
Partial Task Assignment of Task Graphs under
Heterogeneous Resource Constraints

Radoslaw Szymanek
Radoslaw.Szymanek@computer.org

Krzysztof Kuchcinski
Krzysztof.Kuchcinski@cs.lth.se

Department of Computer Science, Lund University
P.O. Box 118, SE 22100 Lund, Sweden

ABSTRACT
This paper presents a novel partial assignment technique
(PAT) that decides which tasks should be assigned to the
same resource without explicitly defining assignment of these
tasks to a particular resource. Our method simplifies the
assignment and scheduling steps while imposing a small or
no penalty on the final solution quality. This technique is
specially suited for problems which have different resources
constraints. Our method does not cluster tasks into a new
task, as typical clustering techniques do, but specifies which
tasks need to be executed on the same processor. Our ex-
periments have shown that PAT, which may produce non-
linear groups of tasks, gives better results than linear clus-
tering when multi-resource constraints are present. Linear
clustering was proved to be optimal comparing to all other
clusterings for problems with timing constraints only. In
this paper, we show that, if used for multi-resource synthe-
sis problem, as it is often used nowadays, linear clustering
will produce inferior solutions.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided
Design

General Terms
Design

Keywords
constraint logic programming, task assignment, scheduling

1. INTRODUCTION
System synthesis is a design step which maps an initial

specification into given architecture and decides its sched-
ule. This can be done using task assignment and scheduling.
During this step it is important to have an accurate model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0001 ...$5.00.

C3

T2

C2

T4

C1

T3

T1(1kB, 3kB)

(1kB, 3kB)

(3kB, 1kB)

(3kB, 1kB)

Figure 1: A task graph for the motivational example

with a good abstraction level. It is often the case that an ap-
plication is modeled using a coarse grain model which results
in limited optimization possibilities. On the other hand, fine
grain model can result in prohibitive large run-times where
much time is spend on analyzing parts of the design search
space which can give no or insignificant improvements to the
final solution. Therefore, the designer should have possibil-
ities to specify an application at a proper level and, only
when run-times of the synthesis tools are of concern, the
design space reduction methods should be used.

In this paper, we present a novel method called partial as-
signment technique (PAT). PAT is able to improve efficiency
of an assignment and scheduling as well as quality of the final
results. This is possible since the complexity of assignment
and scheduling problems require use of heuristics.

The complexity of task assignment and scheduling for het-
erogeneous architecture increases significantly when memory
constraints are considered. These constraints define mem-
ory requirements for tasks and communications and there-
fore influence task assignment and scheduling decisions. The
data memory aspect in embedded systems is especially im-
portant for signal and image processing applications which
deal with enormous amounts of data. New synthesis meth-
ods are required to cope with these constraints efficiently.
All techniques for reducing the search space without loosing
(near)optimal solutions should be explored and our partial
assignment technique is one of them.

The aim of this work is to develop efficient techniques for
an embedded system synthesis tool that accepts system ar-
chitecture description and an application specification given
as a task graph and produces constraints which will reduce
complexity of the assignment and scheduling. We assume
that an application, specified in C-like language, is com-
piled into an acyclic task graph annotated with estimates of
execution time, code and data memory requirements. PAT
uses this task graph, generated from the original specifica-
tion, as input. Therefore, the fine grain task graph can be
used, which gives full optimization potential, but possibly
long run-times of synthesis tools.

The rest of this paper is organized as follows. Section 2

244

15.1

P2P1
B1

Figure 2: Target architecture

motivates our work through an example. In section 3, we
outline related work in this area. Section 4 briefly presents
our synthesis system MATAS system. Section 5 describes
our partial assignment technique while section 6 presents
experimental results. Finally, section 7 concludes the paper.

2. MOTIVATIONAL EXAMPLE
Consider a task graph depicted in Figure 1. This task

graph consists of four tasks, T1, T2, T3, T4, depicted as
ellipses and three data transfers between these tasks, C1,
C2, C3, depicted as boxes. The code memory requirement
for processor P1 (P2) for each task is represented as first
(second) number in parentheses next to each task.

The data memory is used to store local data as well as
input/output data (transmission buffers). Each task needs 4
KB of data memory during its execution. The data transfers
between tasks send 2 KB of data. Each processor is equipped
with 3KB of code memory and 8KB of data memory.

The goal of system synthesis is to make assignment of
tasks to processors and schedule all tasks and communica-
tions. The resulting assignment and schedule should have
minimal deadline and fulfill code and data memory con-
straints. The problem can be solved using constraints pro-
gramming over finite domain [6]. In this constraint pro-
gramming approach we first specify decision variables and
constraints over these variables and then solve constraint
problem by assigning values to the decision variables. In
the process of variable assignment the constraints propagate
changes and reduce the search space. Different assignment
methods can be used. In this paper, we use our own heuristic
since branch-and-bound methods can be used for relatively
small size problems only.

In our example, each task Ti has two decision variables,
namely STi and PTi, which denote task start time and pro-
cessor assigned for a given task. All these decision variables
are represented by finite domain variables (FDV). In our
problem, decision variables STi have a finite domain and
can take a value from range 0 ms to 10 ms. Processor as-
signment variables, PTi, have value 1 or 2, which denote
a processor number for execution of a given task. There
are also decision variables for communications in addition
to task related decision variables. Each communication Ci
has its start time and duration denoted by SCi and DCi.

When all decision variables and their domains are speci-
fied, we need to state all constraints which must be satisfied
in the final solution. In our example, we have typical prece-
dence constraints between tasks and communications as well
as resource constraints for processors and buses. We also
have code memory constraints which ensure that there is
enough memory on each processor for assigned tasks. Fi-
nally, data memory constraints ensure that enough data
memory is available for communication buffers and for local
data of tasks [8]. For example, precedence constraints are
defined as inequalities and for task T1 and communication
C1 they are specified as ST1 +DT1 ≤ SC1, meaning that the
time of start of communication C1 must be at least equal
the time when task T1 finishes its execution.

The specification of these constraints will already restrict
some values of FDV’s. However, most of FDV’s will still
have more than one possible assignment. During search pro-
cedure different values of FDV’s are evaluated until a valid
assignment of values to FDV’s is found. Our technique re-
duces the number of possible values of FDV’s. Therefore it
speeds up, the most time consuming step, search procedure.

Consider a target architecture as depicted in Figure 2. It
consists of two processors connected by a bus. There are
few valid task assignments and schedules for a task graph
depicted in Figure 1. An optimal schedule of a given task
graph is presented in Figure 3. This schedule requires only
C2 communication to be scheduled on the bus and therefore
reduces bus utilization and memory requirements. Tasks T1
and T4 as well as T2 and T3 communicate using their local
memories and additional memory buffers for communication
need to be assigned only for communication C2, between
tasks T2 and T4. Additional constraints, identified by PAT,
PT1 = PT4 ∧ PT2 = PT3 are added to enforce that these
tasks are executed on the same processor, and durations of
communications are zero DCT1,T4 = 0∧DCT 2,T3 = 0. These
constraints facilitate achievement of good quality schedules
under all resource constraints. They do not define the final
assignment but state that selected tasks need to be executed
on the same processor.

Consider a chain of assignments of a value to a FDV which
needs to be made to arrive to the final solution as presented
in Figure 4. Each of these assignments can be illustrated
as a decision node (e.g., in branch-and-bound algorithm)
annotated with the number of possible decision branches.
Our PAT reduces the search space by reducing the number of
these decisions. This is depicted, for our example, by smaller
numbers in parentheses next to PT3 and PT4 nodes. These
two nodes represent decisions on which processor tasks T3
and T4 are executed. In addition, since two communications
are done locally the number of possible decisions at SC1 and
SC3 nodes is also reduced.

For this particular example, an efficient linear clustering
is not possible. A clustering of tasks T1 and T4 as well as
T2 and T3 produces two new clustered tasks. All valid as-
signments and schedules of these clusters result in executing
cluster containing tasks T2 and T3 first and then cluster
of tasks T1 and T4, thus producing an inefficient solution.
Other clusterings will violate code memory constraints.

P2

B1

P1 T4

T3

0ms 4ms 6ms

T1

T2

time

re
so

ur
ce

2ms

C2

Figure 3: Possible schedule

2 (1)2 (1)

6 (6)6 (1)6 (6)

Sol

2 (2) 2 (2)

6 (1)

6 (6) 6 (6)

PT1 P P P

SSSS

S S S

T2 T3 T4

T1T2C1C2

C3 T3 T4

6 (6)

Figure 4: Search Assignment Ordering

245

3. RELATED WORK
The related work which tries to reduce the size of the prob-

lems for different synthesis activities, such as assignment and
scheduling, usually concentrates on clustering. This tech-
nique tries to select tasks which are close to each other and
builds a new task which contains all selected tasks. Our
method is different since it does not build new tasks but
instead adds new assignment constraints.

The work presented in [5,7,10] concentrates on paralleliza-
tion of software systems in multiprocessor homogeneous en-
vironment through usage of clustering techniques. These
techniques reduce also the complexity of the assignment
problem but they actually change the input problem since
they create new tasks to represent clusters. They have also
assumed a number of restrictions. For example, they can-
not cluster an application into a given number of clusters or
they ignore network contention.

Mapping of heterogeneous task graphs into heterogeneous
architectures was addressed in [3]. The core assumption of
this work is that a speed of all processors is equal to a base-
line processor speed multiplied by a constant. Both the ap-
plication task graph and the architecture task graph are clus-
tered separately. This clustering produces two multi-layer
clustered graphs, which levels are later matched against
each other. The clustering of the task graph examines first
fork nodes. Afterwards remaining tasks are considered and
added into the existing layered graph. They claim that map-
ping complexity is reduced without loss of quality due to a-
priori multi-layer clustering of task and architecture graphs.

The critical path-based clustering procedure was presented
in [1]. It takes into account different execution time of tasks
depending on the processor. However, it does not consider
code and data memory during clustering. It creates clusters
of tasks which need to be later executed as single tasks.

Our approach makes it possible to obtain complexity re-
duction of assignment and scheduling problem for the het-
erogeneous architecture in the presence of multi-resource
constraints. All of the mentioned approaches addressed a
simple case when the only resource is time. Our method
does not simplify the architecture by introducing one ho-
mogeneous communication structure or homogeneous com-
puting environment. We also do not assume that there is
a speed factor to which the speeds of all processors has to
be referred to. Our approach does not produce clusters, it
produces constraints which reduce the possible assignment
of tasks to processors. In addition all clustering approaches
which do not create linear clusters run into a danger of cre-
ating designs which will eventually deadlock [5]. Our ap-
proach avoids deadlocks since it does not cluster tasks but
constraints task assignment within a group of tasks.

Traditional clustering combines tasks into a new task which
is later treated by synthesis method as an ordinary task. The
theoretical work on clustering proves the superiority of lin-
ear clusters [4]. This does does not apply here since we have
not only timing constraints but also code and data memory
constraints. The task assignment and scheduling for such
systems are closely coupled problems that they should be
solved together. This is enabled by our methodology.

4. MATAS
The proposed framework has been written entirely in Java

and it uses our own JaCoP (Java Constraint Programming)

Constraints
Problem

SolutionMATAS
Constraints

Partial Assignment

PAT

Figure 5: MATAS framework and PAT

engine to model and solve synthesis problems. The impor-
tant advantage of our approach is the gradual refinement
of the model through addition of new constraints. Since
the system can handle heterogeneous constraints, the re-
finements can be very specific. In particular, constraints
can specify on which processor a task should be executed,
based on the assignment of other tasks. They can also spec-
ify which communications need to be local. The addition
of new constraints (refinements) decreases the search space
by making selected decisions explicit to the solver. This
decreases the number of search nodes or removes some of
the branches in case of branch-and-bound search algorithm.
Note, that in our case we do not use branch-and-bound al-
gorithm but decisions made by our heuristic are simplified.

In our approach, JaCoP (a constraint programming solver)
is used to model the system architecture, the application and
the synthesis problem. A general introduction to CLP is
given in [6]. Briefly, a CLP program consists of constraints
over finite domain variables and a search method. Each
finite domain variable (FDV) is initially defined by a set
of integer values that constitute its domain. Constraints
specify relations among these variables. A constraint engine
provides constraint consistency and propagation methods.
Therefore, restricting a domain of one FDV propagates to
other FDV’s and usually results in restricting domains of the
other FDV’s. Partial task assignment constraints improve
propagation as well as cut off some parts of the search space.

The MATAS synthesis system [8] makes both task and
communication assignment and scheduling. It considers tim-
ing constraints as well as code and data memory constraints.
The goal of the system is to find (near) optimal solution,
in respect to schedule length while fulfilling all constraints.
The synthesis is done within constraint programming frame-
work, as sketched in section 2 and presented in Algorithm
1. This algorithm tries to use different resources, such as
time, code and data memory, evenly. The decisions are
made based on estimates of future use of these resources.
Both time and data metrics, which are used to choose next
task to schedule, reflect the usage of those resources in rel-
ative terms. Often the next task will increase either critical
path length or data memory usage, and therefore it is impor-
tant to know which resource is currently more used and act
accordingly. Since the algorithm is constraint-driven the re-
sult of all decisions directly propagate to all FDV’s and con-
straints. This makes the implementation of different search
heuristics easier and less error-prone.

The presented partial assignment technique is an exten-
sion of the prototype design system MATAS, as presented
in Figure 5. Our method introduces new constraints which
limit the possible assignment of the tasks. The idea of these
constraints is to guide MATAS system towards better solu-
tions. PAT constraints (1) state that all tasks within the
same group are assigned to the same processor and the re-
lated communication between these tasks has duration zero.

246

∀Ti ∈ Gn∀Tj ∈ Gn : PTi = PTj , DCi,j = 0 (1)

We do not create new tasks from old ones but specify which
tasks need to be assigned to the same processor. Up to au-
thors best knowledge this is the only solution of this type
which reduce the complexity of the task assignment and
scheduling problem without changing application model.

Algorithm 1 The general idea of MATAS algorithm.

R ← Tasks without predecessors
while R �= ∅ do

select Ttime with minimal mobility
select Tdata with greatest�

O∈S(Tdata) O.size()−�I∈P (Tdata) I.size()

{S(Task) denotes all data produced by the task}
{P (Task) denotes all data consumed by the task}
{size() denotes the size of the given data}
if metricsdata > metricstime then

nextTask = Tdata

else
nextTask = Ttime

{Task which decreases usage of more utilized resource
has been chosen}
for all processors which can execute nextTask do

find minimum SnextTask

compute time usage factor tu for nextTask
compute code usage factor cu for nextTask
compute data usage factor du for nextTask

choose processor Pmin which minimize tu + cu + du

schedule nextTask on Pmin

schedule all incoming communications and reserve com-
munication buffers
R ← R \ {nextTask}∪
{tasks with all input data available}

5. PARTIAL ASSIGNMENT TECHNIQUE
The system synthesis has to take into account multiple

resources. In our model, we have currently three types of
resources for which parallel tasks compete: time slots, code
and data memories. We assign tasks to processors time slots
and communication tasks to bus time slots. Each task needs
data memory during execution as well as produces and con-
sumes data which are also stored in data memory. The code
memory needs to be reserved for each task so it can be exe-
cuted on a selected processor. The complete solution spec-
ifies these three assignments. Since the number of decision
variables is normally large, the size of the search space can
be huge. Our method makes selected assignment decisions
explicit by specifying assignment constraints (1).

PAT makes partial assignment decisions based on several
closeness measures which reflect resources use, such as time,
data memory and code memory, between groups of tasks.
The final closeness measure is defined as a weighted sum of
these closeness measures as defined below. Smaller numbers
represent closer groups.

closenessgi,gj = w1 · ctgi,gj + w2 · ccgi,gj + w3 · cdgi,gj (2)

where w1, w2 and w3 are weights, and ctgi,gj is the closeness
measure for time, ccgi,gj is a closeness measure for code
memory, and finally cdgi,gj is a closeness measure for data
memory. In our experiments all weights are equal.

There are two crucial assumptions when computing close-
ness measures. The values in the dominator in (3), (4), and
(5) are always computed under an assumption that groups gi

and gj execute on different processors. On the other hand,
the numerator is the minimal value under assumption that
both groups execute on the same processor. Each of the
metrics may have a value lower than one and this will in-
dicate that there is a possible gain if both tasks groups are
executed on the same processor.

The closeness measure for time resource is given below

ctgi,gj =
minPgi=Pgj Dgi + Dgj

minPgi �=Pgj Dgi + Dgj + Cgi,gj
(3)

where Dx denotes the execution time of group x, and Cx,y

denotes the communication time between group x and y.
The closeness value will be smaller with more communica-
tion time required to communicate data between two groups.
Small closeness value ctgi,gj indicates that there will be a
gain in schedule length if both groups are executed on the
same processor.

The second closeness measure is for code memory

ccgi,gj =
minPgi=Pgj

CMgi+CMgj

CM(Pgi)

minPgi �=Pgj

CMgi

CM(Pgi)
+

CMgj

CM(Pgj)

(4)

where CMx denotes how much code memory is required by a
group x, and CM(Px) denotes the amount of code memory
available at the processor which executes group x. The min-
imal relative usage of code memory under the assumption
that groups execute on the same processor is represented
by numerator. This will be divided by the sum of mini-
mum relative usage of code memory for each of the groups
executing on different processors. The closeness function
for code memory reflects, in relative terms, how much more
code memory would be used if two groups were grouped.
Since the code memory is a resource which is reserved for
the whole time it is possible to use this type of metrics.

The most difficult resource to take into account is the data
memory. Equation (5) presented below defines this measure,

cdgi,gj =

minPgi=Pgj

DMgi+DMgj

DM(Pgi)

minPgi �=Pgj

DMgi

DM(Pgi)
+

DMgj

DM(Pgj)
+

DM(Cgi,gj)∗Cgi,gj

min(DM(Pgi),DM(Pgj))

(5)

where DMx denotes how much data memory is needed for
group x temporary data. This is specified by (6).

DMGx =
�

Ty∈Gx

DMTy ∗DTy (6)

The tasks use data memory temporarily so we need a differ-
ent approach to compute closeness function for this resource
type. Each task is annotated with local data memory size
multiplied by its execution time. For a given group all data
memory requirements are added and divided by the data
memory size of the processor. In case when two tasks are
executed on different processors, an additional cost appears
due to double reservation of data memory buffers for com-
munication. This cost is represented by a third term in de-
nominator of equation (5). Since the communication time
can differ we assume that communication time is the average
of possible communication times. This cost is normalized by

247

the smallest data memory size of one of the processors exe-
cuting both groups.

The PAT decisions are difficult since the knowledge on
assignment of tasks to processors is not available yet. It is
possible that grouping of two tasks will increase the sched-
ule length. Therefore, each resource closeness measure aims
at reflecting the possible degradation or improvement of re-
source usage. Our PAT algorithm, presented in Algorithm
2, initially starts with one task per group. It then computes
closeness measures for each pair of groups with a non-local
communication. Each PAT iteration will merge two closest
groups thus making at least one communication local. This
communication will not require bus access. The algorithm
will stop when expected reduction of task graph is reached.

Algorithm 2 PAT algorithm.

for all i do
Gi = {Ti}

tasks to constraint = |{Ti}|
reductionfactor

while tasks to constraint > 0 do
for all non-local communications Ci do

Gp = producer(Ci)
Gc = consumer(Ci)
clssi = closenessGp,Gc

select Ci with smallest clssi

merge groups Gp and Gc

make all communication between merged groups local
tasks to constraint = tasks to constraint− 1

6. EXPERIMENTAL RESULTS
Our technique was applied to a real-life example presented

in [9]. Their problem is, however, quite simplified from our
perspective since the application is mapped onto a homoge-
neous multiprocessor architecture consisting of 7 processors
and a single bus. The authors also do not take into account
code memory and precedence constraints. However the ap-
plication consists of large number of tasks and communi-
cations which makes it a good benchmark example. Our
MATAS/PAT system has been applied to this example and
produced the results presented in Table 1.

The first experiment has no partial assignment constraints
introduced by PAT. Therefore there is no problem complex-
ity reduction and it has a full optimization potential. Since
the full search has not been performed the obtained solu-
tion is not proved optimal. The lower bound for deadline
of this example, with precedence constraints and a given ar-
chitecture, is equal to 1975 ms. The first and the second
experiment produce solutions that are ∼1% worse than a
lower bound and might be optimal.

In the following experiments we compare linear clustering

Table 1: Experimental results for real-life example.

Exp Method Tasks % of Deadline Bus Load
constrained all tasks [ms] [ms]

1. MATAS 0 0 1992 176
2a. PAT 30 25 1992 176
2b. Clustering 30 25 1992 176
3a. PAT 60 50 2163 56
3b. Clustering 60 50 2013 132
4a. PAT 90 75 2395 2
4b. Clustering 90 75 2394 130

with PAT. Linear clustering uses the same metrics as PAT
for making clustering decisions. However, the clustering de-
cisions for some tasks, despite metrics indication, has been
rejected when they produced non-linear clusters since they
might create deadlocks.

In the second experiment 25% of tasks have been par-
tially assigned by PAT or clustered. In this particular case,
a solution obtained with both PAT constraints and linear
clustering give the same solution as in the previous case.
The problem complexity reduction has been achieved with-
out penalty on a quality of the solution.

In experiment three and four both PAT and clustering
simplified the problem at the expense of the achieved dead-
line. However the obtained deadline still lies within 25%
from the lower bound when the complexity of the assign-
ment problem was reduced by ratio 50% or 75%.

In experiment three the clustering with MATAS obtained
shorter deadline than PAT with MATAS. In this case, how-
ever, it was also checked that the constraints imposed by
PAT do not exclude the solution found by MATAS with
clustering. In this particular case, clustering guided the
MATAS system better. This real life example shows that
for problems where only time constraints are imposed the
linear clustering will always give as good result as non-linear
methods like PAT. It conforms to the theory presented in [4].
This however is not the case for multi-resource problem as
indicated in further experimental results.

Our technique has also been evaluated on random task
graph examples. In this case, we can fully evaluate our
method with specific code and data memory requirements
as well as use heterogeneous architecture which is depicted
in Figure 6. The architecture consists of four heterogeneous
processors and three buses. The speed of bus B1 is 2MB/s
and the speed of other buses is 1MB/s. The experiments
were performed on task graphs generated by TGFF [2]. The
options supplied to TGFF enforced the average execution
time, code memory requirement, temporary task data, and
application data to be equal respectively to 4 ms, 4kB, 3MB,
and 5MB. They have also respectively constrained the devi-
ation of those parameters to 2ms, 2kB, 1MB, and 2MB. The
task graph has maximum number of incoming and outcom-
ing edges equal to 2. Each graph consists of 80 tasks and a
number of communications between 110 and 130. They can
be regenerated using TGFF and numbers 1 to 20 as random
seeds. The task graph characteristics make them difficult
to map and schedule on the test architecture. The experi-
ments results, represented as a line in Table 2, represent the
average values obtained by solving 20 different task graphs.

The first experimental setup (1) uses the target architec-
ture where each processor has 100KB of code memory and
100MB of data memory. The maximum execution latency
for the task graph has been set to be at most 350 ms, which
was then gradually reduced to find best shortest deadline.
The MATAS system was used to solve these problems in
three different settings: without any additional constraints

P1 P2

B1B2B3

P3 P4

Figure 6: Experimental Architecture

248

Table 2: Experimental results - random graphs
Dead- Code Code Data Data CPU Bus

Exp. line Mem. Mem. Mem Mem. Util. Util.
Util. Peak Util Peak

[ms] [%] [%] [%] [%] [%] [%]
1. M 144 73 91 39 95 43 46
1. C 137 71 90 43 96 48 41
1. P 131 73 91 40 96 52 42
2. M 158 88 99 52 97 42 45
2. C 151 91 99 58 96 45 37
2. P 144 93 100 54 95 48 40

(M), with clustering (C) and finally with PAT constraints
(P). The experiments with PAT and clustering used best
design space reduction ratio from the real case experiment
of 25% and assignment of one fourth of 80 tasks has been
constrained. In this particular experimental setup, MATAS
with PAT constraints achieved ∼4% reduction in average
deadline comparing to best results achieved by MATAS with
clustering.

The reduction was partially obtained through executing
tasks on processors which required more code memory, thus
larger code memory utilization has been noticed. The sum of
data memory allocated at different processors in the system,
represented by data memory utilization has been reduced.
This is due to better placement of data in data memory
across the whole architecture. In general PAT constraints
helped to find more parallel solutions both in terms of com-
putation as well as communications.

In the next experiments (2) we have reduced the amount
of available memory on all processors. Each processor has
75MB data memory and 75KB of code memory. The same
deadline as previously found for given solutions was applied
and it was gradually extended for cases when the deadline
could not be fulfilled. It can be noticed that the processor
utilization ratio as well as bus utilization ratio has dropped
since the application cannot always be executed with the
same degree of parallelism as previously.

The memory resources utilization increased when com-
pared to the previous experiments. The data memory uti-
lization is higher since less resources are available. There
are two important factors which make data memory a bot-
tleneck, even if the value of data memory utilization around
50% may not suggest this. First, when the code memory
of a given processor has been already used, we are not able
to assign more tasks to this processor. Second, data is not
stored evenly over the whole execution time. Often almost
the whole data memory at a single processor is used tem-
porarily for communication buffers which is reflected by very
high data memory peak. This phenomenon will restrict ex-
ecution of new tasks on this processor since no more data
memory is available at this moment. The code memory in-
fluence was reflected by high averaged peak of 100% and
an average code memory utilization of 90%. The average
deadline has increased because tasks from the critical path
cannot be executed until other non-critical task consumes
data and makes more data memory available. It increases
also in the case when the fastest task implementation cannot
be executed due to code memory restrictions.

Both experiment setups show that reduction of the search
space resulted, in some cases, in decreased quality of the
solution. The deadline was increased slightly. However,
consistent reduction of the heuristics runtimes equal to the

percentage of constrained tasks was achieved. The PAT
method does not transform the problem itself, it just adds
partial assignment constraints. Clustering on the other hand
transforms the problem and therefore it influences not only
task assignment but also scheduling of communications. The
clustering itself did help to improve the solution quality com-
paring to original MATAS approach but these solutions are
usually not as good as PAT can deliver.

7. CONCLUSIONS
Our partial assignment technique, presented in this paper,

makes it possible to decrease the complexity of the assign-
ment and scheduling problem. During the search, assign-
ments of all tasks, within the same group, to the processor is
performed only once. This method works for heterogeneous
architecture with heterogeneous communication structure.
The architecture resources can be of different nature, from
simple ones, such as code memory, to more complex, such
as computation time or data memory. The experimental re-
sults indicate that PAT can simplify the problem by remov-
ing inferior parts of the search space, which was observed in
the second experiment setup of real-life example.

Our heuristic is able to improve quality of the scheduling
and assignment as it was observed in both random experi-
mental setups. It gives better results comparing to cluster-
ing as well as not pre-constrained original MATAS approach.

Acknowledgment
This work was partially supported by Swedish Foundation
for Strategic Research within INTELECT project. It was
also supported by Marie Curie Host Fellowship within HPMT-
2000-00031 project at IMEC.

8. REFERENCES
[1] G. L. Bharat P. Dave and N. K. Jha. COSYN:

Hardware-software co-synthesis of heterogeneous distributed
embedded systems. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 7:92–104, March 1999.

[2] R. Dick, D. Rhodes, and W. Wolf. TGFF: task graphs for free.
In Sixth International Workshop on Hardware/Software
Codesign), pages 97–101, 1998.

[3] M. M. Eshagian and Y. C. Wu. Mapping heterogeneous task
graphs onto heterogeneous system graphs. In Heterogeneous
Computing Workshop, pages 147–160, 1997.

[4] A. Gerasoulis and T. Yang. On the granularity and clustering
of directed acyclic task graphs. IEEE Transactions on
Parallel and Distributed Systems, 4:686–701, June 1993.

[5] D. Kadamuddi and J. J. Tsai. Clustering algorithm for
parallelizing software systems in multiprocessors environment.
IEEE Transactions on Software Engineering, 26:340–361,
April 2000.

[6] K. Mariott and P. Stuckey. Introduction to Constraint Logic
Programming. The MIT Press, 1998.

[7] M. Senar, A. Ripoll, A. Cortes, and E. Luque. Clustering and
reassignment-based mapping strategy for message-passing
architectures. In Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing
IPPS/SPDP, 1998.

[8] R. Szymanek and K. Kuchcinski. A constructive algorithm for
memory-aware task assignment and scheduling. In Ninth
International Symposium on Hardware/Software Codesign,
April 2001.

[9] C. M. Woodside and G. G. Morton. Fast allocation of processes
in distributed and parallel systems. IEEE Transactions on
Parallel and Distributed Systems, 4:164–174, February 1993.

[10] M.-Y. Wu and D. D. Gajski. Hypertool: A programming aid
for message-passing systems. IEEE Transactions on Parallel
and Distributed Systems, 1:330–343, July 1990.

249

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

