
Post-Route Gate Sizing for Crosstalk Noise Reduction

Murat R. Becer, David Blaauw∗, Ilan Algor, Rajendran Panda, Chanhee Oh,
Vladimir Zolotov and Ibrahim N. Hajj†

Motorola Inc., Univ. of Michigan Ann Arbor∗, Univ. of Illinois Urbana-Champaign†

Abstract

Gate sizing is a practical and a feasible crosstalk noise
correction technique in the post route design stage, espe-
cially for block level sea-of-gates designs. The difficulty in
gate sizing for noise reduction is that by increasing a driver
size, noise at the driver output is reduced, but noise injected
by that driver on other nets is increased. This can create
cyclical dependencies between nets in the circuit with noise
violations. In this paper, we propose a fast and effective
heuristic post-route gate sizing algorithm that uses a graph
representation of the noise dependencies between nodes. Our
method utilizes gate sizing in both directions and works in
linear time as a function of the number of gates. The effec-
tiveness of the algorithm is shown on several high perfor-
mance designs.

1 Introduction

Crosstalk noise is a critical design and verification issue
for large, high-performance designs. This problem has be-
come more significant due to the increased ratio of crosstalk
capacitance to total capacitance of a wire and the usage of
more aggressive and less noise immune circuit structures,
such as dynamic logic.

In noise analysis, the nets on which crosstalk noise is in-
jected by one or more of its neighbors are called thevictim
nets whereas the nets that inject this noise are called theag-
gressornets. Noise can be divided into two types:Func-
tional noiserefers to noise that occurs on a victim net which
is being held quiet by a driver. Crosstalk noise on such a vic-
tim causes a glitch which may propagate to a dynamic node
or a latch, changing the circuit state and causing a functional
failure [1, 2]. On the other hand,delay noiserefers to noise
that occurs when two capacitively coupled nets switch simul-
taneously. Depending on the direction of these transitions,
the delays on both nets are affected [3, 4]. The focus of this
paper is on functional noise but the presented techniques can
be used for delay noise as well.

Recent literature proposes a number of crosstalk noise
analysis and noise avoidance methods. [5] and [1] pro-
pose detailed noise analysis using parasitic extraction and

model order reduction. In [6, 7], the authors introduce sim-
ple noise metrics for crosstalk amplitude and pulse width in
capacitively coupled interconnects. The derived expressions
are also used to motivate circuit design techniques, such as
transistor sizing and layout techniques to reduce crosstalk.
In other recent works, [8] proposes an improved2π model
which is extended by [9] to a4π model. [9] also uses this
model to analyze the effects of several circuit parameters to
noise, giving guidelines to the effectiveness of several noise
reduction methods.

In this paper, we focus on correcting the identified
crosstalk noise problems in the post-route design stage.
Noise can be reduced through routing and interconnect opti-
mization (wire spacing, wire widening, controlling coupling
length and position) [10, 11], buffer insertion [12, 13] and
driver sizing. In the post-route design stage, it is not desirable
to use techniques such as wire perturbations and buffer in-
sertion since they would require re-routing and thus increase
design time. Re-routing can result in significant changes in
net lengths and neighbors of nets which can cause many new
noise failures that did not exist initially. After routing is
completed, noise failures are therefore more effectively cor-
rected using driver sizing. The flexibility through scalable
libraries and existing fill-space, allows one to make incre-
mental changes to the driver sizes without affecting global
routing.

Recently, [14, 15, 16, 17] propose transistor sizing meth-
ods for crosstalk noise reduction. Reference [14] uses cou-
pling capacitance as the noise metric and optimizes noise,
area, delay and power by gate and wire sizing. A gate sizing
method to reduce crosstalk induced delay noise is proposed
in [15] and is based on a crosstalk noise aware static tim-
ing analysis. More recently, in [17], a post-route gate sizing
algorithm for crosstalk noise reduction is proposed. How-
ever, since this method only utilizes downsizing of aggressor
drivers under delay constraints, and not increasing the size of
victim drivers, it has limited effectiveness.

In this paper, we therefore propose a new post-route gate
sizing algorithm for crosstalk noise reduction. The algorithm
increases the size of victim drivers as well as reducing the
size of aggressor drivers. The proposed algorithm takes into
account both timing and area constraints and treats each net
as both an aggressor as well as a victim. This duality is a crit-

0-7695-1881-8/03 $17.00 2003 IEEE

ical factor in post-route gate sizing and must be accounted for
to ensure that new noise violations are not introduced while
fixing existing failures. We approach the problem by intro-
ducing a noise graph which is constructed based on the static
noise analysis of the design. The noise graph represents all
critical nets, their significant aggressors, and the dependen-
cies between them. We introduce a sensitivity measure to
eliminate weak dependencies from the noise graph to reduce
system complexity. We then eliminate cycles from the graph
by removing a minimum number of vertices and then sort the
resulting acyclical graph topologically. Gate sizing is then
performed on the sorted noise graph under delay, area and
optimality constraints. The algorithm is guaranteed to con-
verge and has a runtime complexity that is linear with the
size of the circuit. Results on three large microprocessor de-
signs are presented to demonstrate the effectiveness of the
approach.

The paper is organized as follows. Section 2 outlines a
brief qualitative analysis of post-route gate sizing. In Section
3, we explain the noise graph concept and our algorithm in
detail including the cycle breaking strategy and sensitivity
measure. Results on three high performance microprocessor
designs are presented in Section 4. Section 5 contains closing
remarks.

2 Gate Sizing for Noise Reduction

If a victim driver is sized up, its effective conductance in-
creases and more effectively holds a net at a steady voltage
(vdd or ground). On the other hand, if an aggressor driver
is sized down, its effective conductance decreases and as a
result, noise induced by the aggressor on a victim net de-
creases. Figure 1 shows a situation where several nets form
a coupled cluster. We investigate the noise pulses at the re-
ceiver input and output of netv anda 1 as the driver gate
of net v is sized up. Figure 2 (b) shows the voltage wave-
forms at receiver input (falling glitches) and receiver output
(rising glitches) of netv when the driving gate of netv is
varied from inv4 to inv 12. The inverters are from a high
performance standard cell library and their transistor widths
are proportional tox in inv x. As can be seen, the noise
pulse at the receiver input of netv is reduced in terms of both
noise peak and noise width, as the driving gate is sized up.
Note that, although the noise pulse peak with inv12 is nearly
450mV (35% of Vdd), the propagated noise at the receiver
output is negligible. The complication of victim-aggressor
duality in driver sizing emerges when we consider the volt-
age waveforms on neta 1 (Figure 2 (a)). In this figure, the
high to low transition is when the netv is switching. As can
be seen, when the driver ofv is sized up from inv4 to inv 12,
the transition on netv becomes faster, making it a stronger
aggressor on neta 1. This causes the noise pulse at the re-
ceiver input ofa 1 to increase about50mV resulting in the
propagated noise pulse to increase by200mV . As demon-
strated in this example, when a net’s driver gate is sized up

to reduce noise at that net, it also becomes a stronger aggres-
sor which in turn can induce more noise on other nets. Thus,
a driver sizing solution on nets with existing noise failures,
may result in new failures on other nets. Post route driver
sizing therefore must account for this dependence between
nets to ensure convergence of the algorithm.

Figure 1. A coupled net cluster

0.5 1 1.5 2 2.5 3 3.5

x 10
−9

−0.5

0

0.5

1

1.5

vo
lta

ge
 (v

)

time (s)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−9

−0.5

0

0.5

1

1.5

time (s)

vo
lta

ge
 (v

)

victim gate: inv_12

victim gate: inv_12

victim gate: inv_4

victim gate : inv_8

net a_1

net v

(a)

(b)

victim gate: inv_4

Figure 2. Noise reduction with driver size-up

Other critical complications in the post-route driver sizing
problem can be explained as follows:

Area impact: When a driver is sized up, it requires a
larger footprint and may cause the legalizor to shift around
some of the neighboring instances causing some changes in
the routing. Usually, the additional area required to size up
a driver gate (i.e. replacing it with a bigger size from the li-
brary) is less than the area required to insert a buffer and is
less likely to modify the route significantly. Also, the exist-
ing fill space around the instances can be utilized.

Timing impact: When a gate size is changed, it effects
the timing of paths through this gate. Sizing up a gate speeds
up the signal on the net that it drives but it also presents a
higher gate capacitance to the previous net, slowing it down.
Reverse effects are true if a gate is sized down. Effects on the
previous net can be eliminated if the gates in the library are
designed in multiple stages, keeping the first stage size the
same and reflecting the size differences in the driving stage.
During gate sizing, effects on timing are represented as con-
straints on gate sizes.

System size:The victim-aggressor duality dictates that
all interacting nets and their driver gate sizes should be taken
into account in a gate sizing algorithm. This makes the
problem a constrained multiple goal attainment problem for
which the system size(> 100k nets is very common) can be
prohibitive. An exact solution is therefore not possible, and

we propose a heuristic solution in this paper.

3 Proposed Gate Sizing Method

In a post-route design stage, detailed information on the
topology, neighbors and drivers of all the nets in the de-
sign is available. First, we perform an accurate post-route
static noise analysis on the design using [1]. Noise analysis
identifies the severity of noise on each net through a “slack”
value. If the slack of a net is negative, it is failing the noise
analysis. The failure criterion used in the paper is the so
called ’Noise Rejection Curve’ method [1]. Each cell in the
standard cell library is characterized with a noise rejection
curve which shows theHeight/Width boundary at which
the cell starts to propagate more than a predefined output
noise threshold(noise slack = output noise threshold−
V (receiver output)) [18]. It is also important to avoid un-
necessary pessimism in noise analysis which could introduce
many false failures. To reduce pessimism, we utilize timing
windows and logic correlation information in the noise anal-
ysis.

3.1 Noise Graph Representation

As explained in this section, we represent the gate sizing
problem using a noise graph. A noise graphG((V,A), E)
consists of vertices(V,A) and edgesE:

- Vertices: Type V vertices represent nets whose drivers
are candidates to be sized up. A type V vertex represents a
net which is failing noise analysis or close to failing. In other
words nets that have slack less than some predefined positive
value will be of type V vertices. Type A vertices represent
significant aggressors which have very low noise on them.
A significant aggressor is an aggressor which contributes at
least20% of the total noise on a victim net. Very low noise
means that net has a slack greater than a predefined positive
slack. Type A vertices represent nets whose drivers are can-
didates to be sized down.

- Edges: A directed edge between vertexa and vertexb
exists if neta is a significant aggressor of netb. Note that
type A vertices always have an in-degree of 0.

Figure 3. A sample noise graph

Figure 3 shows a simple noise graph. It is a directed graph
which contains cycles. The noise graph contains all the fail-
ing and critical nets(V 1 − V 7) as well as their very low
noise aggressors(A1 − A2). It also contains the existing
significant relations between these nets in the form of edges.

In reality, victim-aggressor duality exists for each neighbor-
ing net in the design. However, in our noise graph, we in-
corporate only significant edges, filtering out the insignifi-
cant victim-aggressor dependencies which would otherwise
increase complexity. Therefore, cycles in the noise graph
represent significant victim-aggressor dependencies (in some
cases in a more extended sense –V 3−V 4−V 5−V 7−V 3
cycle). These cycles may lead to oscillating solutions and/or
convergence problems. In the simplest case of a two ver-
tex cycle, made up of verticesV 5 andV 6, the negative slack
can oscillate between the two nets as each one is sized up and
neither is fixed. Noise graph also dictates an order in which
typeV vertices are sized up. For example, if we first size up
V 2 and thenV 1, we might have to come back toV 2 as it is
affected byV 1. This information is utilized to minimize the
complexity of our algorithm.

3.2 Sizing Algorithm

Our algorithm can be summarized as follows. After
constructing the noise graph as explained in the previous
subsection, we first size down all typeA vertices. At this
point, if the noise graph is acyclic, we simply size up the
type V vertices in topological order. However, in general,
the noise graph will contain cycles which may lead to
problems as explained above. We address this issue by
eliminating the cycles through the removal of some typeV
vertices from the noise graph. The resulting directed acyclic
graph is then topologically sorted and typeV vertices are
again sized up in the topological order.

Algorithm: Post-route driver sizing
Input: Noise analysis results
Output: Instance cell replace directives
begin
1 Construct a noise graphG = ((V,A), E) based on
noise analysis
2 Sizedown typeA vertices(G)
3 Breakcycles(G)
4 Gs = Topologicsort(G)
5 for each vertexv in Gs
6 Sizeup(v)
end

We now explain the algorithm stages in detail. In Step
1, we construct a noise graph based on the noise analysis.
During the construction of the noise graph, we apply a
sensitivity based pruning method to further eliminate some
of the introduced edges. As explained in subsection 3.1,
an edgee from vertexu to vertexv represents a significant
noise contribution from the net represented by vertexu
to the net represented by vertexv. We add a dynamic
character to this static edge insertion criterion by introducing
a sensitivity notion. As the driver of vertexu is sized
up, if the noise change on vertexv is not significant, i.e.,
∆(noisev)/∆(sizeu) is very small, then we can conclude

that when vertexu is sized up, this will not increase the noise
on vertexv. In other words, the noise dependency fromu
to v is weak. Edges that represent such weak dependencies
are eliminated. In Step 2, we size down all type A vertices
as much as possible such that they maintain a sufficient
noise slack margin and stay within the timing constraints.
By sizing down the significant aggressors up front, the rest
of the algorithm is simplified since from this point on only
size-up operations will be performed. The constraint on the
noise slack of type A vertices ensures that no new failures
among these nets will be introduced, while trying to fix the
existing failing nets.

Algorithm: Sizedown typeA vertices(G)
Input: G
Output: G with some typeA vertex drivers sized
down
begin
1 for each typeA vertexva in G
2 Find smallest, same functionality cell in li-
brary such thatnoise slack(va) andtime slack(va)
are within constraints
end

In Step 3, we remove any cycles in the graph by elimi-
nating some vertices. By breaking cycles, we sacrifice some
nets (they will not be fixed by driver sizing), but we ensure
that there will not be any convergence issues. Our cycle
breaking strategy (Breakcycles(G)) ensures that minimum
number of typeV vertices are removed from the noise graph:
LetG be a directed graphG = (V,E) whereV is the set of
vertices andE is the set of edges. We want to find a feed-
back vertex set, i.e., a subsetV ′ ⊂ V such thatV ′ contains
at least one vertex from every directed cycle inG, while min-
imizing the cardinality of the feedback vertex set|V ′|. This
problem is equivalent to the known graph theory algorithm,
“Minimum Feedback Vertex Set”, which is shown to be ap-
proximable withinO(log|V |loglog|V |) [19]. Breaking the
cycles result in a directed acyclic graph (DAG). This graph
is topologically sorted in Step 4.

In Steps 5 and 6, the gates are sized in topological
oder. This ensures that, the victim-aggressor duality is
taken into account. Since we are sizing in the order of
noise dependence, the effects of sizing up a driver will be
seen down-straem, on the nets that it has an effect on. As
explained earlier, the noise graph consists of nets that are
failing and that are close to failing. The topological sort
approach makes sure that if any of the ‘close to failing’
nets start failing due to one of its up-stream neighbors
being sized up, this is detected and addressed. At each
vertex, a proper gate size from the cell library is chosen
such that the optimality, area and timing constraints are
satisfied. By optimality, we refer to the noise reduction vs.
area trade-off discussed in subsection 2.1. This is taken
into account by not increasing a gate size passed a prede-
fined point of diminishing return. The objective function

in the size-up process is the negative of noise slack on the net.

Algorithm: Sizeup(v)
Input: Type V vertexv
Output: library cell to replace vertexv
begin
1 while optimality and area slack(va) and
time slack(va) are within constraints
2 replacev with next larger same functionality
cell in library
3 if noise slack(va) ≥ 0
4 return
5 return
end

4 Results

In this section, we present results of our algorithm on
three large designs. The circuits used for experiments are
chip 1, which has31489 nets, chip2, which has39200 nets
and chip3 with 165481 nets. All three designs are actual
high performance ICs and the number of nets reflect the num-
ber of top level nets analyzed by the noise analysis tool. Cou-
pledRC interconnects were extracted using a commercial
extraction tool and the analysis was performed in the typical
process corner. Each cell in the standard cell library used in
these designs was pre-characterized for holding and switch-
ing driver models and receiver noise failure criteria[1]. Initial
noise analysis is performed on these three designs after they
have been optimized for delay and slew constraints. During
gate sizing for noise reduction, we use the timing slacks ob-
tained from static timing analysis as timing constraints.

Table 1 shows the noise reduction results and Table 2
shows some statistical information on the runs. From Ta-

Circuit # of nets # of failing nets noise reduction
Initial After opt. max avg

chip 1 31489 42 23 30% 11%
chip 2 39200 52 2 48% 14%
chip 3 165481 414 56 87% 16%

Table 1. Noise reduction results

Chip ↓ agg # vertices # edges CPU
init BL init el BL load opt

1 22 84 79 39 5 23 45 s 118 s
2 8 90 88 12 0 8 54 s 96 s
3 22 602 549 217 23 60 198 s 582 s

Table 2. Some statistics

ble 1, we can see that number of nets that fail the noise cri-
terion goes down significanty, as much as by96%. The last
two columns in Table 1 show the maximum and average peak
noise voltage reduction.

Table 2 presents the following information in column or-
der: Number of aggressor gates that have been sized down,
number of vertices in the initial graph, number of remaining
vertices after Breakcycles, number of edges in initial graph,
number of edges eliminated by sensitivity pruning, number
of edges remaining after Breakcycles, CPU time to load the
circuit and parasitic information, CPU time for gate sizing.

In Figures 4 and 5, we show the changes in noise peak
voltages at receiver inputs and changes in noise slack values
at receiver outputs. The values on thex andy axis are be-
fore and after gate sizing respectively, in both figures. The
45 degree line is thex = y line.The region below the line
represents improvement in noise in Figure 4 and degradation
in noise in Figure 5. Figure 5 is additionally divided into four
quadrants by the vertical and horizontal lines atx = 0 and
y = 0. Each dot in these figures corresponds to a noise sim-
ulation, and each net has two noise simulations. One noise
simulation is where the victim net is stable at ground and the
aggressors are switching from low to high and the other is the
reverse situation. It can be seen from Figure 4 that, noise on
most simulations has been reduced and only on some sim-
ulations noise has increased slightly. The increased-noise
nets are the sized-down aggressor nets and those few nets
that were eliminated from the graph during the Breakcycles
procedure. For the case of chip3, 149 simulations had more
noise after gate sizing than before gate sizing. However when
we look at Figure 5, we can see only20 simulations whose
noise slack values went to negative from positive (quadrant
4). Further investigation of these nets show that these nets
also failed noise analysis before gate sizing. Hence, if a
net did not fail before gate sizing, it remained that way af-
ter gate sizing. This shows that our algorithm is successful
in not introducing new noise problems while trying to fix
the existing ones. This is due to the fact that our algorithm
checks the noise on aggressors as they are sized down and
also the aggressor-victim duality is taken into account prop-
erly through the topological sort approach. These figures also
show that, noise failure on many nets has been improved al-
though the net was not fixed. But on the other hand, some
nets that were failing initially, end up failing worse after gate
sizing. All such nets are the ones that have been eliminated
during Breakcycles procedure. We minimize such nets by
choosing the minimum number of vertices to be eliminated
from the noise graph.

As a result, our algorithm reduced number of failing nets
significantly (45%, 96% and86% in three designs, respec-
tively) while not introducing any new failures. Some con-
trolled noise increase on aggressor nets was allowed, making
sure that they stayed within acceptable positive slack. Even
with the increase of noise on eliminated vertex nets, average
noise reduction was(11%, 14% and 16%) respectively for
the three designs.

Finally, Figure 6 shows the percentage change in peak
noise values for chip1 and chip3.

200 300 400 500 600 700 800 900 1000 1100 1200 1300
200

400

600

800

1000

1200

200 300 400 500 600 700 800 900 1000 1100 1200 1300
200

400

600

800

1000

1200

noise before gate sizing (mV)

no
ise

 af
ter

 ga
te

siz
ing

 (m
V)

chip_3

chip_1

Figure 4. Noise peak changes at receiver input

−1400 −1200 −1000 −800 −600 −400 −200 0 200
−1500

−1000

−500

0

500

−1600 −1400 −1200 −1000 −800 −600 −400 −200 0 200
−2000

−1500

−1000

−500

0

500

noise slack before gate sizing (mV)
no

ise
 sl

ac
k a

fte
r g

ate
 si

zin
g (

mV
)

I II

III IV

I II

III IV

chip_3

chip_1

Figure 5. Noise slack changes at receiver out-
put

5 Conclusion

In this paper, we presented a post-route gate sizing algo-
rithm for crosstalk noise reduction. The algorithm is tim-
ing and area constrained and takes into account the victim-
aggressor duality through a topologically sorted noise graph.
The method utilizes sizing in both directions and has been
shown to be effective on large high performance designs.

References

[1] S. Alwar, D. Blaauw, A. Dasgupta, A. Grinshpon,
R. Levy, C. Oh, B. Orshav, S. Sirichotiyakul, and
V. Zolotov. Clarinet: A noise analysis tool for deep
submicron design. InProceedings of Design Automa-
tion Conference DAC, pages 233–238, June 2000.

[2] K. L. Shepard and V. Narayanan. Noise in deep submi-
cron digital design. InProceedings of ICCAD-96 Intl.
Conference on Computer Aided Design, pages 524–
531, November 1996.

[3] S. Sirichotiyakul, D. Blaauw, C. Oh, R. Levy, V. Zolo-
tov, and J. Zuo. Driver modeling and alignment for
worst-case delay noise. InProceedings of Design Au-
tomation Conference DAC, pages 720–725, June 2001.

[4] P. D. Gross, R. Arunachalam, K. Rajagopal, and L. T.
Pileggi. Determination of worst-case aggressor align-

−80 −60 −40 −20 0 20 40
0

10

20

30

40

50

60

−80 −60 −40 −20 0 20 40
0

2

4

6

8

% noise change

o
f n

ets
chip_3

chip_1

Figure 6. Percentage noise peak change

ment for delay calculation. InProceedings of the IEEE
International Conference on Computer-Aided Design,
ICCAD-98, 1998.

[5] K. L. Shepard. Design methodologies for noise in dig-
ital integrated circuits. InProceedings of Design Au-
tomation Conference DAC, pages 94–99, 1998.

[6] A. Vittal, L. H. Chen, M. Marek-Sadowska, K. P.
Wang, and S. Yang. Crosstalk in VLSI interconnec-
tions. IEEE Transactions on Computer Aided Design,
18:1817–1824, December 1999.

[7] A. Vittal, L. Hui Chen, M. Marek-Sadowska, K. P.
Wang, and X. Yang. Modeling crosstalk in resistive
VLSI interconnections. InProceedings of International
Conference on VLSI Design, pages 470–475, January
1999.

[8] J. Cong, D. Zhingang, and P. V. Srinivas. Improved
crosstalk modeling for noise constrained interconnect
optimization. InProceedings of ASP/DAC Asia South
Pasific Design Automation Conference, pages 373–378,
2001.

[9] Murat R. Becer, David Blaauw, V. Zolotov, R. Panda,
and Ibrahim N. Hajj. Analysis of noise avoidance tech-
niques in dsm interconnects, using a complete crosstalk
noise model. InProceedings of Design Automation
Conference in Europe DATE, pages 456–463, March
2002.

[10] H. Zhou and D. F. Wong. Global routing with crosstalk
constraints. InProceedings of Design Automation Con-
ference DAC, pages 374–377, 1998.

[11] P. Saxena and C. L. Liu. Crosstalk minimization using
wire perturbations. InProceedings of Design Automa-
tion Conference DAC, pages 100–103, 1999.

[12] C. P. Chen and N. Menezes. Noise aware repeater inser-
tion and wire sizing for on-chip interconnect using us-
ing hierarchical moment matching. InProceedings of
Design Automation Conference DAC, pages 502–506,
1999.

[13] C. J. Alpert, A. Devgan, and S. T. Quay. Buffer inser-
tion for noise and delay optimization. InProceedings of
Design Automation Conference DAC, pages 362–367,
1998.

[14] I. H. R. Jiang, Y. W. Chang, and J. Y. Jou. Crosstalk
driven interconnect optimization by simultaneous gate
and wire sizing.IEEE Transactions on Computer Aided
Design, 19:999–1010, September 2000.

[15] T. Xiao and M. Marek-Sadowska. Gate sizing to elimi-
nate crosstalk induced timing violation. InProceedings
of ICCD, pages 186–191, 2001.

[16] T. Xiao and M. Marek-Sadowska. Crosstalk reduction
by transistor sizing. InProceedings of ASP/DAC Asia
South Pasific Design Automation Conference, pages
137–140, 1999.

[17] M. Hashimoto, M. Takahashi, and H. Onodera.
Crosstalk noise optimization by post-layout transistor
sizing. InProceedings of ISPD, pages 126–130, 2002.

[18] V. Zolotov, D. Blaauw, S. Sirichotiyakul, M. Becer,
C. Oh, R. Panda, A. Grinshpon, and R. Levy. Noise
propagation and failure criteria for vlsi designs. InPro-
ceedings of ICCAD-02 Intl. Conference on Computer
Aided Design, pages 587–594, November 2002.

[19] G. Even, J. Naor, B. Schieber, and M. Sudan. Approx-
imating minimum feedback sets and multi-cuts in di-
rected graphs. InProc. 4th Int. Conf. on Integer Prog.
and Combinatorial Optimization, pages 14–28, 1995.

	Main Page
	ISQED'03
	Front Matter
	Table of Contents
	Author Index

