
AN ASYNCHRONOUS GARBAGE COLLECTOR FOR THE CAP FILING SYSTEM 

AoD. Birrell and R~M. Needham 

University of Cambridge Computer Laboratory 

The CAP filing system [Needham and Birrell 1977] is able to produce garbage or 
'lost objects' on disc, because its directory structure is a general naming 
network containing, in principle, cyclic substructures. Such substructures 
may become inaccessible as a result of deletion of capabilities or file direct- 
ory entries. Up to now the tidy-up of the disc which occurs on system restart 
has been relied on to recover such space; this is somewhat inelegant and makes 
one nervous about leaving the system running for long periods. Accordingly an 

asynchronous garbage collector has been introduced. 

Basic management of the disc system is in terms of system internal names or 
SINs [Needham and Walker 1977]. File dictionaries relate text names to SINs, 
and a reference count for each SIN is maintained in a central SIN-table. The 
count shows how many file directories refer to the SIN in question, and also 
indicates whether the relevant object is active in the current virtual memory. 
The reference counts are only an incomplete guide to material which should be 
discarded, because of the existence of looped structures as mentioned above - 
a standard problem with reference counts. However, the SIN-table also contains 
information on the t~_e_ of the object referred to: specifically whether it is a 
directory or not. This type information is the key to garbage collection, since 
it enables us to limit the area within which the garbage collector must search 
for garbage. We know that objects of type 'segment' cannot contain references 
to further objects, and thus that the reference count system will work correct- 
ly for them - that is, a segment object may be deleted if, and only if, its 
reference count is zero. We accordingly pursue a mixed approach, in which 
reference counts are used when appropriate and a scanning type of garbage 
collection used otherwise, since segments predominate (it would be an unusual 
system in which most of the objects were directories) the cost of the garbage 

collection is modest. 

The action of the garbage collector will now be described. It runs as a separ- 
ate system process intended to be permanently active. At the start of its cycle 
it scans the SIN directory, setting up a data structure with an entry for every 
object of type 'dictionary'. These entries record the state of the garbage- 
collector's knowledge of the dictionary; they have three values - 'marked', 
'needs examination', and the initial state 'not visited'. The garbage collector 
determines the SIN of the master directory and of each currently active directory, 
marks their entries as 'needs examination', and proceeds through a scan of 
accessible dictionaries starting with them. As any directory is scanned, entries 
in it referring to other directories are noted. Any directory thus referred to 
has its entry changed if need be: state 'not visited' is changed to 'needs 
examination', and if there was no record of it at all an entry is created in 
state 'needs examination'. When a particular directory has been scanned its 
state is changed to 'marked'. While the garbage collector is running the rest 
of the system is busy and will be creating new directories or retrieving 

31 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F775332.775338&domain=pdf&date_stamp=1978-04-01


capabilities for existing ones. These actions are the province of the SIN table 
manager SINMAN [Needham and Walker 1977] in each process° It is necessary that 
the garbage collector be informed of such events, since a directory which is 
created or retrieved is certainly accessible. Accordingly SINMANt using the 
standardly available inter-process message facilities, sends a (non-reply) 
message to the garbage collector detailing any such event. The message is sent 
before retrieval or creation, and the communication facility guarantees that 
the message is put forthwith on the garbage collector's input queue° On receipt 
of such a message, the garbage collector amends the recorded state of the relev- 
ant directory if necessary. 

The algorithm terminates when the collector has no record of any directory 
requiring examination, and there are no messages on its input queue. At this 
point, all objects of type "directory" which were identified in the initial scan 
of the SIN-directory and which are still in state "not visited" are garbage and 
may be disposed of. Any directory which is still accessible or active will 
either have been noted in the scan of the directory structure or have been 
recorded as becoming active in the current virtual memory. This follows from 
the fact that a directory capability may only be preserved in an existing 
directory if it is active at the time - compare the movement of books, where 
you cannot reshelve a book without pulling it from its original shelf. The 
principle is familiar in the design of on-the-fly garbage collectors. 

In the particular context of the CAP filing system it has been possible to 
take great advantage of centralised knowledge that certain objects, numerically 
predominant, do not contain pointers and may therefore be managed by a straight- 
forward reference count system. This combined approach gives a great practical 
advantage in that only a small proportion of the material on disc need be 
looked at. 

Although only directories are inspected, the garbage collector gives rise to 
substantial disc traffic. It is therefore specially arranged to run rather 
slowly, examining up to ten directories each minute; in our present circumstances 
this means that a cycle takes somewhat less than an hour, with little inter- 
ference with ordinary users. If let run at full speed, it would take some i~ 
minutes, during which user response is severely affected by disc traffic and to 
some extent by main memory use. 

Having identified certain directories as garbage, it remains to dispose of them. 
Such directories are scanned, and the reference counts of any directories 
referred to from them is decremented. At the conclusion of this exercise, all 
garbage directories should have zero reference count. If any do not, something 
has gone seriously wrong and the whole operation is aborted. This checking stage 
is there for prudential reasons only; it seems sensible to have it there because 
the installation of the garbage collector revealed one or two errors in old 
code which had had no ill effect previously. There could be more. If the test 
is passed, then another scan of the garbage directories decrements the reference 
counts of all non-directory objects referred to and finally deletes the direct- 
ories themselves. The availability of this test is another advantage of maint- 
aining a parallel scheme of reference counts. 

32 



Terminological Note: We have used the term 'directory' where strictly in the 
CAP system we should have said 'file directory or procedure control block'. 
Both types of structure contain references to other objects which may be 
directories. 

Acknowledgements: The CAP Project is supported by the U.K. Science Research 
Council 

References: 

R.M. Needham and A.Do Birrell, 'The CAP Filing System', SOSP6, 1977 
R.M. Needham and R~D.Ho Walker, 'The Cambridge CAP Computer and its Protection 

System', SOSP6, 1977. 

33 


