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Heterogeneity of hardware and software is a fact in most distributed 
computing en vironmen ts. The DA CNOS pro to type is a net work operating 
system that enables resource sharing in such environments. It extends the 
local operating sys terns without interfering with existing programs. It provides 
comprehensive system level support for distributed applications. 

Retrospective on DACNOS 
Kurt Geihs and Ulf Hollberg 

In DACNOS (Distributed Academic Computing Net- 
work Operating System) we have addressed two char- 
acteristic aspects of today’s computing environments: 
distribution and heterogeneity. While the former aspect 
is willingly accepted as a move to more power and 
flexibility for the user, the latter is in many environ- 
ments a-sometimes unwanted, mostly functionally re- 
quired-fact of life. Many people have studied distrib- 
uted systems for the special case of a homogeneous 
environment. DACNOS has aimed at providing efficient 
and convenient support for the cooperation of heteroge- 
neous computing systems. 

Heterogeneity in systems is primarily because there 
is no single hardware and software architecture that 
serves all computing purposes equally well. Heteroge- 
neity is apparent in different machine hardware archi- 
tectures, operating systems, networking facilities, and 
user access control, to name those who were consid- 
ered for the DACNOS design. Other types of heteroge- 
neity are conceivable, (e.g., user interfaces, application 
subsystems, or even multiple information media). 
These were not considered for the current prototype; 
however, they seem to make interesting areas for fur- 
ther research. 

Our initial target environment was the computing 
infrastructure of the Computer Science department of 
the University of Karlsruhe in West Germany.’ There 
we found, among others, IBM/370 computers running 
VM/CMS, DEC/VAX computers under VMS,’ and IBM 
PCs running PC-DOS. These operating systems and ma- 
chine architectures differ greatly in their hardware, 
software, and interface concepts. There was file transfer 
between the host computers, and some PCs were linked 
to the IBM hosts supporting terminal emulation, but 
there was no resource sharing between applications run- 

’ The DACNOS effort was part of a cooperation project of the University of 
Karlsruhe and IBM Germanv. The oroiect’s coal was to studv the auolication 
of computers for the suppori of aca&& teaching and res&ch [I;{. 
’ DEC. VAX and VMS are registered trademarks of Digital Equipment Corpo- 
ration. 
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ning on different machines. Data generated on one ma- 
chine had to be shipped in a separate step to another 
machine in order to process it there in an application- 
not to mention services such as directories or transpar- 
ent file access across the distributed computers. (Even 
today, this situation still is very typical for many data 
processing environments of large organizations.) 

The DACNOS prototype was first implemented on 
VM/CMS, VMS, and PC DOS. This prototype has been 
studied extensively and used to build various distrib- 
uted applications. It has also been ported to two more 
operating systems, i.e., AIX on IBM PC RT and IBM 
PS/Z and OS/2 on IBM PS/Z. In this article we discuss 
the fundamental design assumptions of DACNOS that 
reflect our systematic approach to solve the heterogene- 
ity problem as well as our experiences with implement- 
ing a prototype on top of five operating systems. For 
obvious reasons we cannot elaborate on all aspects and 
components of DACNOS in appropriate detail. The 
cited references should provide more information on a 
particular DACNOS subject. The section on “Goals and 
Implications” describes our design goals and con- 
straints. The section on “Architecture” shows how the 
DACNOS architecture reflects these goals. The section 
on “Application Experiences” contains some examples 
for real-life applications that were built on top of DAC- 
NOS. In the section on “Implementation” we discuss 
what it takes to implement DACNOS on a system and 
how easy or hard the portation was for the above- 
mentioned operating systems. We also provide perfor- 
mance data for some scenarios. In the section on “Dis- 
cussion of Related Work” we compare DACNOS to re- 
lated work on heterogeneous distributed systems. The 
last section contains our main conclusions and looks 
toward future extensions. 

GOALS AND IMPLICATIONS 
Resource sharing between heterogeneous autonomous 
computers has been the focus of our research. Fast net- 
working hardware and low-level communication soft- 
ware was available to the academic community on the 
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campus, but it was still a very cumbersome and often 
replicated task to write an application that integrated 
services from several computing devices, although the 
need for such applications seemed to increase steadily. 
Our intention was to provide the programmer of a dis- 
tributed application with convenient system support to 
facilitate the controlled access to distributed computing 
resources-basically the same support he or she is used 
to when writing a local application. This local-system 
paradigm was our guideline for many design decisions. 

Two as-much-as-possible goals stood at the beginning 
of our design considerations: 

(1) the application programmer should not have to deal 
with low-level d’etails of operating systems and 
communication protocols and 

(2) heterogeneity should be handled by the network 
operating system and be hidden from the applica- 
tion programmer. 

In other words, we wanted to provide a high degree 
of insulation from both distribution and heterogeneity. 
These two goals led to the design of an application plat- 
form for programmers of distributed applications. This 
platform is called “Remote Service Call (RSC).” It is the 
key component in the NOS kernel that provides an 
application-oriented (as opposed to a communication- 
oriented) interface to the cooperation of heterogeneous 
computers. How the “application orientation” is re- 
flected in the RSC interface will be shown in the next 
section. 

Since the interconnected computing systems are part 
of many rather independent organizational university 
structures having individual application requirements 
and solutions, (e.g., research institutes, library services, 
and student workstation pools), the following two de- 
sign constraints were significant for the NOS design: 

l do not replace the individual operating systems and 
l retain the autonomy of the involved systems. 

We could not and did not want to (and many com- 
mercial users would agree) enforce a single operating 
system, e.g., UNIX,3 on all machines. (Several UNIX- 
based distributed systems can handle heterogeneous 
hardware architectures [3, 17, 201.) Such a step would 
have made a large base of applications and investments 
worthless. Consequently, our NOS is an add-on to the 
different operating systems that does not interfere with 
existing applications, but makes it feasible to have ac- 
cess to remote resources in formerly only-local applica- 
tions, In many cases this remote access is transparent to 
the application software. (See the section on “Applica- 
tion Experiences.“) 

When cooperating with remote partners, a DACNOS 
node does not give u.p its right to decide autonomously 
about the access and the management of its resources. 
For example, access to a resource has to be granted 

3 UNIX is a registered trademark of AT&T Bell Laboratories. 

explicitly; it can be revoked at any time; and the alloca- 
tion of resources to requestors is completely up to the 
provider of the service. This property distinguishes the 
DAC Network Operating System from many distributed 
operating systems where the nodes relinquish some of 
their control autonomy to become part of a global 
“whole.” The emphasis on autonomy does not preclude 
a DACNOS-wide management support that helps to al- 
locate and control available resources in a desired man- 
ner [7]. It requires mechanisms for access control and 
protection across distributed computers. 

When discussing software add-ons to heterogeneous 
systems: portability must be a design goal-not just for 
applications but also for the NOS software. Besides 
being good software engineering practice, portability is 
essential for a system that is to be ported to many 
heterogeneous computers. In our opinion we could oth- 
erwise not claim to have a systematic approach to over- 
come heterogeneity. To achieve portability one has to 
define a software module structure that clearly isolates 
system dependent and independent components. In so 
doing, the portation effort is reduced to the modifica- 
tion and adaptation of only a few components. A good 
modular structure will obviously also support the man- 
ageability and extensibility of such a rather large soft- 
ware complex. 

ARCHITECTURE 
Cooperation in DACNOS is conceived as client-server 
interactions. Clients and servers reside in logical nodes, 
which are mapped onto the (physical) nodes of the un- 
derlying communication network. A logical node has a 
network transport address and is typically associated 
with an operating system process or process group hav- 
ing a single address space. In VM/CMS each virtual 
machine would be a logical node, while a single-user 
PC is considered a single logical node. In general, a 
logical node corresponds to a user process on a com- 
puter. It is the smallest addressable unit in the trans- 
port system. 

Figure 1 shows the structure of a system with a DAC- 
NOS extension. Applications make use of the host oper- 
ating system services as before and can now access 
remote resources through calls to the NOS System 
Services. Applications may also directly call operations 
offered by the NOS kernel’s interface, i.e., the Remote 
Service Call interface. This is the lowest NOS access 
level. The components drawn below RSC in Figure 1 
are not visible to the “outside.” 

Remote Service Call 
RSC is the platform for distributed cooperation. It is 
coherently accessible on all logical nodes. The RSC in- 
terface is based on a set of objects that represent typical 
operating system primitives, i.e., requests, ports, stor- 
age, and accounts. RSC itself does not provide higher 
level objects like files or a directory, but provides the 
“building blocks” for making such objects accessible 
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and manageable in the heterogeneous distributed envi- 
ronment. The RSC programming interface is a set of 
operations, i.e., high-level language library functions, 
defined for the RSC objects. All operations are per- 
formed by a RSC worker that resides in the logical node 
and manages the RX objects of this node as well as all 
communication required to access objects on another 
node. 

Object sharing is the paradigm for distributed cooper- 
ation using RSC objects. To share an object (local or 
remote), access rights to the object are passed to the 
recipient who may then use the object in a way that is 
completely location, naming, and presentation transpar- 
ent, i.e., just like a shared resource in a local system. 
Again, the local-system paradigm is the guideline be- 
hind the choice of RSC primitives and the object shar- 
ing. The system, i.e., the interacting RSC entities of 
DACNOS, provides the illusion of a single shared global 
object space. 

As an example, consider a typical client-server inter- 
action. The server program creates a port for its service 
and offers this port to certain clients. (Create and offer 
are RSC operations defined for the port object.) The 
port is typed in the same sense possible requests and 
request data formats are specified by the server pro- 
grammer and attached to the port. It is thus the handle 
for an abstract service object. The actual data conver- 
sion is performed transparently by the presentation 
component when the data is sent across the network. 

In order to bind to the service represented by a port a 
client will have to explicitly issue a RSC share opera- 
tion. To send a service request to the server the client 
creates an object called carrier that specifies the request 
and also contains value and reference parameters. Ref- 
erence parameters in RSC are passed as access rights to 
RSC objects. For example, access to a data buffer at the 
client side could be granted with the Carrier for the 
duration of the request. (Data buffers are described by 
windows.) The DACNOS data presentation syntax nota- 
tion comprises mechanisms to specify reference param- 
eters as part of an interface description [6]. The type of 
user data contained in RSC objects, e.g., carrier and 
window, is defined by an attached type description 
string. This is used by RSC to perform the necessary 
conversions. The programmer specifies the data types 
in a language that is an extension of ASN.l [lo]. This 
notation is compiled into a more efficient internal de- 
scription string. 

It is important to note here that the programmer of 
an application will only have to think in terms of 
application-related operations, e.g., create port, share 
port, call service, read data, while RSC transparently 
performs all the required communication, error hand- 
ling, access checks, data segmentation, data conversion, 
and even account management [7]. Shared objects 
make distributed programming “look and feel” like lo- 
cal programming. More information on RSC including a 
detailed description of its objects and implementation 
can be found in [6]. 
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FlGUREl. 
DACNOS Architecture 

Global Transport and Kernel Service Call 
Global Transport (GT) and Kernel Service Call (KSC) 
are those components that serve the portability of RSC. 
The portation of RSC is basically the portation of GT 
and KSC to the target machine. 

GT is the coherent interface for the data transport 
needs of RSC. The network is conceived as a set of 
interconnected islands of homogeneity with proprietary 
internal transport mechanisms. We did not impose a 
less efficient heavy-weight protocol where a specialized 
protocol performs much better. Thus, we use standard- 
ized protocols (OSI/TP-4, TCP/IP) only when a com- 
munication path crosses island boundaries. 

GT basically is a reliable datagram interface to data 
transport between DACNOS logical nodes with a global 
OSI-style addressing scheme. RSC sees a simple “send- 
receive” interface where, for example, sequencing and 
duplication control are not required separately from the 
general error handling mechanisms in RSC. Internally, 
GT might very well use-depending on the transport 
protocol and network-connection-oriented services to 
send the datagrams between the network nodes. RSC, 
however, does not see connections on the transport 
level. 

While GT handles diverse communication environ- 
ments, KSC covers diverse host operating systems. Lay- 
ered communication software typically deals with inde- 
pendent asynchronous events and, therefore, requires 
appropriate operating system support. With KSC we 
created an operating-system independent interface that 
offers communication-software-oriented services such 
as multiple light-weight processes, communication 
within shared memory, synchronization primitives for 
disjunctive multiple event handling, and timer services. 
Popular operating systems differ significantly in how 
much of this support is available and how it is offered 
to the applications. Consequently, the implementation 
efforts for KSC have ranged from “simple mapping of 
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services” to “implementation of a coexistent multitask- 
ing system.” (See the section on “Implementation.“) 

It is interesting to note that KSC is based on the same 
cooperation philosophy as RSC: KSC processes cooper- 
ate through objects in shared local memory, and RSC 
processes cooperate through objects in a (virtually) 
shared global object space. 

System Management Services 
The DACNOS kernel provides communication, syn- 
chronization, and low-level access management support 
for application-to-application cooperation across a het- 
erogeneous network. The DACNOS system manage- 
ment services complement these facilities with user- 
and resource-level services that help to organize and 
control the user access and resource allocation. These 
services are analogous to services in host operating sys- 
tems and have to reside on nodes that are trustworthy. 

The Directory Service maintains, distributes, and pro- 
tects information about network resources and services. 
It also contains a name service that controls the naming 
of resources in the network. The DACNOS directory is 
not specifically tailored for a specific application sce- 
nario, e.g., for message handling or file stores, but aims 
to be a universal directory capable of supporting a wide 
range of applications. An entry in the directory data- 
base is simply a tuple consisting of object name, entry 
owner, and a set of type specific attributes. Access con- 
trol is performed on a per attribute basis by owner- 
controlled access lists [15]. The name space is divided 
into domains of uniq.ue names. A server would register 
its service at the directory specifying some name string. 
The name service part of the directory ensures the 
uniqueness of the name within the server’s domain. 
Clients find out about a service by asking the directory 
for a particular service name. The directory’s response 
contains the network address of a server that offers the 
desired service. Using the service name and network 
address the client establishes a binder to share the 
server port (share operation). After the share has suc- 
ceeded the client will in subsequent operations only 
use the port handle that is a result parameter of the 
Share Port operation [15]. 

The Authentication and Authorization Service (AAS) 
provides for mutual identification of interacting part- 
ners and is a means for servers to control access to their 
services. It is the key component needed to cope with 
the problem of non-secure, freely accessible worksta- 
tions in the network. The authentication is based on a 
password scheme, and it is assumed that a user cannot 
forge his or her transport address. Users have to log-in 
with their AAS before using DACNOS services. Thus a 
“DACNOS user-id” is then correlated with a transport 
address. To check the authorization of a client, servers 
present to the AAS the network address and user-id as 
given in the client request in order to decide about the 
validity of the purported identity [14]. 

The DACNOS Account Service is analogous to the ac- 
counting facilities of a local system. Resource con- 

sumption data is collected within the RSC kernel and 
shipped to the Account Server. RSC has a special 
account object to support these functions. The data pro- 
vides valuable information on the utilization of net- 
work services and can be used in billing for a provided 
service. For example, there are many ways to limit the 
consumption of resources by certain users or user 
groups. A broad discussion of the problems of account- 
ing and billing in heterogeneous environments and the 
DACNOS Account Server can be found in [7]. 

All DACNOS system services described here are dis- 
tributed in a sense that more than one server may be 
involved in order to serve a service request. The reader 
should refer to the cited references to get more infor- 
mation on server interaction and protocols. On top of 
the management services there are applications that are 
also considered DACNOS system services. These serv- 
ices, e.g., Remote File Access and Remote Execution, 
provide access to shared resources. They are discussed in 
the following section. 

In a distributed system, more and new types of fail- 
ures are possible than in the local case. DACNOS tries 
to assist the application programmer-as far as possi- 
ble-in the handling of unexpected events. The repre- 
sentation of an invocation as a carrier makes the rela- 
tions between remote cooperating components explicit 
to the RSC kernel. A watchdog process inside the RSC 
kernel periodically checks the availability of the re- 
mote partners by sending probe messages. Loss of con- 
nection to a node and loss of a service will thus be 
detected. Failures are reported to the waiters on a car- 
rier or a port by terminating their wait-state with a 
special return code. It is then the responsibility of the 
application to react reasonably within its context. 
Mechanisms for the coordination of distributed transac- 
tions are known and could be integrated into RSC. 
Nevertheless, the applications would have to be written 
to support a transactional behavior. 

APPLICATION EXPERIENCES 
Two operating-system related services were developed 
partly in parallel with the DACNOS kernel: Remote 
File Access and Remote Execution. Both provided feed- 
back on the design of RSC and its interface. This feed- 
back helped to improve its functionality and interface 
style. 

Remote File Access 
Remote File Access (RFA) is a global, homogeneous file 
system for heterogeneous networks that provides trans- 
parent access to remote files [8]. According to our au- 
tonomy and transparency objectives, we do not replace 
any local file system, but accommodate the global RFA 
file system in the diverse local file systems. The RFA 
file system is partitioned into multiple RFA file servers, 
each being responsible for a subset of RFA files and 
RFA clients that mediate the user access to RFA. The 
running prototype supports sequential record-oriented 
files. 
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RFA servers use the local file systems of the host 
operating systems. This technique minimizes the effort 
needed to port RFA servers to different operating sys- 
tems. It also allows existing local files to be made avail- 
able globally without copying (“publish”), thus allowing 
easy exchange of files between RFA and the local file 
system. Published local files should not be modified 
without RFA; otherwise their global consistency can 
not be guaranteed. The RFA client software is an ex- 
tension and in some cases a modification of the local 
operating system. The extension offers access to the 
global RFA files through procedure and command in- 
terfaces. The modification opens the local file system 
interfaces for the global RFA files. It intercepts calls to 
the file system and re-routes them if necessary. Sets of 
global files can be bound (“mounted”) into the local file 
system as “virtual volumes.” Global files can be ac- 
cessed transparently via their local aliases in the same 
way as local files, and existing application programs 
may use global files without any change in the applica- 
tion code. This again is in line with our local-system 
paradigm. 

The file naming structure of the global file system is 
hierarchical. Publication of a file at a file server in- 
cludes assigning a global name to the published file. 
Similarly, binding a file into a local file system involves 
naming the file according to the local naming structure. 
Name mapping is assisted by user selectable default 
rules that can cover the most frequently used transla- 
tions. 

RFA uses RSC for cooperation between distrib- 
uted RFA clients and servers. For example, an RFA 
file server offers a main port for “Open File” and 
maintenance-related requests. A private port together 
with a private server process is then created for each 
opened file. This port is shared with the client who 
uses it to access the file contents. These two reports 
differ in their visibility. The file server port is accessi- 
ble to the public according to the defined access rights, 
yet an open file is a private matter between the client 
and the server. File data is exchanged between client 
and server using a shared RSC window object with the 
appropriate data description attached. Client and server 
only “read” or “write” to the arbitrarily sized window, 
while RSC handles the segmentation access control and 
the communication and conversion. 

The mapping of open files to a port and a separate 
process has several advantages. The file server need not 
be concerned with dispatching. If multiple requests 
queue up, RSC contains the mechanisms to ensure a 
fair distribution of the file service among the clients. 
Authorization checking takes place during open time. 
For subsequent calls to the private port, the server can 
rely on the authorization of the caller. It is easy to add 
file service specific accounting to a server. Since the 
service providing process runs under the account of the 
clieni, this process can be charged for any desired ac- 
count units. RSC and the accounting server collect the 
bills for the client process. 

As to the implementation of RFA it is obvious that 
portability can only be limited since RFA client and 
server software anchor deep in the different host file 
systems-though they do not hinder the local function- 
ality. Nevertheless, many RFA modules are portable 
based on the common programming language C and the 
RSC support. RFA clients with transparent remote file 
access are available for VM/CMS, VMS, and PC DOS. 
Designs for AIX and OS/Z have been done, but not yet 
implemented. 

As mentioned before, RFA had influence on the RSC 
design. For example, a window’s data format descrip- 
tion originally was statically defined where the window 
was created. This was insufficient in cases where the 
client creates a data window in his virtual memory 
without knowing the actual record structure of the 
window that the server would use to write the file 
data.The server did not have means to specify data 
formats for the retrieved data whose structure was not 
known a priori to the client. This was changed in a way 
that one side can create a window with a wild-card 
data format description, which allows a sharer of the 
window to provide the structure information. 

RSC has matured to become a powerful and conven- 
ient base for complex applications like RFA. Some of 
the advantages of using RSC for RFA are as follows. 
There is no need to design protocol elements for au- 
thorization, accounting, node failures, time out, or any 
other aspect of remote communication. This makes the 
interface design much easier and increases its stability. 
The data presentation functions of RSC are flexible 
enough to handle headers or trailers of variable length 
records transparent to RFA, i.e., without the need to 
reformat or mark retrieved data. Furthermore, the RSC 
window object is not only convenient, but also allows 
for transparent data transfer optimizations, e.g., a bulk 
transfer protocol is applied whenever it seems to be 
appropriate. This is transparent to the application that 
uses only Read window and Write window operations. 

Remote Execution 
The DACNOS Remote Execution Service (RES) [19] en- 
ables the sharing of programs located on remote com- 
puters. The aim was to build a natural and rather trans- 
parent extension to the invocation of local programs. 
Total transparency for remote execution is almost im- 
possible to achieve in such an inherently heteroge- 
neous environment, and we did not try to push the 
transparency limits. Rather, we wanted to provide a 
remote execution service that looks very familiar to the 
user. 

Commonly, programs are designated by names. The 
user interface for starting a program has been extended 
such that the user can optionally append a server name 
to the program name where the program is to be exe- 
cuted. If no location is given with a program name the 
RES client part inquires at the directory service where 
this program is offered. The directories contain infor- 
mation about which programs are available on which 
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computers. The user can specify a directory search 
scope in order to limit the search to certain nodes or 
domains, If a potenti. location was found, the execu- 
tion request is sent to the given RES server. 

Executing programs will require additional input and 
will output results. File access of a remote program is 
handled by the DACNOS RFA component. Thus, the 
remote program runs with the current working file di- 
rectory of the user that requested the execution. All 
terminal I/O is intercepted and forwarded to the client 
and server side, respectively. 

RES places only simple requirements on the data pre- 
sentation since terminal I/O contains characters only, 
and other data access is handled by RFA. During the 
development of RES, it was evident that the design and 
implementation of interactions between clients and 
servers based on the RSC platform (plus RFA) was al- 
most trivial compared to the mastering of interceptions 
for terminal I/O and commands. These interception 
routines are obviously system dependent and not porta- 
ble. Most of the rest of RES is portable. It has been 
implemented for VM/CMS, VMS, and PC-DOS (client 
only). 

Database and Computation Server 
To learn about the “ergonomics” of RSC and for demon- 
stration purposes, remote access to an SQL database 
[23] and a high-precision numerical subroutine library 
were developed by summer students. In both cases, 
most of the design and all of the implementation was 
done by the students who had some programming ex- 
perience but no DACNOS knowledge. 

Within a few weeks after they had gained sufficient 
knowledge about the sub-systems to be accessed, they 
completed the implementation of a framework for the 
remote access using RSC objects with character data 
only and simulated access to the database or library. 
Without RSC this certainly would have required much 
more time in order to learn about the various inter- 
faces, to develop the application and to debug it. Add- 
ing support for other data types took a matter of days. 
In both cases the client components were ported to all 
DACNOS systems. This was no effort at all, since the 
clients did not call any machine specific functions (only 
common C functions); and distributed cooperation was 
based on RSC. 

IMPLEMENTATION 
The design and implementation of DACNOS was a joint 
effort of researchers at the University of Karlsruhe and 
IBM. The project duration was limited to four years. All 
together it took an estimated 40 person-years to build 
the prototype as it is today. 

All of our code has been written in the programming 
language C, except For some low-level KSC routines, 
which were better done in assembly language. Al- 
though the various implementations of C on heteroge- 
neous machines have their compatibility problems, e.g., 

order of bit fields, alignment of structures and unions, 
default types, sign extension for shift operations, it was 
certainly the best available choice. It made our soft- 
ware highly portable, as long as certain conventions 
and rules were obeyed. A few numbers on the amount 
of code produced for the NOS kernel (excluding the 
DACNOS System Services) shall illustrate the develop- 
ment work: the KSC component (for VM/CMS) has 
about 7,000 lines of code, half C and half assembly 
language. The GT for VM/CMS consists of 6,500 lines 
of C code. Both figures vary depending on the host 
operating system. The NOS kernel, i.e., RSC including 
the data presentation, has roughly 55,000 lines of code 
and occupies 16oK bytes of memory under VM/CMS. 

Consequently, our NOS is an add-on to the 
different operating systems that does not 

interfere with existing applications, bet makes 
it feasible to have access to remote resources 

I 

Host system dependencies of the RSC code are all com- 
pletely separated into a collection of files, which have 
to be adapted when porting RSC. 

KSC Implementation 
As outlined in the section on “Architecture” KSC pro- 
vides a coherent, communication-software-oriented 
surface on top of the host operating systems. It offers, 
among other facilities, light-weight processes sharing an 
address space. The portation of RSC is basically the 
portation/implementation of KSC. The amount of work 
varies depending on what is available in the host oper- 
ating system. 

For DACNOS on VM/CMS, each virtual machine 
(VM) is a “logical node” and represents an independent 
RSC entity with several internal and potentially many 
user-defined processes. We therefore had to add a 
transparent, coexistent, light-weight multitasking sys- 
tem to a VM, which originally did not offer support for 
multiple processes. It is important to note that KSC 
must not interfere with existing applications. Before 
KSC is added, the “CMS user process” is the only active 
thread in the VM. With KSC this view of the machine 
is still supported, but it is possible to create additional 
threads and thus multiplex the VM. 

For VAX/VMS a logical node corresponds to a VMS 
process. With KSC this process can be split up into 
light-weight processes that share its address space. This 
implementation is analogous to the VM/CMS version, 
i.e., a VM in VM/CMS corresponds to a VMS process. 
The AIX version of KSC is also along this guideline [16] 
whereas OS/Z offers suitable facilities (light-weight 
multitasking with shared memory) that make the im- 
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plementation of KSC basically a functional mapping. l For two PC/AT personal computers on a token ring 
PC DOS was important for us as a widely available 

low-cost system. A PC was considered a single logical 
node in DACNOS. KSC was implemented by mapping 
the KSC process constructs onto a multitasking system 
that was internally available in IBM for the PC. Al- 
though this was relatively easy, the PC eventually gave 
us a hard time because of memory size restrictions and 
lack of memory protection. Though we succeeded to 
port DACNOS to PC DOS and implemented the trans- 
parent Remote File Access client in the PC file system, 
the applicability of DACNOS on a PC is rather limited 
due to the severe lack of memory. DACNOS plus the 
RFA client leave free less than 70K of the 640K main 
memory of a fully equipped PC. We did not investigate 
the use of extended memory under DOS, which might 
give some relief from the storage problem, but still does 
not cure the lack of protection. Since OS/Z and AIX 
became available and better exploits the increased 
power of workstations, we did not further invest into 
the PC DOS version of DACNOS. 

the empty request took 165 msec to complete, and 
PC to IBM 4361 host via token ring and gateway took 
345 msec. 

When more user data is sent with the request the 
execution time is the sum of the above-fixed amount 
for the empty request plus an increase proportional to 
the speed of the communication link. 

We were also very much interested in the overhead 
introduced by the DACNOS kernel compared to the 
basic, unenhanced inter-process communication facili- 
ties of the host system. This is best expressed in the 
approximate number of machine instructions. For a 
round trip request the RSC client performs 6,000, the 
server side 8,000 instructions. GT (including KSC, but 
excluding the transport protocol itself) adds another 
1,500 instructions for a send operation and 6,000 for 
receive. For the above-mentioned scenario with the 
client on an IBM 4361 (1.5 million instructions per sec- 
ond (Mips)) and a server on an IBM 3083 (5 Mips), this 
amounts to rouahlv 12 milliseconds for RSC and GT. a 

Performance 
Performance has always been a high priority design 
goal for DACNOS. (Highest priority was to find a sys- 
tematical and general solution for heterogeneity in dis- 
tributed systems.) Given the DACNOS constraints and 
network environment our design could not exploit 
some of the mechanisms and techniques that have fre- 
quently been used in other projects on distributed oper- 
ating systems. For example, the DACNOS network may 
consist of a variety of interconnected local area net- 
works and point-to-point lines with very diverse perfor- 
mance and reliability characteristics. The “cost” of a 
message is quite high. Therefore, extensive use of mul- 
ticast or broadcast was impossible, and we tried to min- 
imize the number of protocol messages without sacrific- 
ing functionality. Another example is the KSC, which is 
added on top of the host operating system. This ob- 
viously limits the KSC performance to the performance 
of the underlying general purpose system and is hardly 
comparable to an approach that builds a kernel directly 
on the bare hardware. These approaches make different 
assumptions and aim at different goals than DACNOS. 

We measured the performance of selected RSC inter- 
actions involving various machines and communication 
links. The host measurements were taken during regu- 
lar daytime use with light to medium load on the hosts. 
Some examples: 

number we were quite satisfied with. If both client and 
server are located on the 4361 and only VM/CMS in- 
ternal communication is used, the processing for RSC 
and GT takes roughly 20 msec and process switches, 
interrupt handling, and data copy operations, take the 
rest, i.e., 30 msec. 

DISCUSSION OF RELATED WORK 
In this section we restrict our discussion to related 
work that concentrates like DACNOS on adding solu- 
tions for heterogeneity and distribution to existing com- 
puting environments. We do not discuss distributed op- 
erating systems like Mach [l] or Locus [20], which can 
also work on heterogeneous hardware, but are built on 
the bare hardware. They are not meant to coexist with 
a local host operating system. Here we will discuss sys- 
tems that are extensions to existing host operating sys- 
tems 

Cooperation in heterogeneous distributed environ- 
ments is facilitated by introducing a unified view onto 
the heterogeneity that is an abstraction from the given 
dissimilarities. Several locations for such an abstraction 
layer are conceivable. For the application programmer 
using DACNOS this abstraction is given at the RSC 
interface. (Other internal abstraction levels are the KSC 
and GT interfaces. These facilitate the portation of 
DACNOS, but are not seen by the “RSC programmer.“) 
The RSC cooperation facilities, i.e., the RSC objects and 
operations, are coherently supported by all DACNOS 
nodes and were designed analogous to the facilities of a 
local operating system. 

l The measured round trip time of an empty request 
between two VMs on an IBM 4361 was 50 millise- 
conds (msec). About the same time was observed on a 
VAX 8600. 

l The same request between two VMs on two separate 
IBM/370 machines (4361 and 3083) connected by a 
64K bits-per-second link using a proprietary protocol 
took approximately 125 msec, yet it took 210 msec on 
two VAXs (8600 and 8300) with VMS connected by 
an Ethernet and DECnet protocols. 

Another approach is to move the unification layer 
into certain “key” applications. In HCS [18] “key facili- 
ties,” i.e., remote procedure call (RPC), naming and 
binding, are made compatible (or newly created, if not 
available) across the various types of systems. On top of 
these facilities common services are implemented that 
are considered most important: file store, mail, printing, 
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and remote computation. In HCS, heterogeneity is 
“accommodated” into certain services, but it is “ab- 
stracted” in DACNOS at the operating system level. 

A project that shares the emphasis on heterogeneity 
and the need for a comprehensive solution with DAC- 
NOS is Cronus [21]. Object orientation, the integration 
of access protection into the kernel, a network indepen- 
dent transport interface, software portability, and oper- 
ating system add-on rather than replacement are com- 
mon properties for both systems. Though the design 
objectives are very similar, there are a number of dif- 
ferences in the approach and the implementation. For 
example, the Cronus object is on another level than the 
basic “building block” objects of RSC. There are object 
managers for each type of Cronus object while there is 
only one RSC entity that manages the objects of an RSC 
node. Cronus objects can be replicated and can migrate, 
which requires extensive use of group-and multicast 
search operations. Therefore, it is practically essential 
to have adequate communication support, i.e., a fast 
LAN with broadcast capabilities, RSC objects cannot be 
moved or replicated. The RSC protocol does not use 
broadcast or multicast facilities, although the DACNOS 
Directory and Orientation Service occasionally will 
have to issue search operations. Cooperation under RSC 
is based on the object sharing paradigm: the program- 
mer thinks in terms of sharing objects just as in the 
local case, and message passing is the implicit mecha- 
nism used to implement such an “illusion” in the dis- 
tributed environment. In Cronus, cooperation is 
achieved using explicit message-passing primitives and 
the interaction style is much more communication- 
oriented. 

Sun RPC [24] and Apollo NCS [2] are representatives 
of Unix-based RPC packages. Both use the services of 
the underlying host operating system and transport 
service and support heterogeneity. In NCS, client and 
server stubs are generated automatically by a compiler 
from interface descriptions written in a “Network Inter- 
face Description Language.” The Sun RPC only provides 
an extensible set of library routines for the marshalling 
and demarshalling of parameters. It is the responsibility 
of the application programmer to make the appropriate 
calls. In DACNOS, the invocation of remote operations 
is done by sending an RSC carrier. RSC, however, sup- 
ports a different, more flexible and powerful interaction 
model. Requests are associated with carrier objects that 
may contain data values and object references as pa- 
rameters (see the section on “Architecture”). Sending a 
carrier is an asynchronous operation. Therefore, clients 
may have several carriers outstanding and may selec- 
tively wait for their completion. Servers may receive 
and work on multiple requests simultaneously. The 
carrier also contains automatically appended informa- 
tion for system management purposes, e.g., authoriza- 
tion, accounting, and dispatching priorities [7]. In all 
three systems various services are built on top of these 
communication kernels. Their differences are not dis- 
cussed here, because the major focus of this article is 
on the kernel of DACNOS. 
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There are also language-based approaches to conquer 
heterogeneity. In DAPHNE [13] coherence is achieved 
at the programming language level. Components of a 
program can easily be distributed for execution on dif- 
ferent nodes of a heterogeneous network. The means 
for cooperation between the distributed components is 
a Remote Procedure Call (RPC) that is adapted to han- 
dle the heterogeneity. It is supported by a stub genera- 
tor and appropriately modified run-time environment. 
In [5] a programming language (Network Command 
Language (NCL)) was defined for the description of re- 
mote service requests. Using Pre-defined function li- 

Our main goal was to provide system level 
support that takes most of the burden of 

distribution and heterotteneity away from the 
programmer at a distributed application. 

braries and additional server specific functions NCL 
expressions are created and shipped to a server. (A ca- 
nonical data representation solves the data incompati- 
bility problem.) With command language expressions, a 
client can “program” the server to perform a sequence 
of functions in a single request avoiding the overhead 
of multiple remote procedure calls. 

We would also like to mention two other very promi- 
nent attempts at mastering heterogeneity: Open Sys- 
tems Interconnection (OSI) and IBM’s Systems Applica- 
tion Architecture (SAA). OS1 defines standards for the 
communication between heterogeneous computer sys- 
tems [9]. The set of standards is still evolving. Only 
lately, efforts have been started to define a platform for 
distributed applications that goes beyond the mere 
communication aspects of distributed processing [ll]. 
DACNOS is considered one of the prototypes for a sup- 
port environment for ODP, which is being developed by 
the European Computer Manufacturers Association 
(ECMA) [4]. The ODP activities will produce a refer- 
ence model about how to integrate and describe the 
various aspects of distributed computing like communi- 
cation, directories, security and management. Such a 
framework, however, will not provide specifications for 
the implementation on a real system or portability con- 
siderations, i.e., problems that were solved in DACNOS 
and related research projects. 

SAA is a software architecture for the development 
of consistent applications across the major IBM comput- 
ing architectures [25]. SAA specifies common interfaces 
and conventions for user access, communication, and 
programming on dissimilar operating systems. Benefits 
of such an architecture will be easy migration between 
systems, the portability of software, and the elimination 
of redundant development efforts. DACNOS has tackled 
the subset of the SAA objectives, which are related to 
distributed processing in a slightly different, historically 
grown, mixed vendor computing environment. Never- 
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theless, the DACNOS prototype demonstrates not only 
the feasibility but also the potential benefits of SAA 

PI. 

CONCLUSIONS AND OUTLOOK 
The motivation for DACNOS stemmed from the de- 
mand for resource sharing in historically grown hetero- 
geneous computer networks and the fundamental lack 
of appropriate support for such applications. Our main 
goal was to provide system level support that takes 
most of the burden of distribution and heterogeneity 
away from the programmer of a distributed application. 
The DACNOS prototype demonstrates the feasibility of 
such an approach. 

complexity for the system designer whereas the non- 
canonical approach shifts some of the complexity to the 
application programmer with all the potential pitfalls- 
and some potential performance and optimization ben- 
efits. The DACNOS prototype, however, demonstrates 
that a functionally complete, more complex kernel can 
still perform very well. 

Feedback from applications on DACNOS has pro- 
vided us with valuable insights into our design deci- 
sions. The more general observations are: First, we 
have found that the “remote-like local” design principle 
makes the interfaces easy to comprehend for applica- 
tion programmers. This familiarity speeds up the devel- 
opment process and increases the productivity. Second, 
the integration of access and access management into 
the kernel relieves the programmer from explicitly 
dealing with much of the (in one way or another) re- 
quired access management. Separating management 
functions and shifting them into the NOS kernel avoids 
costly “reinventions of the wheel.” Third, the RSC ob- 
ject interface has proven to be a functionally complete 
“application-enabling” interface. This style of interface 
is not necessarily tied to the current implementation 
of DACNOS. 

The DACNOS development has taught us that in or- 
der to manage the complexity of a design effort it was 
extremely helpful to have a clear initial design guide- 
line, i.e., in our case the local-system paradigm. This 
brought orientation in the early stages of the design 
process. It also brought consistency as we went along 
with the system design. And it helped to structure the 
intially huge problem space. No one does it completely 
right the first time. So it is almost needless to say that 
we would make several technical modifications and ex- 
tensions if we had to do it again. None of these, how- 
ever is related to our overall approach and design phi- 
losophy. 

We could well imagine having such an enabler for 
distributed applications on top of other data transport 
environments, possibly implemented on a kind of host 
operating system support other than KSC. We claim 
that transport level primitives are too low-level for ap- 
plication programmers while the remote procedure call 
unnecessarily imposes a certain programming style that 
is often inadequate and sometimes cumbersome for the 
cooperation of independent networked processors. RSC 
is located somewhere in between the two offering an 
application-oriented abstraction that integrates commu- 
nication as well as management functions. Finally, on a 
platformlike DACNOS application programs are poten- 
tially portable whether or not their scope is only local 
or remote. This clearly goes beyond the mere ability to 
communicate with other heterogeneous systems by us- 
ing standardized communication protocols. DACNOS 
has most of the functionality that is being discussed in 
OS1 standardization activities; plus, it presents a solu- 
tion for system integration and Software engineering 
problems. 

For example, we underestimated the problems of co- 
ordinating software development, versions, and mainte- 
nance on different computers by several people at dif- 
ferent places. Usage of a software control system from 
the beginning of the project would have helped to elim- 
inate several misunderstandings, incompatibilities and 
duplicated efforts caused by version-handling errors. 
We now think that CASE tools should be integrated 
into the development and implementation process. The 
implementation work of the DACNOS kernel was 
structured vertically, i.e., responsibilities were divided 
by the type of the computer system. Thus, the devel- 
opers had to know internals of all kernel components. 
A horizontal structure would assign responsibility by 
component. This requires the developer to know sev- 
eral systems, but system interfaces are stable compared 
to the internals of software components under develop- 
ment, Therefore, a horizontal structure is potentially 
more efficient. KSC was designed to isolate local operat- 
ing system dependencies from the rest of the DACNOS 
software. Full screen input and output to the user’s 
terminal were not included. We underestimated its im- 
pact on the structure and portability of reapplications. 
Today, we would consider the integration of an existing 
window-oriented interface into KSC. 

The development of DACNOS is basically finished. 
The prototype is in use at various locations outside of 
the IBM ENC. It was selected as a development basis.for 
distributed applications because of its unique function- 
ality and flexibility. Among the external users are two 
European universitities and an European RACE project. 
So far, user reaction is very positive. 

Such a comprehensive support is not free. The com- Our experiences with usability and performance 
plexity of the NOS kernel’s design and implementation were confirmed. Currently, there are not enough users 
is higher than for approaches that run under the “keep to publish statements on the scalability of our design. 
it simple” mode. Less functionality in the kernel, how- We intend to provide such data in a future report. 
ever, tends to lead to replication of development efforts, There are still some activities going on to complete the 
less coherency between components, and thus, poten- portation of DACNOS System Services to the operating 
tially reduced interoperability. Enforcing mechanisms systems AIX and OS/2. We see opportunities for fur- 
in the kernel is the canonical approach with a higher ther extensions to DACNOS-like transactions, fault- 
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tolerance, support for distributed debugging, and sup- 
port for distributed applications that incorporate multi- 
ple information media like data, voice, and video. It is 
unclear to us what kind of system support suits the 
programming of these applications and whether DAC- 
NOS can be useful as a starting point for such a system 
support. These questions will be the focus of our future 
research. 
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