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1. INTRODUCTION 

Combinatory logic was developed independently by Schonfinkel [13] and Curry 
[3] as a foundation for mathematics and logic. More recently, combinatory logic 
has gained relevance in computer science. In particular, one approach to imple- 
menting functional programming languages is to compile functional programs 
into combinator terms which are then executed via combinator reduction (see 
Peyton Jones [ 111 for a good reference on using combinators to implement 
functional programming languages.) 

Combinator reduction is usually implemented using directed graphs to repre- 
sent combinator terms. The following optimizations are widely used in the 
reduction process: 

(1) Terms are represented by directed acyclic graphs (DAGs) so that multiple 
occurrences of a subterm can be represented by a single graph structure. 
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(2) The reduction rule YX = X( Yx) for the fixed point combinator Y is applied 
using a method popularized by Turner [ 161 that introduces directed cycles in 
graphs, as indicated by the following diagram: 

(3) The argument stack is stored in the graph using the pointer reversal technique 
that originated in the garbage collection algorithm of Schorr and Waite [ 141. 

This paper gives a correctness proof for the second technique. There are several 
areas of existing work. The first optimization above, DAG reduction, has been 
completely justified using graph rewriting by Staples [15] and by Barendregt 
et al. [2]. The second optimization, the cyclic Y rule, has been studied from a 
number of different viewpoints. In Barendregt et al. [2], the issue of the cyclic Y 
rule is discussed, and some key ideas are elucidated, but the basic correctness 
property is not proved. 

There are both semantic and syntactic justifications for the Y rule. On the 
semantic side, Diller [5] interprets Y as the least fixed point operator inside 
lambda calculus and provides a justification for the cyclic rule in this setting. A 
second semantic approach to the Y-correctness result is due to Felleisen [7], who 
constructs a calculus extending lambda calculus and including constructs for 
state and control. In this extended calculus, Felleisen defines a combinator Y!, 
an imperative cyclic version of Y, and proves that Y! satisfies an operational 
fixed-point property. 

We prefer a syntactic approach to the Y rule, because such an approach is 
more general, not requiring specific assumptions about models, and more ele- 
mentary, avoiding the machinery of denotational semantics. One interesting 
syntactic approach involves an infinite sequence of term rewritings, a topic that 
has recently been studied by Dershowitz and Kaplan [4]. The relationship 
between graph rewriting and infinite term rewriting is being pursued by Farmer 
and Watro [6]. 

In this paper, we develop a different approach, one based on the intuition that 
the cyclic rule is merely an optimization of the ordinary rule. Our proof utilizes 
a modification of cyclic reduction in which additional information is maintained 
in order to resolve cycles. The process is proved correct using the additional 
information, and the correctness of ordinary cyclic reduction follows immediately. 

The correctness of the Schorr-Waite algorithm has been the subject of several 
formal analyses (see Morris [lo]). Let us remark here concerning one interesting 
interaction between graphs with cycles and Schorr-Waite pointer reversal. Head 
reduction on a graph requires a search down the left-most branch of the graph 
to locate the head symbol (if any), and then a search back up to accumulate the 
appropriate number of arguments. This down-and-then-up search procedure is 
conveniently implemented by reversing the direction of a link after it is traversed. 
When a graph contains a cycle on the left-most path, the pointer-reversal 
algorithm will have its search for the head symbol redirected toward the root of 
the graph. This redirected search will terminate at a symbol representing the 
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bottom of the stack. Part of our work in this paper is to analyze the situation in 
which the left-most path of a graph is cyclic. This work can be used to show that 
if pointer reversal produces the stack bottom as the head symbol, then the 
original term being reduced has no head normal form. 

We consider primarily head reduction and head normal forms for combinator 
expressions. This focus originates from work on a formal model of the Curry 
Chip [12], a combinator reduction machine implemented in VLSI. The Curry 
Chip uses the standard optimizations in reducing combinators to head normal 
form. While studying the Curry Chip, we recognized the need for a proof of the 
correctness of cyclic head reduction. The correctness of normal order reduction 
follows easily from the correctness of head reduction. 

2. BACKGROUND 

We define a combinatory rewriting system to be a special type of term rewriting 
system. The terms in a combinatory rewriting system are constructed from 
variables, constants called basic combinators, and a single binary operation called 
application. It is traditional to denote application by juxtaposition and to assume 
left associativity as the default for terms. The rules in a combinatory rewriting 
system consist of one equation of the form C3c1 . . . X, = t (x1, . . . , x,) for each 
basic combinator C. Here x1, . . . , X, are distinct and t(xl, . . . , x,) is a term 
containing no variables other than x1, . . . , x,. 

The rewriting system with basic combinators S and K and rules Sxyz = xz ( yz) 
and Kxy = x is a well-known example of a combinatory rewriting system. This 
system is complete in the sense that any combinator is representable in terms of 
S and K. For example, the combinator I with rule Ix = x can be represented by 
SKK, since SKKx rewrites to Kx(Kx) using the S rule, and this result rewrites 
to x using the K rule. Combinatory rewriting systems designed for implementation 
purposes often contain additional basic combinators beyond S and K; in partic- 
ular, an explicit fixed-point combinator Y is crucial for efficient implementation 
of recursion. 

Let the head symbol of a term be the leading variable or basic combinator 
appearing in the term. If a term t rewrites to t ’ in one step, we write t + t ‘. The 
reflexive and transitive closure of + is -+*. A term is a normal form if none of 
the rewrite rules apply to it. If t +* t ‘, and t ’ is a normal form, then t ’ is said 
to be a normal form of t. Combinatory rewriting systems are left linear and 
nonambiguous and hence confluent (see [8] or [9]); thus a term has at most one 
normal form. A term is a head normal form if it is equal to Ht, . . . t,, where H 
is either a variable or a basic combinator whose axiom requires more than n 
arguments. A term can have more than one head normal form, but the head 
symbol and the number of arguments in a head normal form are unique. 

2.1 Graph Terms 

Assume some fixed combinatory rewriting system. In this subsection, we formal- 
ize the notion of a graph term as a set of simple equations, and in the next 
subsection we define head reduction for graph terms. A graph term is meant to 
be a generalization of a parse tree. We define it as a set of equations to simplify 
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our proofs. The construction of a directed, rooted graph from a graph term is 
described below. 

Definition 1. An equation is simple if it has the form x = yz (called an 
application equation), the form x: = y (called a transfer equation), or the form 
x = C (called a constant equation), where x, y, and z are variables and C is a 
constant. 

Definition 2. A graph term is a pair G = (E, r) where r is a variable called the 
root variable of G and E is a finite set of simple equations such that no variable 
occurs more than once as the left side of an equation in E. A leaf variable of G is 
a variable which occurs in the right side of an equation, but not in the left side 
of an equation, in E. A path in a graph term G is a finite or infinite sequence of 
equations {ei) contained in G such that the left-side variable of ei+l always occurs 
on the right side of ei. A graph term is acyclic if all paths in it are finite. The 
head path of G is the maximal path (ci ) such that r is the left side of el , and such 
that the left side of ei+l is the first symbol on the right side of ei. If the head path 
of G is finite, then the head symbol of G is the first symbol on the right side of 
the last equation in the head path of G. 

A graph term G corresponds to a graph in the following manner. The variables 
in G correspond to the nodes of the graph. An application equation defines a 
directed edge from the left-hand variable to each of the right-hand variables. 
A transfer equation defines a single directed edge from the left-hand variable to 
the right-hand variable. A constant equation labels a leaf node of the graph with 
a constant. The leaf variables of G correspond to leaf nodes of the graph which 
are not labeled by constants. 

We now show how an acyclic graph term represents a term. Let G be an acyclic 
graph term with root variable r. The value of a term t in G, written val(t, G), is 
defined inductively as follows: 

(1) If t is a constant or a leaf variable of G, then val(t, G) = t. 
(2) If t is a nonleaf variable of G, then val(t, G) = val(s, G), where t = s is in G. 
(3) If t = s(xl, . . . , x,), where x1, . . . , X, includes all the variables in t, then 

val(t, G) = s(val(x,, G), . . . , val(x,, G)). 

Since G is acyclic, val(t, G) is well defined for all terms in t. The term that G 
represents is the value of r in G. 

Acyclic graph terms include the parse trees and DAGs constructed from 
ordinary terms. Cyclic graph terms include structures containing directed cycles 
such as rational trees. For example, the graph term 

G = ((x = yx, y = I), x) 

could be imagined as representing the infinite term 

I(I(I( . . * . 

Given an arbitrary term t, let G(t) be any acyclic graph term which represents 
t. For example, given a one-to-one mapping from terms t to variables xt, G(t) for 
a nonvariable term t could be the graph term (E(t), xt), where E(t) is defined 
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inductively as follows: 

(1) If t = C, then E(t) = (x, = C), where C is a constant. 

(2) If t = u, then E(t) = 0, where u is a variable. 

(3) If t = sIsz, then E(t) = (x, = X&X,,) U E(sI) U E(sq). 

This graph term represents the DAG that is formed from the parse tree of t by 
eliminating redundant subexpressions. Notice that there are no transfer equa- 
tions in E(t); transfer equations are ordinarily introduced in the act of reducing 
a graph term. 

2.2 Head Reduction of Graph Terms 

An acyclic graph term can be reduced in essentially the same manner as a term. 
We only define the head reduction of an acyclic graph term. Suppose that G = 
(E, r) is an acyclic graph term. Head reduction begins with a search to locate the 
head symbol of G. We generate two finite sequences of variables xi and yj in G. 
The Xi sequence corresponds to the head path of G, and some final segment of 
the yj sequence comprises the arguments of the head symbol. Due to the possible 
presence of transfer equations, the yj sequence may be strictly shorter than the 
Xi sequence. 

The xi and yj sequences are defined inductively as follows. Set x0 = r. Assume 
that Iti is defined for all i such that 0 5 i 5 p and that yj is defined for all j such 
that 1 I j 5 q where p, q 2 0. There are three cases to consider: 

(1) If x, = C is in E or 3c, is a leaf variable of G, then the xi and yj sequences are 
complete. 

(2) If x, = z is in E, then set x,,, = z. 

(3) If x, = zw is in E, then set x~+~ = z and yqfl = w. 

For an acyclic graph term, this construction always terminates. If 3c, is a leaf 
variable of G, then the term represented by G is in head normal form, so G is 
defined not to head reduce. Let m and n be the lengths of the completed x; and 
yj sequences, respectively, and assume that the construction terminates with the 
constant C. Suppose that the axiom for C requires k arguments. If k > n, then 
the term represented by G is in head normal form, so again G is defined not to 
head reduce. If k 5 n, then G head reduces as described below. 

To define the head reduction of G, note that E contains the equations 

x, = C 
X,-l = x,t, 

xi = Xi+lti+l 

where each ti is either an element of they; sequence or is empty. Use the equation 
for x, to eliminate the first occurrence of the variable x, in the equation for 
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x,,-~. Continue in this fashion, using the new equation for x,,,-~ to eliminate the 
first occurrence of x,,-~ in the equation for x,,-~. Because k I n, this procedure 
will produce an equation of the form 

xh = &zYn-1 * * * Yn-k+l. 

We apply the reduction rule for C to the right side of this equation, producing 
xh = t where t may contain the variables y,, through Y,,++~. 

We are finally ready to define G ‘, the graph term that results from performing 
one head reduction step on G. Our goal is to incorporate the effect of the equation 
xh = t into G’. Form E- from E by removing the equation beginning with xh. Let 
F be any nonempty set of simple equations such that (1) (F, xh) is an (acyclic) 
graph term representing t and (2) z occurs in both E- and F only if z = xh or z 
occurs in t. Then G’ = (E- U F, r). It is easy to check that G’ is a graph term. 
Note that G ’ has the same root variable as G. 

For example, if C = S, then k = 3 and t = ynynen( ~~-~y~+). Hence we may 
define F to be 

bh = wlw2, WI =ynyn-2, w2 =yn-lYn-21 

provided w1 and w2 do not occur in E-. 

Remark. It is possible that there is a variable x occurring in G and G’ such 
that there is a path from r to x in G but no such path in G ‘. Variables such as x 
will often be ignored in graph terms because they are not needed in determining 
what a graph term represents or in head reduction of a graph term. 

The close relation between head reduction of t and head reduction of G(t) is 
fully analyzed by Barendregt et al. [2]. We provide here just the statements of 
the key results. It is easy to check that if acyclic graph head reduction of G(t) 
terminates with a graph term G, then G represents a head normal form of t. To 
verify that graph head reduction always terminates whenever the term has a 
head normal form, one uses the following result. 

Definition 3. A finite reduction sequence is a quasi-head reduction sequence, 
written s jq t, if it contains at least one head reduction. An infinite reduction 
sequence is quasi-head if it contains infinitely many head reduction steps. 

THEOREM 1. If there is an infinite quasi-head reduction starting from t, then 
t has no head normal form. 

See [l, exercise 13.6.131 for a proof of the theorem. This result implies that 
head reduction of t terminates if and only if acyclic graph head reduction of G(t) 
terminates and ensures that acyclic reduction is a sound and complete imple- 
mentation (in the sense of [2]) of a combinatory rewriting system. 

3. CYCLIC COMBINATOR REDUCTION 

The fixed-point axiom Yx = x(Yx) is unusual in that it creates a new instance 
of the subterm that it rewrites. Recall that one key advantage of graph reduction 
is that one graph step can reduce several occurrences of the same redex in a term. 
The cyclic Y rule has the advantage that one reduction replaces possibly infinitely 
many future reductions. 
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Cyclic reduction proceeds exactly as the acyclic reduction defined in the last 
section, except that it is possible for a cyclic graph term to have no head symbol 
and that we will implement the Y rule differently. Y reduction will now replace 
the equation x = Yy with the equation x = yx. This creates a loop edge in the 
graph, and further reduction can create directed cycles of arbitrary length. While 
a DAG always corresponds in an obvious way to a (finite) term, cyclic graphs do 
not. A variable need not have a finite value in a cyclic graph term. This makes a 
substantial difference in correctness proofs. 

Example 1. Consider the term YI, where I is the identity combinator with 
the axiom Ix = x. Ordinary term rewriting produces an infinite reduction sequence 

YI+I(YI) + YI+ a**, 

Graph rewriting, as defined in this section, cannot proceed past two steps, 
producing the graph term G = ((x = x), x). 

The graph term G has no head symbol, and hence it is a head normal form 
with respect to graph head reduction. Another unusual feature of the graph term 
G is that it does not represent any finite or infinite binary application tree. One 
can view G as representing a nonterminating calculation, based on the fact that 
G contains a single transfer equation that sends the root back to itself. This type 
of graph term is avoided when graph rewriting is defined as in [2], because the 
graph term ((x = zx, z = I], x) reduces to itself instead of G. This approach 
generates an infinite graph reduction sequence starting from YI. Both definitions 
of graph rewriting have natural motivations unrelated to this example; in the 
context of this example, our definition provides an additional way to recognize 
nontermination. 

Remark. We have presented our reduction algorithm using explicit transfer 
equations and without mechanisms for eliminating transfer equations in the 
reduction process. It is also possible to view transfer equations as a special type 
of application equation, and to eliminate some transfers either in the reduction 
process or in garbage collection. To accomplish this, a special constant symbol I 
is used, and the application equation x = Iy represents the transfer equation 
x = y. The symbol I is treated partly as a combinator, in that I3cy = xy can be 
applied as a reduction rule, and partly as a transfer marker, in that It reduces to 
It ’ if t reduces to t ‘. 

3.1 Augmented Cyclic Reduction 

In order to prove correctness, we define an augmentation of the cyclic reduction 
process that maintains additional information in a graph term consisting of 
(1) superscripts attached to certain variables and (2) additional equations. The 
additional information is generated each time a Y rule is applied. A graph term 
G = (E, r) with this added information is called an augmented graph term. The 
set E of equations is partitioned into two disjoint pieces: E, contains the equations 
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from the basic algorithm, while E2 contains the additional equations (which need 
not be simple). 

The additional equations appearing in E2 will resolve any cycles among the 
equations in El. That is, we can define the value of a term t in G to be a unique 
(finite) term analogously to how we defined the value of a term in an acyclic 
graph term. 

Augmented cyclic head reduction proceeds in the following manner. Initially, 
G is an acyclic graph term representing the term we want to reduce with Ez 
empty. A step in the augmented process works as follows. For combinators other 
than Y, proceed as usual, making use of just the equations in E,. Suppose that 
the Y rule is applied to an equation x = Yz derived from the set E. The new set 
E ’ of equations is constructed from E by (1) removing from El the equation 
beginning with x; (2) adding to E, the equation x = .zxi, where i is the first 
positive integer that has not already been used as a superscript on the variable 
x; and (3) adding to EZ the equation xi = t, where t is the value of x in G. 

If a term t is given and the augmented cyclic reduction algorithm is applied to 
G(t ), producing a sequence of (augmented) graph terms G,, . . . , G;, . . . , then 
the result of applying the ordinary cyclic reduction algorithm to t is just G; , . . . , 
G;,..., where Gc is obtained form Gi by (1) removing the E, equations from Gc 
and (2) erasing the superscripts from all the variables in G;. It follows then that 
if the augmented algorithm always terminates when t has a head normal form, 
then so does the ordinary algorithm. 

This notion of augmented cyclic head reduction is best explained with an 
example. 

Example 2. Consider the term YY. As with the term YIin Example 1, ordinary 
term rewriting produces an infinite reduction sequence, but graph rewriting 
cannot proceed past two steps. 

/‘\ * /*a * co3 
Y Y Y 

Notice that the last graph term has the form (lx = xx), x). Our augmentation of 
graph rewriting provides enough information to convert this last graph into a 
term and to recognize that a cycle has occurred in the term reduction process. 

The augmented algorithm begins with the simple equations that define the 
term YY: 

x = yz 
y=Y 
z= Y 

The first graph reduction step produces 

x = 2x1 x1= YY 
y=Y 
z=Y 
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The second graph reduction step produces 

x = x1x2 x1= YY 
y=Y x2 = Y(YY) 
z= Y 

Reduction terminates at this point, because there is no head symbol in the last 
graph. The term represented by this last graph is determined by solving for x 
using the equations in E1 U E2. This gives the result x = YY(Y(YY)), and this 
term appears in the term head reduction of YY. Since YY is a prefix of 
YY( Y( YY)), it follows that term head reduction of YY is infinite: 

YY +* YY( Y( YY)) +* (YY(Y(YY)))(Y(YY)) -0.. 

In the general case, the term we construct as the value of the last graph is either 
a head normal form of the original term, or is part of the proof that the original 
term has no head normal form. 

In the two examples above, all cycles that occur have length one. Cycles of 
arbitrary size can also be produced. For example, the term Y(Sxy) reduces as 
follows: 

/‘\ * P 

I’ /‘\ /‘\ 

A y I’\ y 
s t s 2 

A 
J /’ l 

z Y 

3.2 Correctness Proof 

Let G be an augmented graph term produced by the augmented algorithm. For 
each variable in G, there is a unique term that is the value of that variable in G. 
The value of a superscripted variable is given directly by an equation in G, and 
the value of an ordinary variable x is computed starting from the simple equation 
with x as its left side. In this section the value of x in G is denoted by XC, and we 
drop the subscript when only one graph is under discussion. 

We need one additional piece of notation: x +=q y means that either x = y or 
x+qy. 

LEMMA 1 
(a) In any run of the augmented cyclic graph head reduction algorithm, if x and 

xi are variables in G, then xi jq x. 
(b) If G ’ is produced from G by one step of augmented cyclic graph head reduction 

and y is a variable in both G and G ‘, then yo +* yo, . 

PROOF. We prove parts (a) and (b) by a joint induction. Consider some run 
of the augmented algorithm. The initial graph contains no superscripted vari- 
ables, so (a) holds for the first graph. Let G = (E, r) be any augmented graph 
term for which (a) holds; we prove that (b) holds for the reduction step from G 
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to G’ as follows: In El, we must have a finite chain of equations: 

x0 = xTt1 

X] = x;t2 

Xi = x:1&+1 

x, = C. 

Here x7 denotes either xi itself or xi for some positive superscript j, and ti is 
either empty or some variable y. Because (a) is true for G, we have that 

x,, +=’ cy, * . . y,,.++l 

following the same approach as used in Section 2.2. The construction of G’ 
introduces a new equation for xh by applying the C rule. All other equations of G 
are carried over unchanged into G ‘. It follows that xhc +q xhc’ . An arbitrary 
variable appearing in G will have a new value in G ’ only if it depends somehow 
onxh; hence,yc+*yc,. 

To complete the proof of the lemma, we must prove that (a) holds for G’. Let 
xi be an arbitrary superscripted variable in G ‘. If xi is not in G, then the equation 
for xi was created by applying the Y rule to G, and (a) clearly holds in this case. 
If xi is in G, then & jq xc since (a) holds for G, and XG +=* xc, since (b) holds 
for the reduction step from G to G’. Since x& = XL,, we obtain that xc, +=q xG’, 
and thus (a) holds for G’. q 

LEMMA 2. Assume that r is the root variable of an acyclic graph term Gl. If 
G1, . . e 2 Gi, . . e is a sequence of augmented graph terms produced by augmented 
cyclic head reduction, then ro,, . . . , rG,, . . . is a quasi-head reduction sequence of 
terms. 

PROOF. Each time a graph reduction step occurs, there is a unique variable 
xh where the reduction process applies. The value of xh is head reduced for 
one step by the graph reduction process, and r dzq xhyh . . - yl. It follows that 
rG’ jq r&+1. q 

LEMMA 3. If cyclic head reduction of G(t) produces a graph without a head, 
then there is an infinite quasi-head reduction starting at t. 

PROOF. Assume that the augmented graph head reduction is performed 
starting from a graph term G = (E, r), and that an augmented graph term G’ = 
(E ‘, r) is produced in which the head search process enters a cycle. This means 
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that in Ei we have a chain of equations of the form 

x0 = XT& 

Xl = ix,*& 

Xi = Xr+*ti+l 

xnz = x*t,+1. 

It follows using Lemma l(a) that 

If xr = xi, then we have that xi +=q x~Y~+~ . . . yi+l, and combining this with 
xi -4 Xi yields that there is an infinite quasi-head reduction starting at Xi. If 
XT = xi, then there must exist a k such that i c k I m and xi = xi for some 
j, because otherwise the cycle would be present in the augmented set of equa- 
tions, which is impossible. This gives that Xi +4 Xiyn+l . . . yi+l, and again there 
must be an infinite quasi-head reduction starting at xi. Because rG +q r-o, and 
r +=’ Xiyi * . . yl, we have an infinite quasi-head reduction starting at t, as 
required. 0 

THEOREM 2. Cyclic combinator head reduction is correct, meaning that 

(a) If a term t has a head normal form, then cyclic reduction of G(t) finds the 
head symbol and the number of arguments in a head normal form. 

(b) If a term t has no head normal form, then cyclic reduction of G(t) either 
produces an infinite sequence of graph terms or produces a graph term with 
no head symbol. 

PROOF. Consider augmented cyclic head reduction applied to G(t ) = (E, r). 
Ordinary cyclic reduction can be extracted by considering just the El sets and 
ignoring the superscripts. There are three possibilities: If the reduction terminates 
in a graph term with a head symbol, then the head symbol and number of 
arguments are determined from the final E, without superscripts, and Lemma 2 
assures that they are correct. If the reduction terminates in a graph term without 
a head, then Lemma 3 assures that t has no head normal form. If the reduction 
is infinite, Lemma 2 and Theorem 1 establish that t has no head normal form. 0 

The augmented cyclic reduction process can provide actual finite terms for the 
arguments in a head normal form, while ordinary cyclic head reduction provides 
only possibly cyclic graph terms as arguments. When fully normal forms are 
required, head reduction is recursively applied to the arguments in a head normal 
form. 
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