. The command language most widely
used by the MCTS development programmers made accessible to the user at a

21

console an editor, a compiler, a debugger, the file system, and any programs
which were stored in procedure files. One could require that a named procedure
in a named file be executed, and one could pass parameters tO this top-level
procedure just as if it werebeing called from another procedure.

Customer Task S2aqe Management

Studies of programmer time distributions on a predecessor operating system
/i - 9/ showed that the application programmers were spending more than half
of their programming time arranging for space management functions within
their address space. Data gathered from monitoring execution of these programs
when in productive use by engineering designers showed that 65% of the charged
CPU time was being spent in performing these same space management functions.
Accordingly a primary goal of customer task environment design was to eliminate
or reduce this oppressive, expensive burden. The approach chosen was to provide
each customer task wlth a virtual memor[of adequate size so that space manage-
ment wasn't necessary in cuStomer code, thus putting the burden of space
management onto the operating system. In other words, each customer task was
to be supplied with a virtual memory which was so large that an application
program could have all of its programs and data simultaneously occupying
portions of its address space. No address space region would ever need to
be emptied for reuse. Thus one resource, customer task address space, was
removed from the control of the customer task code, and simultaneously removed
were the problems of managing this resource.

It was further decided that the MCTS system would manage each customer's
virtual memory on the basis of demand~.9_~, thus keeping the total control
responsibility within the system. Some consideration was given to supporting
"advisory functions" which a customer task could use in exceptional cases to
request some specific pre-paging, but the need was never proved and the exper-
iment was never tried.

Programming Language Support

Another major decision about the customer task environment had to do with the
choice of programming language(s) to be made available to customer programmers.
For several reasons, some of Which are stated below, the choice was to define
a language which was a dialect of PL/I, and to produce a compiler for it.

PL/I was felt to be suitable for coding a much wider range of useful applications
than other languages, and thus a suitably chosen subset of PL/I should retain
that characteristic. In further support of this position, it is observable
that PL/I has achieved a wide usage in General Motors, and for many sorts of
applications. This appears to be a continuing trend.

This department.of the General Motors Research Laboratories and a cooperating
department of another General Motors Staff /18/ already had designed, implemented
a translator for, and extensively used a language which was an extension of PL/I.

22

The extensions provided for the manipulation of associative relationships among
data, and this language (named APL, Associative Prograrmming Language /i0/) had
been used very successfuily in graphical automobile design applications.

Both departments felt t~iat t!~is language had advantages over PL/I which would
be useful in a wide range of applications. Accordingly the decision was made
to extend a subset of PL/I by including the associative data handling facilities
from APLo Since there was a naming conflict with tile more heavily publicized
I~L by Iverson, the uame ~IPPLE was chosen for the imlguage to be supported by
~ICTS. Tile first versions of this language to be implemented were subsets of
APPLE chosen to support the buildup of ~ICTS and to ignore such things as
floating point arithmetic capability. These versions of ,iPPLE were known
as ~IALUS I, II, ~D III.

A decision tO implement a compiler for the APPLE language in order to be able
to optimize the generated code was originally made when it was intended to
implement MCTS on an IBM 360/67. llad there not been such strong concern about
optimizing the generated code sequences, a preprocessor could have been built
(as done earlier for APL)to generate source code for some available PL/I
compiler. Later of course, when it was decided to implement MCTS on the Control
Data Corporation STAR-100, there was no available PL/I compiler for such a new
machine, so a compiler would have had to be Built in any case.

~le other significant decision made about Customer task programming languages
was that there would be only one language supported in MCTS. In this way the
language support codes, i.e. the execution library, and the MCTS operating
system could be coded to know about each other's data passing and receiving
conventions, and thus could communicate more readily and more economically.
In contrast to a more usual situation in which the operating system provides a
general, non-specific set of language support functions, and in which the
languages require some particularized version, the particular supportneeded
by APPLE is the only support provided by the MCTS system to its customer tasks.
The biggest gains attributable to such a strategy come from reduced needs for
opqrating system tests to see what options are needed to support which customer
tasks; and hence the operating system runs more efficiently, leaving more CPU
time available to the customer tasks.

~le major disadvantage Of such a strategy is of course havlng to solve the
problem of supporting customers who wish to execute programs which have
previously been written, perhaps by other people and at other locations, in
other languages. This problem received some studywith particular reference ~
to running programs written in FORTR~N IV, but no decision as to the solution
technique to employ was made The writer's recommendation was for source
language translation into APPLE source code, to continue the advantages aimed
for with the system design, as described earlier."

File SystemUsage in Virtual, Memory

The existence of an adequately large virtual memory address space, managed by
the MCTS system on a demand paged basis, provided the possibility of avoiding

23

the use of "access methods" for data files. That option was studied: one access
,method (paging) versus several access methods (typically one for each type of
data file organization), and finally it was asked why programmers in the
MCTS customer task environment might need various data file organizations.

It was concluded that one sort of data file organization was enough if that was
an adequately powerful organization, and it was concluded that the data organi-
zation provided by the GMR-developed Associative Programming Language was
powerful enough to eliminate the need for such specialized organizations as
sequential, keyed, partitioned, indexed sequential, inverted.

Relucing all of these various file organizations to a single one has some
obvious advantages in many diverse aspects of both system structure and customer
code structure. The file system need no longer concern itself with the internal
structures of several types of differently organized files, and therefore the
catslogue structure need no longer record the internal structure of a file. The
operating system need no longer provide and maintain several sets of code to
search for records specified in various ways, et cetera. The programmer need
no longer study the various file organizations available to him and try to
decide which one to use, and perhaps also what sub-options of that organization
would be best. In short, the decision to support just one type of file
organization showed such treraendous implied reductions of complexity in all
areas of customer mld system software that it was felt that it just had to be
the correct solution.

Tile implications for customer task programmers of the system decision to support
only one file type for data files gave rise to questions such as: What is the
supported data file organization? How does one store data into a file? How does
one retrieve data from a file? How is it that one is allowed to put such diverse
data types as source text, compiled and executable code, printable or punchable
output files, arithmetic data, and other types, all into files with a single
organization type? Does the data structure reflect itself in the program's
structure? These five questions will be repeated and then answered in the
paragraphs which follow.

question One: Organization

What is the supported data file organization? A file is organized for accessi-
bility via the APPLE language, and has one of two basic internal arrangements:
either structured, which will be discussed briefly in the paragraphs which follow,
or unstructured, in which case the programmer must have some special knowledge
about the organization of the data and must do all manipulations with no partic-
ular help from the system. The unstructured type of file is used in a few special
places by the customer task support codes, and ordinarily the unstructured file
is not intended for customer programmer use. Such a file has no imposed
structural requirements except for its maximum length, which is limited to
2 ~e bits.

24

A structured file contains its own directories, a description ol! the data asso-
ciations it is recording, records of its own free space, and a set of pointers
to these directories, descriptions, and records so that all of these structure
data can be found from knowing only one original address within the file: that
being the address of the list of pointers. In addition to these structure data
the file will usually contain some application data, which will be contained in
records. The records will be (logically) clustered into sets, with each
record being a member of one or more sets, and with some records being perhaps
heads of some number of sets. The internal structure of sudL a file is thus
seen to be a collection of threaded lists, but with a difference reflected in
the name "Associative Programming Language. '~ Depending on the whims of the
customer task programmer, the relationship of association between certaJn data
can be recorded in such a file in many ways by use of APPLE l_an~uajge constructs
(as opposed to subroutine calls). For example, a progran~ner could choose to
build a file to hold a number of compiled procedures and scme relevant data
about them. The program;mr might wish to put into this file the following
data about each such procedure: the source code; the compiled, executable code;
a separate text file describing the procedure and its flow chart; and some notes
about the history of amendments made to each procedure. The progrmmner might
then choose to record these data in a structure sir[ilar to thc one sketched in
Figure I. Both sets and records are objects which are declared in DECLAPJ~
statements in the i~PLL language, and records (and some kinds of sets) can
carry names. A set ends up being a collection of associated records, whereas
each record is a STRUCTURE and will typically hold some application data within
itself.

Question '~qo: Store

How does one store data into a file? Within an APPLE PROCEDURE one DECLAREs
a record with subfields which match the data types and quantities one wishes
to store. Then one ALLOCATEs the record in theparticular file of interest,
perhaps by specifying the file name in the ALLOCATE statement. Then one puts
user data into the record by assignment statements. Finally, one organizes
this record to be with associated records by INSERTing the record IN some set
of the user's choice. This puts data into the virtual memory image of the file.
To make permanent changes in the file one must SAVE the virtual memory file by
means of a CALL to the SAVE procedure° This copies all changed pages of the
virtual memory image back to perlaanent storage in the file system.

question Three : Retrieve

How does one retrieve data from a file? One begins by making the file accessible
in his virtual memory by a CALL to the OPEN procedure. At that time one's access
privileges are checked by the file system (the following paragraph comments briefly
on access privileges available to people) and if one is permitted to do at ~!east
as much as one asks to be able to do, then the file is made accessible to one~
programs at some system-chosen range of one's address space. As a result of this

25

EXAMPLE: PROCEDURES AND RELATED DATA IN A STRUCTURED FILE

Set of Procedures

4 Pr°cedure ~ Pr°cedure ~ Pr°cedure r ,c, ,B, 'A'

Source
~C'

 o i,ed

Text
JO t

Modifications
'C'

k

q

Source
,B t

Compiled
' B '

Text
'B '

Modifications
~g t

Figure 1

q

q

h

Procedure, A, ~-,
Source

Procedu, A, re
Compiled

Procedure, A, "~
Text and

Flow Chart

Procedure, A,
Modifications

26

CALL, the program in execution is supplied with a returned value contained in a
location which has been declared to be a FILE variable. Thereafter, the use o f
this variable in an APPLE statement will cause the statement's action to be per-
formed on this file's image in virtual memory. Direct computational reference
to all the data in the image of the file is then available via APPLE statements
such as FIND, FOR EACH, INSERT, REMOVE, et cetera, each of which references some
file variable. The actual structure of a file variable is of course just an
address; in particular it is that address at which the directory of the named
structured file begins. ~ i s sort of technique for fetching and storing data
by direct reference is widely known as Virtual I/0, and it is the only technique
available to a customer task. Less refined techniques, such as might invoke
"access methods", are unnecessary.

The file system defined several different sorts of access privilege which a
customer task might wish to use on a file, and it appeared to be useful and
practical to implement the full range of access types specified. This
range allowed a non-hierarchical access attribute structure, with attributes
including independent specification of the ability to read, or write and store
permanently, or execute~ or write but not store permanently, and also the
ability to change the access authorization list specifying who has what
authorized access privileges. One could also (according to plan) ask for
various combinations of private access or shared access to files. However,
the early implementation of the file system allowed only private access to
files, and with access combinations of only i) read and write-with-permission-
to-store-changes, and 2) execute and read and write-with-permission-to-store-
changes.

It is hoped that this brief discussion, backed up as one wishes by more docu-
mentation on the features of APL /i0/ or the APPLE languages /12/ will serve
to indicate the sort of access tools which were available to a customer
programmer.

Question Four: Diversity

How is it that one is allowed to put such diverse data types as source text,
compiled and executable code, printable or punchable output files, arithmetic
data, and other types, all into files with a single organization type? In other
words, of course, why doesn't one need sequential files, partitioned files,
keyed files, inverted files, random access files, et cetera? Clearly all the
mentioned data forms need to be stored and retrieved, so why are these specialized
file organizations unnecessary?

The proximate cause is that the relevant system support processors were programmed
to do their work knowing that MCTS-style files, i.e. structured files, held their
data, rather than these other ~nazingly specialized file types. More fundamentally,
there is no reason why a generalized file organization cannot be home to any form
of data. The data are, after all, only bits which retain some special internal
organization, and that internal organization need not be known to anyone except

27

ones who need to interpret portions of the internal organization. This was
recognized in the MCTS file system design in the requirement that nothing be
known by the file system about the contents of any file (except the file system
catalogue) or about the organization internal to a file (except the one-word
pointer associated with each file and retained by the catalogue~ which located
the file's internal directories). The file system managed physical space and
permitted bits to be stored there.

~uestion Five: Program

Finally the most crucial question: Does the data structure reflect itself in
the program's organization? This of course hearkens back to the earliest days
of computing when many of the previously mentioned properties of data files did
tnen also appertain. At that time different data structures required different
programs for their manipulation. The advent of "access methods" was intended
as a break with that requirement, and indeed it was, frem the customer programmer's
point of view.

The data-structure-dependent codes still exist when access methods are used, but
they have become subroutines; selected, loaded, and executed by operating system
support codes in response to rather general statements written by customer pro-
granuners, such as READ, WRITE, GET, and PUT.

The ~CTS file organization allows yet another forward step to be taken, because
in addition to all of the aforementioned advantages, no very significant reflec-
tion of a file's structure need be imaged in a customer program; The data file
itself retains the knowledge of its structure. Programs do of course need to
know what data they should process but the files retain adequate structural
information to allow programs to locate those data. Thus a customer program
can ask to process all RECORDs of a given type, where that type is specified
in a DECLARE statement, and a general language support subroutine will be
automatically invoked to search the data file (named) along relevant sets
(specified in a natural manner) to find all such records. The contents of a
specified record can be anything one wishes: compiled programs, source text,
floating point numbers, et cetera. Control at this internal level is handled
by the programs which process the data, as guided by their DECLARE statements.
There is some similarity between the FIND statement of APPLE and the GET or
~AD statements of more primitive languages, since these statements allow data
to be located and prepared for subsequent processing. Much less progrmumer
involvement is required if one uses the FIND logic, however.

In sulmnary one should probably conclude that the MCTS strategy of supporting
one file structure for customer task use, and of mapping accessible files i~to
an extent of customer task address space, was good for the customer prograr~er
since it relieved him of some problems and imposed no new restrictions. It was
also good for the operating system structure since fewer options and special
cases had tO be supported; thus the operating system could be simpler and could
execute more rapidly.

28

~ort of Physical I/0 Devices

Another question which should be attended to is the question of physical devices.
~iow does the file system map data between virtual [ie-~'ory and physical devices,
such as disks, tapes, cards, printers, et cetera?

Remembering that the file system only manages space and that it knows essentially
nothing of the internal structures of the files ~hich occupy tile space; tile mapping
of a file between virtual n~mory and, for example a card punch, can be recognized
as an easy two step transformation. The first step is to copy the virtual memory
space onto some space managed by the file system, and tile second step is to
require that a system support program which is especially written to handle the
card punch be invoked to move the data bytes from the file system space to the
card punch. In this way the unformatted space (of a disk, typically) is used as
the intermediate storage form for all data files, no matter what their origin
nor their destination. Thus one can arrange to find data in virtual memory which
are the images of data as they were on cards, or on a magnetic tape, if one
wishes. Of course the system support program which drives the physical device
in question could be programmed to do some data reformatting as it moves data
between the file system space and its device, if such reformatting seems useful.
The ~ICTS system actually supported only three external file formats: one for
printable files and two for files going to a card punch or from a card reader.
As an aside, it might be useful to note that in MCTS the device drivers which
moved data between their devices and the file system's space operated in the
stations, i.e. the peripheral mini-computers clustered around the main STAR-100
processor /13 - 17/.

Customer Task Initialization

The process of initializing the MCTS customer task is triggered when a customer
presents himself to the system, as for example by trying to logon at a terminal.
Most of the process is performed from within the embryo customer task itself,
as supported by requested system services.

~aen the system observes the customer attempting to logon, it creates an
embryo customer task and starts it into execution. At the instant when the
customer task is about to start executing its first instruction (of self-
initialization code) it has available to it three things: (I) the self-
initialization code in a system-owned file, shared for read and execute access
with all other customer tasks; (2) a system-owned collection of control infor-
mation about this task which the customer task can never access; and (3) one
page of virtual space it can both read and write, viz. the page starting at
address 0 and spanning the address space 0-4095 bytes. This latter item is
referred to as the task's "Page Zero," and the hardware definition of the
STAR-100 processor specifies that the bottom half of each task's page zero
contains that task2s 256 registers. In summary, the customer task starts with
some code, its registers, 2048 bytes of space, and some inaccessible control
~tablee.

29

This self-lnitialization code then issues requests to the operating system to
OPEN the various files needed to support the execution of standard APPLE
procedures: the APPLE support library of subroutines, a scratch file for
variables of the "automatic" storage class and another for variables of ~'statlc ~
storage class. It OPENs a file for printable output for regular execution,
and it OPENs the file containing the command language code and control tables°
When this has been accomplished there is a full APPLE execution environment
available to support execution of the command language (an interpreter) and
any program it calls.

The debugger is automatically started up by the MCTS operating system if the
customer program generates an error severe enough to cause an interrupt~
The debugger startup process involves OPENing the debugger executable code
file, print, automatic, and static files for the debugger separate from the
ones used bythe interrupted customer task, and executing enough checking
code for the customer task to verify that all the language support facilities
needed for error-free debugger execution are available and contain accurate
information. The debugger then executes and allows many diagnostic and
corrective actions to be taken, and will also allow the attempted resumption
of the main program from the point of interrupt. The debugger has no special
privileges and thus cannot be used to perform any action that a normal customer
program cannot perform.

Communication Between the Customer Task and the Console USer

The preceding sections have spoken about the portions of the customer task
environment which reflect the mediation of MCTS between the executing customer
task procedures and the central computer. They indicate that that mediation
process retains the mundane control aspects over the CPU, the execution store
(virtual memory), and the file system, relieving the customer task procedures
of those tiresome chores.

This section will speak about the analogous mediation of MCTS between the
executing customer task procedures and the application oriented usert
who controls the task. This section will also take the view that this
mediation scenario involves the customer task procedures, the mediator
(a collection of MCTS procedures known as the Console Operating Subsystem),
and the user. It will concentrate primarily on the interface between the
executing customer task procedures and the mediator, the Console Operating
Subsystem, attempting to explain what functions the mediator performs. The
Appendix describes the mediation process primarily at the interface of the
mediator and the user, i.e. it describes i) the Console Operating Subsystem
(COS), 2) its associated compiler for writing command language graphics
interfaces for the individual commands, the Operator Programming Language
(OPL), and 3) the user's interactions with the command interface.

t The term user is explained in the footnote on page 12.

3O

 uni

At the start of a complete user interaction the customer task procedures are
idle, awaiting information from MCTS which will specify what computation the
user has requested upon his data files. In an illustrative case (not truly
typical of production uses) there is a display drawn on the screen of the
user's graphic console which has been computed as the perspective projection
of some collection of space curves which are represented in the data files
with which the user wishes to work. Also on the display screen may well be
drawn some words or other controls indicating what sort of action the user has
chosen to perform next upon the data in his data files. He may, for instance,
be intent upon computing a vector tangent to one of the displayed curves at a
chosen point, and the words may say "CHOOSE A CURVE" and "CHOOSE A POINT" and
"RESTART" in case the user has made an error, and "GO" in case he hasn't.

The functions of the console controlling portion of MCTS are to observe the
physical actions of the user with his input device(s), e.g. a light pen, and
translate those into identities of data elements in the user's data files so
that the appropriate computation can be performed by the appropriate procedure,
as written by a customer programmer.

After the requested computation has been performed, the displayed image projected
on the user's console must be modified as determined by the customer task pro-
cess, after which the customer task again awaits the specification of another
set of input parameters.

The console controlling portion of MCTS retains the mundane control aspects
over the customer task during the input collection phase of this operation.
In what follows there will be presented descriptions of the problems encountered
in performing this chore, and the solutions incorporated into the MCTS customer
task environment.

Just as MCTS strove to simplify the customer programmer's environment by elimi-
nating his requirements for managing his own address space and his own I/O to
and from various devices; so was the attempt made to retain system, rather than
customer program, control over the terminal through which a customer task's
programs interact with the person using them. The strategy employed to retain
system control over the user's console without preventing the customer task
programs from usingthe console interface as they please for effective inter-
action with the user was to assign control responsibility in two distinct portions.
MCTS assigned l) to the customer task the duty and authority of creating the
terminal display and of specifying to the console control modules which display
items were created as representations of which items in the user's data files,
and assigned 2) to the MCTS console control modules the duty of managing the
terminal display and of recording the user's selections of display items so
that the addresses of the corresponding user data file items can be passed to
the appropriate customer task procedure as parameters, so that the called proce-
dure can perform the computation which the user requires. The result of the

31

strategy was that the customer Ta~k enviro~e~t, as seen by the prog~uer in
t h a t en"~<i..ro,~:~en't~ w~s <~ne i.m ~ h i c h he ~ou].d r e c e ~ v e a CALL t o h i s APPLE ~tata
m a n i p u l a t i o n sub~ou~ir.!.~ w:;~h ~, pa~.~sed p a r , ~ ¢ ~ t e r l i s t ~ p e e i f T i n g t h e c o n s o l e u ~ e : r ~
]ai-,es,~; c h o i c e s o f dat~.~, eie:~ent .s t,o compu te wi th~ and he ~as e x p e c t e d t o even~-

<,A.~,u .~,~.~v,de~.~ by the eustc~mer task which ~oald update the
usez'~s data files and his conaole dLsplay, and then RETLrf~* control to the NeTS
environment which wo~lld ~!~n~g,e his u.~er~s con~ole until anoSher cow, plebe
iuteraction had bee~t specified by the user (Figure 2) , The portions of MCTS
~hich poor[de ~hls ,,consol~ controlling envlro~ent for the customer task are
named Console 0per~;ting Sub,~y-~tem and Operator Progr.~a~ming L&ng~.u~ge~ COS and
OPL,

As noted above~ ~he executi~g castomer task i~ obliged to compute the output
[t~e~re~Jentation of the user'~ data files~ thu.~ clearly t~.~klng part o:~ the consol~
coat.~'ol fanction to itself~ ~ince these output computations depend from both
certain console {ltilization decisions as well as from the specific nature of
the display termins.l hgrdw~.~re, it w)uld have been neces~-:arT' to separate these
v~.~rJous dependencies somehow if the customer task progrezis were to retain all
their usage options whi.ie .MCTS was to attend to all the terminal dependencies.
In MCTS the consciou~-~ decision was ~¢ade to leave both parts of this chore to
customer bask proceduz"es, thereby insuring that no unforeseen design implication
eotu[d deprive the c, ustome~- task i~rocedures of full control, over the user Is
c o;[isole.

.~q &meliorating factor in this situation, reducing the amount of effort required
of the customer task progr~mrs was that the computation could easily be done
bTa service routine ~ich~ould be subsystem-dependent, not requiring a different
service routine for each different user program, but rather one sharable by all
the user programs of a single subsystem.

The choices for console control thus made available to the subsystem were such
as: What technique should be used to select things from the data files to
display (all, ones with special flags, text strings onlyD0..)? What projections
oF the selected things should be shown (orthographic, perspective, stereo, o,.)7
What screen forget should be used (one area where everything is shown~ subareas
for selected subsets,...)?

A Little D e e ~ : The foregoing discussion about graphics support in the
MCTS customer task has purposely kept to a very high, phenomenological level,
and in an attempt to avoid mentioning any but the most essential details~ it
has even been slightly misleading. In the sections to follow, up to the heading
R e:~uests for ~ervices, this topic is additionally discussed in a little
g r e a ~ e r d e p t h .

The major misleading aspect of the foregoing discussion concerns ignoring the
moment and method of the selection of the customer task procedure which is to
receive the parameter list gathered and passed to it by COS. Also ignored has
been the method whereby the user at his console can direct the sequential flow
of commands executed by the customer task he [s controlling, and finally the
mechanism which is available to a customer task programmer whereby he shares with
COS the control responsibility over the console, i.e. creating output displays and
collecting the user's input data selections. All of these topics are properly

32

ALL to customer subroutine~

. <:.¢-~.t . U .LON, MCTS envirorm~,e:nt~ s u p p o r t s (~2°;"LE -

f:~om HCTS

W O I d i ~ : ,PRO,CEDURE(P!, t72, P 3 , , . ,) ;

DECLARE et cetera

Do Ari%hmetic

CALL S e r v i c e Routine (ki, A2~. ,, ,) ;
/% t o u p d a t e t h e a p p l -] c a t i o n ~ s -~/'
/ * dabs f i l e s a n d ~)~ x"-~,,. ~,,,.~"~, * /

; ' ~ > .. # ,{ , . a O e - ~ / ' 5 : i~,~,d:tdisp!ay.Cat,o.,..~:, f o r +,he c o n s o l e * /
!

R L_'..,2N,

o . , r v ~ c e ~outine

PLiCT: PROCKDURE(PAf.~ PA2, , . .) ;
~,or, e Ds t s

Oer!ez'{~ be]) i sp : l . ay V e c t o r s
C~q:,L syst.em(gi, E2,. o.) .~

/.~: to modify certain -~/]
!'~ ~:~s-p!~:~y ent~ ties. */

:E i:~] :SN;

/W Q' Control ~iow in the M~.Z., Oustomer: Tssk

~2 gu~,z'e 2

33

~ddressed together, since they all concern the cooperative functioning of COS
~d OPL, performing their portion of the terminal control chores°

OPL is a compiler whose input language allows the OPL source language progr~er
(assumed here for convenience to be the same person who is the customer task
programmer) to create a single commamd, which the OPL compiler can then compil,
~nd store in an MCTS file~ The results of the compilation are pieces of execut~
~ble AL~PLE code, and a data structure which can be interpreted later by COS°

COS collects the input selections made by the user at his terminal, and treats
each such selection as the specification of one datum needed by the particular
customer task procedure whose execution will produce the commandts effect on the
,zser's data files. Note that the selection of a particular command causes COS
to process a particular OPL~compiled file, and within that file is the information
required to generate the command's terminal display and also the identity of the
customer task procedure to be executed. The very considerable flexibility
available to the programmer of such an OPL command arises because the OPL inter~
preter considers the data structure to be a tree, whose branch tips are these
user-specified data and whose interior nodes are treated as "AND" and nOR"
logical requirements which the input data must satisfy before the entire tree
is satisfied. Even more flexibility is gained due to the inclusion of the
aforementioned "pieces of executable APPLE code '° which are considered to be
associated with the branches between the interior logical nodes° A code piece
is executed when the corresponding requirement node has been satisfied, and it
is allowed to manipulate the picture being shown to the user at his terminal 9
and is even allowed to manipulate various of the data required at the input branch
tips, whether or not they have already been specified.

When all of the requirement nodes of a command's tree representation have been
satisfied, the associated customer task procedure will be CALLed with the
specified input data converted and sorted as necessary into~the parameter llst
which that procedure expects. Thus it is seen that the parameter input phase
of a comand is handled by COS and OPL, the compute phase is handled by an
associated customer task procedure, and the output phase, in which the command'8
effects are imposed on the user's data files and on his display terminal, is
handled by the customer task procedures, usually by a widely used subsystem
service module.

Getting Even Nearer toDetails

The final set of topics described in these sections about graphics-related system
support, relate certain control a3~cts which are even nearer to the detail level~
They describe three aspects of the graphics support for the MCTS customer task
environment, namely: i) identifying output images of meaningful objects in
the user's data files; 2) selecting data file items as a result of interpreting
the user's physical actions at the terminal, e.g. light pen selections, key strokes;
and 3) specifying a complete user interaction, which requires collecting a desired
set of data file item selections and passing them as arguments to a customer task
data manipulation procedure.

34

identi in 0ut ut Ima es: In preparation for the input selecti6n phase in
which the system will translate user selections of component parts of the
display into selections of corresponding items in his files, this phase builds

temporary data file representing the console display. It contains information
indicating which atomic portions of the display should be considered together
to represent a display of each item in a file, and an identifier of that item in
the user's files.

The actual implementation of the Console Operating Subsystem supported a very
rich structure within this picture data file, allowing specification of many
display modifying options, but the only one to be mentioned here is the
capability of grouping the display elements into sets (such ~s "the set of all
selectable sentences in the display") which have some commonality for the user's
purposes°

The Console Operating Subsystem is able to create and maintain this picture
data file because the service routine which computes the atomic elements of
the display is required to communicate to C0S in terms of "display entities"
and "display sets", et cetera. Thus the contents of a display entity include
the displayable atoms which represent some item in the user's files, an
identifier of that item, data about display set membership, and other data
controlling the other display options. CALLs to the various subroutines
supporting COS allow the service routine to create entities, delete entities,
change their contents, change their set memberships, create sets, et cetera.

~ D a t a File Items: Given the picture description data file built
by the first phase supporting subroutines of the Console Operating Subsystem,
the requirement of translating a user's physical actions (such as a light pen
poke) into a selection of an item in the user's files is easily satisfied once
the physical act can be related to a displayed entity. This can be a simple
chore if the display has but few, ~gell~separated items, but if the display is
full of overlapping displayed items then the chore can be very difficult.

There are two principal tools which the Console Operating Subsystem uses to
insure correctness in its choice of a display entity to correspond to the
user's action~ One is the continual~ instantaneous feedback to the user of
the Console Operating Subsyst~n~s best guess as to which entity is being
selected at that instant° The other is bound up with the set(s) of which an
entity is a member~ in that the Console Operating Subsystem ca~ "kno~ ~ that
only the entities on certain sets are meant to be selectable at some particular
time~ so i~ makes its "best guesses ~' from only the entities on those sets° It
then is up co the user to attempt to select the display entity he chooses
until he sees that that is the c-~rent choice of the Console Operating S~ab-
system~ at which time he allows that selection to stand°

In the actual MCTS ~nplementation~ the feedback ~s accomplished by displaying
the 'test guess ~ display entity in its entirety with considerably brighter
intensity th~ the other displayed entitie~ When the user lifted his light
pen from the screen~ it "~as assumed that he ~s content ~with the latest choice~

35

~ c i ~ i ~ ~ U s e r In~eraction: The questions to be answered here
are these. How can the Console Operating Subsystem be made to know that at
a particular time the user is attempting to select only the display entities
on one particular display set; for example, only those display entities
which correspond to "center points of circles"? How can the Console Operating
Subsystem know what customer task program should be called to process the
data selected by the user during his interaction? How can the Console Operating
Subsystem know how to pass arguments to the customer task data processing program~
i.e. how can it know the number, type, and sequence of arguments expected by the
customer task program? All of the answers to all of these questions form the
answer to: How can the Console Operating Subsystem specify a complete user
interaction to the customer task he is using?

The answers to these questions lie with the programming language mentioned
earlier: Operator Programming Language (OPL). OPL would allow all these factors to
be specified in its source language, and would then compile into an "operator
file" a mixture of executable code and some data structures to be used by the
Console Operating Subsystem, an interpreter. See Appendix.

Thus, to add a new data processing program to an existing application sub-
system, the application programmer would write two things: the program
itself in APPLE, and the operator which would control its console in OPL.

Requests for System Services

Some comments about requesting system services are in order here. The system
services can be loosely classified into two sets: those services which can
be accomplished without any special system privileges (such as finding the
next entity on a known set in a known file), and those which use some system
privileges (such as adding a new file to the virtual memory, which requires
system checks for access privileges, virtual memory space allocation, and
some table building by the operating system). Both sets of services are
implemented from a customer program by issuing a subroutine call with proper
arguments. For the non-privileged set of functions, that subroutine will
provide the service and return control, but for the privileged set of functions
control must be passed to the operating system to perform at least part of
the function. That is accomplished by the called subroutine. It sets up
a list of arguments which the system support codes will need, points a
particular register at that list~(the same register as is used to point to
a normal argument list for a normal CALL statement), and issues a programned
interrupt (an EXIT FORCE instruction). The first argument in the list
specifies the identifying number of the system service needed, and the
remainder of the list is specified by agreement between the writers of the
system support code and the subroutine which builds the argument list.

36

Returned arguments usually come back in the same list. All system seNices
are reachable via subroutine call from executing cust¢~er programs, and almost
all are also reachable from the command language. The co~mamd lan~aage
arranges for this by issuing the proper subroutine call, Just as if it were
an ordinary customer program.

A slightly different environment was planned for the customer callable
services in the production version of MCTS, in that in addition to the condJ~
tlons already described, a small additional condition was to be ~mposed. It
was the intention to collect all callable system service interface modules
into one particular file, and then to attach that in execute only, shared mode
into each customer task. Then only procedures in that. segment w~uld be allo~ed
to issue the EXIT FORCE instruction. That rule would allow certain checking of
input arguments to be performed safely within the customer task rather than in
the system. This production environment was not u=ed ~n the daily 14~'S oper8tion,
since it would have hampered the testing of new customer callable system service
interface procedures.

The simplicity of the environment was a valuable asset, allowing the customer
to concentrate on his problem, not on trying to arrange tha~ his proce~-ares
would have enough resources to run. His procedures would of course be com-
piled by the MALUS IIl compiler (which ran with acceptable r~pidity even on
the rather small STAR emulator computer we were using) a~d %~uld automatically
be assured of a MAI~JS IIl support environment in %#~ich to n~n.

The unanimous Judgment of those who used MCTS was that it provided a power~-
ful, flexible custom, or task environment, and that the ~ystem su;:port, the
programming language, the command language, and the file system all fit
together very well to provide this environment. The experiment ef deeigni1~
all these aspects together, with the idea that they should all work in har~r~,
to solve customer task problems should be considered as a successful experi~
mont. Hopefully some future system will incorporate this sort of tot~l environ-
ment planni ng ~

37

APPENDIX
bY John T, Murray

Communication Between the Customer Task and the Console User

The principal users of MCTS were expected to be engineers dealing with line
drawing models of automotive parts and surfaces, using graphic terminals°
Since the information to be processed was graphic rather than textual and
since engineers are generally poor typists anyway, the user interface was
not to be based on typed commands, Instead the light pen was to be used as
much as possible so that the engineer might communicate with the system by
simply choosing items from the options displayed. Failing that, forms would
be displayed on the screen so that the user might simply "fill-in-the-blanks v'
with whatever typed information might be required. For example~ to add a
hole to a line drawing model of the inner panel of an automobile trunk lid,
the engineer would first select CIRCLE from a displayed llst of geometry
building programs. He would then be prompted with a display identifying the
input data required by that program, e.g. a CENTER POINT and RADIUS. By
selecting 'CENTER POINT' and then selecting a particular point from the display
of his trunk lid, the engineer could bind a particular datum to the input
parameter for the program. Similarly, by keying a number into a blank
displayed next to RADIUS, the engineer could supply this input datum with a
minimum of typing difficulty.

. __ m J

Build a Circle

C e n t e r P o i n t R a d i u s = 2 . 3

Figure 3

Experience /18/ writing programs to create this sort of user interface had
shown the need for separating the programs which actually build circles (semantic
programs) from the programs which communicate with the customer to obtain-~'~
required input data (syntactic programs called o_~erator programS)o The semantic
programs were to be written as APPLE subroutines so that they could be invoked
directly by higher level programs not requiring communication with the user.
Accepting input data as parameters, these semantic programs would "build a circle"
by calling service routines to add the corresponding data into the llst structure
representing the customer's line drawing° The service routines would be respon~
sible for updating both the line drawing model and the display of that model, as
continuously presented to the customer. The problem of updating the display
involves generating the corresponding display vectors and calling the appro~
priate system utility to transmit them to the graphic terminal buffer memory
from which the display is regenerated°

38

The operator programs which communicate with the customer in order to
obtain input data for semantic programs were found to require inordinate
programming effort /18/ to develop and maintain when written using conven-
tional programming languages like APPLE. The example shown here requires only
two input parameters (CENTER and RADIUS) and therefore oversimplifies this
problem~ In fact, most operator programs deal with a dozen or more input
par~meterso (A circle can be constructed not only from a CENTER and RADIUS
but also from ~ CENTER and two POINTS ON THE CIRCLE, three POINTS ON THE
CIRCLE, a CENTER and TANGENT LINE, two TANGENT LINES and an APPROXIMATE
CENTER~ etc).

The programming effort required to develop and maintain operator programs
can be greatly reduced using interpretive techniques. Specifically the
operator program itself has been represented as an AND/OR graph:

Build a Circle

/

/ \
CENTER RADIUS

I

/
CENTER

/
POINT

ON CIRCLE

Operator Program AND/O,t~ Graph
Figure 4

B
\
POINT

ON CIRCLE

A general purpose interpreter program can then manage the operator display
and process the user's light pen selections and type-ins to insure that
the required input data (and only the required input data) are provided by
the user.

In order to gain experience with this approach toward man-machine interaction
on MCTS, it was decided to implement the command language, text editor and
debugger along these lines. The initial MCTS terminals did not have light
pens~ but the command language, text editor and debugger operators were ~ written
as if they did so as to require no change when full graphic terminals became
available. The initial alphanumeric terminals did have full screen read and
write capability~ thus it was possible to use a "fill-in-the-blank" approach°
This worked out especially well in the text editor where a full page of text
could be edited~ and characters and lines inserted and deleted in place on the
terminal screen° The approach did not work out so well in the debugger,
however~ where a conventional typ~riter~oriented debugger was written to
~'short~stop ~v the full debug operator in order to improve response.

39

In the MCTS implementation, the program which interpreted the .~D/OR
graphs defining the command language and text editor programs was called the
Console Operating Subsystem (COS) of MCTS$ This subsystem became the top
level program for the MCTS customer task, handling all co~nunication with
the user from LOGON to LOGOFF° As sets of input data became complete
(such as the name of a program to be moved from one file to another, and
the input and output file names) COS would invoke semantic routines to
actually carry out the user's computational requests~

The AND/OR graphs defining a particular operator program were written in
a dialect of Bachus Naur Form called the Operator Programming Language
(OPL). A compiler translated the source programs into the object data
structures, i.e. the AND/OR graphs to be interpreted by COS. The 0PL compiler
accepted semantic statements written in APPLE as associated with portions of
the AND/OR graph. The semantic statements themselves were simply collected
into a DO group and copied into a semantic output file. As it was produced,
each DO group was numbered and the number stored at the appropriate node in
the AND/0R graph. After a complete OPL operator was compiled, the semantic
output file contained source statements for a valid APPLE subroutine, This
file was then compiled by the APPLE compiler to produce the actual object code
for the semantic program. As described above, COS would invoke the semantic
programs and cause the execution of the appropriate DO group as sets of input
data became complete (according to the AND/OR graph). The semantic program
supporting the execution of the MCTS text editor contained several dozen
DO groups for changing, inserting, deleting, searching, saving, and scrolling
text. The operator structure contained on the order of 50 AND/OR nodes.

40

BIBLIOGRAPHY

lo

2~

.

.

.

.

.

.

Edwin Lo Jacks~ "A Laboratory for the Study of Graphical Man-Machine
CommunicationsT'~ AFIPS Conference Proceedings, Volume 26, Part l, 1964
Fall Joint Computer Conference° Spartan Books, Inc., Baltimore Md.

.

Mo Phyllis Cole, Philip H° Dorn, Richard Lewis, "Operational Software
in a Disk Oriented System", A FIPS Conference Proceeding~, Volume 26,
Part l, 1964 Fall Joint Computer Conference. Spartan Books, Inc.,
Baltimore, Mdl

10.

Barret Hargreaves, John D. Joyce, George L. Cole, Ernest D. Foss,
Richard G. Gray, Elmer M. Sharp, Robert J. Sippel, Thomas M. Spellman,
Robert A. Thorpe, "Image Processing Hardware for a Man-Machine Graphical
Communication"~ AFIPS Conference Proceedins.s, Volume 26, Part l, 1964
Fall Joint Computer Conference. Spartan Books, Inc., Baltimore, Md.

ll.

T. R. Allen, J. E. Foote, "Input/Output Software Capability for a
Man-Machine Communication and Image Processing System", AFIPS Conference
Pr_oceedings, Volume 26, Part l, 196h Fall Joint Computer Conference.
Spartan Books, Inc., Baltimore, Md.

F. N. Krull, J. E. Foote, "A Line Scanning System Controlled from an
On-Line Console"~ AFIPS Conference Proceedings, Volume 26, Part i,
1964 Fall Joint Computer Con{erence. Spartan Books, Inc. Baltimore, Md.

Technical Information Department, "Design Augmented by Computers -
The General Motors DAC-1 System"~ (Search 7), Research Laboratories,
General Motors Corporation, General Motors Technical Center, Warren,
Mich. 48090, October 196h.

General Motors World , "Designer's Legman", pp. 8-i1, General Motors
Overseas Operations Division, 767 5th Ave., New York, January-February
1965.

Edwin L. Jacks, "The DAC-I: A Computer System for the Study of Graphical
t t, Man-Machine Communica ion ~ General Motors Engineering Journal, pp. 2-8,

Volume 12, No. 2, Second Quarter 1965.

Gerald J. Devere, Barrett Hargreaves, Dennis M. Walker, "The DAC-1 System",
Datamation , Volume 12, No. 6, June 1966.

G. G. Dodd, "APL - A Language for Associative Data Handling in PL/I",
1966 Fall Joint Computer Conference, Volume 29, AFIPS Conference

R. C. Daley and J. B. Dennis, "Virtual Memory, Processes, and Sharing
in MULTICS"~ ACM Symposium on Operating System Principles, October 1967.

41

12. F. N. Krull, M. Marcotty, M. S. Pickett9 Jo J. Thomas, and
R. F. Zeilinger, APPLE Reference Manila l, General Motors Research
Laboratories Publication GMR-1234, General ~[otors Technical Center~
%~rren, Mi~ 48090, 1972.

13. W. C. Hohn and P. D. Jones, "The Control Data STAR-100 Pagin~ Station"~
AFIPS Conference Proceedin$s, Volume 42, pages 421-426, 1973 National
Computer Conference.

14. R.L. Curtis, "~nagement of High Speed Memory on the STAR-100 Computer",
IEEE International; Computer Conference Digest, Boston, 1971.

15. P. D. Jones, "Implicit Storage Management in the Control Data STAR-100"~
IEEE CompCon 1972 Digest, 1972.

16. R. G. Hintz and D. P. Tate, "Control Data STAR-100 Processor Design",
IEEE CompCon 1972 Digest, 1972.

17. G. S. Christensen and P. D. Jones, "The Control Data STAR-100 File
Storage Station"~ Fall Joint Computer Conference ProceedinGs,
Volume 41, 1972.

18. C~ Richard Lewis, "Economic Factors in the Utilization of Reactive
Graphic Consoles", Society of Manufacturing Engineers.

42

