
A Correctness Proof for Combinator
Reduction with Cycles

WILLIAM M. FARMER, JOHN D. RAMSDELL, and RONALD J. WATRO

The MITRE Corporation

Turner popularized a technique of Wadsworth in which a cyclic graph rewriting rule is used to
implement reduction of the fixed point combinator Y. We examine the theoretical foundation of this
approach. Previous work has concentrated on proving that graph methods are, in a certain sense,
sound and complete implementations of term methods. This work is inapplicable to the cyclic Y rule,
which is unsound in this sense since graph normal forms can exist without corresponding term normal
forms. We define and prove the correctness of combinator head reduction using the cyclic Y rule; the
correctness of normal reduction is an immediate consequence. Our proof avoids the use of infinite
trees to explain cyclic graphs. Instead, we show how to consider reduction with cycles as an
optimization of reduction without cycles.

Categories and Subject Descriptors: D.l.l [Programming Techniques]: Applicative (Functional)
Programming; D.3.1 [Programming Languages]: Formal Definitions and Theory--semantics;
D.3.2 [Programming Languages]: Language Classification-applicative Zanguoges; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages

General Terms: Languages, Theory

Additional Key Words and Phrases: Combinators, correctness proof, functional programming, graph
reduction, term rewriting systems

1. INTRODUCTION

Combinatory logic was developed independently by Schonfinkel [13] and Curry
[3] as a foundation for mathematics and logic. More recently, combinatory logic
has gained relevance in computer science. In particular, one approach to imple-
menting functional programming languages is to compile functional programs
into combinator terms which are then executed via combinator reduction (see
Peyton Jones [111 for a good reference on using combinators to implement
functional programming languages.)

Combinator reduction is usually implemented using directed graphs to repre-
sent combinator terms. The following optimizations are widely used in the
reduction process:

(1) Terms are represented by directed acyclic graphs (DAGs) so that multiple
occurrences of a subterm can be represented by a single graph structure.

This work was supported by the MITRE Sponsored Research Program.
Authors’ address: The MITRE Corporation, Burlington Road, Bedford, MA 01730.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0164-0925/90/0100-0123 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990, Pages 123-134.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F77606.77612&domain=pdf&date_stamp=1990-01-03

124 l W. M. Farmer et al.

(2) The reduction rule YX = X(Yx) for the fixed point combinator Y is applied
using a method popularized by Turner [161 that introduces directed cycles in
graphs, as indicated by the following diagram:

(3) The argument stack is stored in the graph using the pointer reversal technique
that originated in the garbage collection algorithm of Schorr and Waite [141.

This paper gives a correctness proof for the second technique. There are several
areas of existing work. The first optimization above, DAG reduction, has been
completely justified using graph rewriting by Staples [15] and by Barendregt
et al. [2]. The second optimization, the cyclic Y rule, has been studied from a
number of different viewpoints. In Barendregt et al. [2], the issue of the cyclic Y
rule is discussed, and some key ideas are elucidated, but the basic correctness
property is not proved.

There are both semantic and syntactic justifications for the Y rule. On the
semantic side, Diller [5] interprets Y as the least fixed point operator inside
lambda calculus and provides a justification for the cyclic rule in this setting. A
second semantic approach to the Y-correctness result is due to Felleisen [7], who
constructs a calculus extending lambda calculus and including constructs for
state and control. In this extended calculus, Felleisen defines a combinator Y!,
an imperative cyclic version of Y, and proves that Y! satisfies an operational
fixed-point property.

We prefer a syntactic approach to the Y rule, because such an approach is
more general, not requiring specific assumptions about models, and more ele-
mentary, avoiding the machinery of denotational semantics. One interesting
syntactic approach involves an infinite sequence of term rewritings, a topic that
has recently been studied by Dershowitz and Kaplan [4]. The relationship
between graph rewriting and infinite term rewriting is being pursued by Farmer
and Watro [6].

In this paper, we develop a different approach, one based on the intuition that
the cyclic rule is merely an optimization of the ordinary rule. Our proof utilizes
a modification of cyclic reduction in which additional information is maintained
in order to resolve cycles. The process is proved correct using the additional
information, and the correctness of ordinary cyclic reduction follows immediately.

The correctness of the Schorr-Waite algorithm has been the subject of several
formal analyses (see Morris [lo]). Let us remark here concerning one interesting
interaction between graphs with cycles and Schorr-Waite pointer reversal. Head
reduction on a graph requires a search down the left-most branch of the graph
to locate the head symbol (if any), and then a search back up to accumulate the
appropriate number of arguments. This down-and-then-up search procedure is
conveniently implemented by reversing the direction of a link after it is traversed.
When a graph contains a cycle on the left-most path, the pointer-reversal
algorithm will have its search for the head symbol redirected toward the root of
the graph. This redirected search will terminate at a symbol representing the

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

A Correctness Proof for Combinator Reduction with Cycles - 125

bottom of the stack. Part of our work in this paper is to analyze the situation in
which the left-most path of a graph is cyclic. This work can be used to show that
if pointer reversal produces the stack bottom as the head symbol, then the
original term being reduced has no head normal form.

We consider primarily head reduction and head normal forms for combinator
expressions. This focus originates from work on a formal model of the Curry
Chip [12], a combinator reduction machine implemented in VLSI. The Curry
Chip uses the standard optimizations in reducing combinators to head normal
form. While studying the Curry Chip, we recognized the need for a proof of the
correctness of cyclic head reduction. The correctness of normal order reduction
follows easily from the correctness of head reduction.

2. BACKGROUND

We define a combinatory rewriting system to be a special type of term rewriting
system. The terms in a combinatory rewriting system are constructed from
variables, constants called basic combinators, and a single binary operation called
application. It is traditional to denote application by juxtaposition and to assume
left associativity as the default for terms. The rules in a combinatory rewriting
system consist of one equation of the form C3c1 . . . X, = t (x1, . . . , x,) for each
basic combinator C. Here x1, . . . , X, are distinct and t(xl, . . . , x,) is a term
containing no variables other than x1, . . . , x,.

The rewriting system with basic combinators S and K and rules Sxyz = xz (yz)
and Kxy = x is a well-known example of a combinatory rewriting system. This
system is complete in the sense that any combinator is representable in terms of
S and K. For example, the combinator I with rule Ix = x can be represented by
SKK, since SKKx rewrites to Kx(Kx) using the S rule, and this result rewrites
to x using the K rule. Combinatory rewriting systems designed for implementation
purposes often contain additional basic combinators beyond S and K; in partic-
ular, an explicit fixed-point combinator Y is crucial for efficient implementation
of recursion.

Let the head symbol of a term be the leading variable or basic combinator
appearing in the term. If a term t rewrites to t ’ in one step, we write t + t ‘. The
reflexive and transitive closure of + is -+*. A term is a normal form if none of
the rewrite rules apply to it. If t +* t ‘, and t ’ is a normal form, then t ’ is said
to be a normal form of t. Combinatory rewriting systems are left linear and
nonambiguous and hence confluent (see [8] or [9]); thus a term has at most one
normal form. A term is a head normal form if it is equal to Ht, . . . t,, where H
is either a variable or a basic combinator whose axiom requires more than n
arguments. A term can have more than one head normal form, but the head
symbol and the number of arguments in a head normal form are unique.

2.1 Graph Terms

Assume some fixed combinatory rewriting system. In this subsection, we formal-
ize the notion of a graph term as a set of simple equations, and in the next
subsection we define head reduction for graph terms. A graph term is meant to
be a generalization of a parse tree. We define it as a set of equations to simplify

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

126 l W. M. Farmer et al.

our proofs. The construction of a directed, rooted graph from a graph term is
described below.

Definition 1. An equation is simple if it has the form x = yz (called an
application equation), the form x: = y (called a transfer equation), or the form
x = C (called a constant equation), where x, y, and z are variables and C is a
constant.

Definition 2. A graph term is a pair G = (E, r) where r is a variable called the
root variable of G and E is a finite set of simple equations such that no variable
occurs more than once as the left side of an equation in E. A leaf variable of G is
a variable which occurs in the right side of an equation, but not in the left side
of an equation, in E. A path in a graph term G is a finite or infinite sequence of
equations {ei) contained in G such that the left-side variable of ei+l always occurs
on the right side of ei. A graph term is acyclic if all paths in it are finite. The
head path of G is the maximal path (ci) such that r is the left side of el , and such
that the left side of ei+l is the first symbol on the right side of ei. If the head path
of G is finite, then the head symbol of G is the first symbol on the right side of
the last equation in the head path of G.

A graph term G corresponds to a graph in the following manner. The variables
in G correspond to the nodes of the graph. An application equation defines a
directed edge from the left-hand variable to each of the right-hand variables.
A transfer equation defines a single directed edge from the left-hand variable to
the right-hand variable. A constant equation labels a leaf node of the graph with
a constant. The leaf variables of G correspond to leaf nodes of the graph which
are not labeled by constants.

We now show how an acyclic graph term represents a term. Let G be an acyclic
graph term with root variable r. The value of a term t in G, written val(t, G), is
defined inductively as follows:

(1) If t is a constant or a leaf variable of G, then val(t, G) = t.
(2) If t is a nonleaf variable of G, then val(t, G) = val(s, G), where t = s is in G.
(3) If t = s(xl, . . . , x,), where x1, . . . , X, includes all the variables in t, then

val(t, G) = s(val(x,, G), . . . , val(x,, G)).

Since G is acyclic, val(t, G) is well defined for all terms in t. The term that G
represents is the value of r in G.

Acyclic graph terms include the parse trees and DAGs constructed from
ordinary terms. Cyclic graph terms include structures containing directed cycles
such as rational trees. For example, the graph term

G = ((x = yx, y = I), x)

could be imagined as representing the infinite term

I(I(I(. . * .

Given an arbitrary term t, let G(t) be any acyclic graph term which represents
t. For example, given a one-to-one mapping from terms t to variables xt, G(t) for
a nonvariable term t could be the graph term (E(t), xt), where E(t) is defined

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

A Correctness Proof for Combinator Reduction with Cycles - 127

inductively as follows:

(1) If t = C, then E(t) = (x, = C), where C is a constant.

(2) If t = u, then E(t) = 0, where u is a variable.

(3) If t = sIsz, then E(t) = (x, = X&X,,) U E(sI) U E(sq).

This graph term represents the DAG that is formed from the parse tree of t by
eliminating redundant subexpressions. Notice that there are no transfer equa-
tions in E(t); transfer equations are ordinarily introduced in the act of reducing
a graph term.

2.2 Head Reduction of Graph Terms

An acyclic graph term can be reduced in essentially the same manner as a term.
We only define the head reduction of an acyclic graph term. Suppose that G =
(E, r) is an acyclic graph term. Head reduction begins with a search to locate the
head symbol of G. We generate two finite sequences of variables xi and yj in G.
The Xi sequence corresponds to the head path of G, and some final segment of
the yj sequence comprises the arguments of the head symbol. Due to the possible
presence of transfer equations, the yj sequence may be strictly shorter than the
Xi sequence.

The xi and yj sequences are defined inductively as follows. Set x0 = r. Assume
that Iti is defined for all i such that 0 5 i 5 p and that yj is defined for all j such
that 1 I j 5 q where p, q 2 0. There are three cases to consider:

(1) If x, = C is in E or 3c, is a leaf variable of G, then the xi and yj sequences are
complete.

(2) If x, = z is in E, then set x,,, = z.

(3) If x, = zw is in E, then set x~+~ = z and yqfl = w.

For an acyclic graph term, this construction always terminates. If 3c, is a leaf
variable of G, then the term represented by G is in head normal form, so G is
defined not to head reduce. Let m and n be the lengths of the completed x; and
yj sequences, respectively, and assume that the construction terminates with the
constant C. Suppose that the axiom for C requires k arguments. If k > n, then
the term represented by G is in head normal form, so again G is defined not to
head reduce. If k 5 n, then G head reduces as described below.

To define the head reduction of G, note that E contains the equations

x, = C
X,-l = x,t,

xi = Xi+lti+l

where each ti is either an element of they; sequence or is empty. Use the equation
for x, to eliminate the first occurrence of the variable x, in the equation for

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

128 - W. M. Farmer et al.

x,,-~. Continue in this fashion, using the new equation for x,,,-~ to eliminate the
first occurrence of x,,-~ in the equation for x,,-~. Because k I n, this procedure
will produce an equation of the form

xh = &zYn-1 * * * Yn-k+l.

We apply the reduction rule for C to the right side of this equation, producing
xh = t where t may contain the variables y,, through Y,,++~.

We are finally ready to define G ‘, the graph term that results from performing
one head reduction step on G. Our goal is to incorporate the effect of the equation
xh = t into G’. Form E- from E by removing the equation beginning with xh. Let
F be any nonempty set of simple equations such that (1) (F, xh) is an (acyclic)
graph term representing t and (2) z occurs in both E- and F only if z = xh or z
occurs in t. Then G’ = (E- U F, r). It is easy to check that G’ is a graph term.
Note that G ’ has the same root variable as G.

For example, if C = S, then k = 3 and t = ynynen(~~-~y~+). Hence we may
define F to be

bh = wlw2, WI =ynyn-2, w2 =yn-lYn-21

provided w1 and w2 do not occur in E-.

Remark. It is possible that there is a variable x occurring in G and G’ such
that there is a path from r to x in G but no such path in G ‘. Variables such as x
will often be ignored in graph terms because they are not needed in determining
what a graph term represents or in head reduction of a graph term.

The close relation between head reduction of t and head reduction of G(t) is
fully analyzed by Barendregt et al. [2]. We provide here just the statements of
the key results. It is easy to check that if acyclic graph head reduction of G(t)
terminates with a graph term G, then G represents a head normal form of t. To
verify that graph head reduction always terminates whenever the term has a
head normal form, one uses the following result.

Definition 3. A finite reduction sequence is a quasi-head reduction sequence,
written s jq t, if it contains at least one head reduction. An infinite reduction
sequence is quasi-head if it contains infinitely many head reduction steps.

THEOREM 1. If there is an infinite quasi-head reduction starting from t, then
t has no head normal form.

See [l, exercise 13.6.131 for a proof of the theorem. This result implies that
head reduction of t terminates if and only if acyclic graph head reduction of G(t)
terminates and ensures that acyclic reduction is a sound and complete imple-
mentation (in the sense of [2]) of a combinatory rewriting system.

3. CYCLIC COMBINATOR REDUCTION

The fixed-point axiom Yx = x(Yx) is unusual in that it creates a new instance
of the subterm that it rewrites. Recall that one key advantage of graph reduction
is that one graph step can reduce several occurrences of the same redex in a term.
The cyclic Y rule has the advantage that one reduction replaces possibly infinitely
many future reductions.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

A Correctness Proof for Combinator Reduction with Cycles l 129

Cyclic reduction proceeds exactly as the acyclic reduction defined in the last
section, except that it is possible for a cyclic graph term to have no head symbol
and that we will implement the Y rule differently. Y reduction will now replace
the equation x = Yy with the equation x = yx. This creates a loop edge in the
graph, and further reduction can create directed cycles of arbitrary length. While
a DAG always corresponds in an obvious way to a (finite) term, cyclic graphs do
not. A variable need not have a finite value in a cyclic graph term. This makes a
substantial difference in correctness proofs.

Example 1. Consider the term YI, where I is the identity combinator with
the axiom Ix = x. Ordinary term rewriting produces an infinite reduction sequence

YI+I(YI) + YI+ a**,

Graph rewriting, as defined in this section, cannot proceed past two steps,
producing the graph term G = ((x = x), x).

The graph term G has no head symbol, and hence it is a head normal form
with respect to graph head reduction. Another unusual feature of the graph term
G is that it does not represent any finite or infinite binary application tree. One
can view G as representing a nonterminating calculation, based on the fact that
G contains a single transfer equation that sends the root back to itself. This type
of graph term is avoided when graph rewriting is defined as in [2], because the
graph term ((x = zx, z = I], x) reduces to itself instead of G. This approach
generates an infinite graph reduction sequence starting from YI. Both definitions
of graph rewriting have natural motivations unrelated to this example; in the
context of this example, our definition provides an additional way to recognize
nontermination.

Remark. We have presented our reduction algorithm using explicit transfer
equations and without mechanisms for eliminating transfer equations in the
reduction process. It is also possible to view transfer equations as a special type
of application equation, and to eliminate some transfers either in the reduction
process or in garbage collection. To accomplish this, a special constant symbol I
is used, and the application equation x = Iy represents the transfer equation
x = y. The symbol I is treated partly as a combinator, in that I3cy = xy can be
applied as a reduction rule, and partly as a transfer marker, in that It reduces to
It ’ if t reduces to t ‘.

3.1 Augmented Cyclic Reduction

In order to prove correctness, we define an augmentation of the cyclic reduction
process that maintains additional information in a graph term consisting of
(1) superscripts attached to certain variables and (2) additional equations. The
additional information is generated each time a Y rule is applied. A graph term
G = (E, r) with this added information is called an augmented graph term. The
set E of equations is partitioned into two disjoint pieces: E, contains the equations

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

130 l W. M. Farmer et al.

from the basic algorithm, while E2 contains the additional equations (which need
not be simple).

The additional equations appearing in E2 will resolve any cycles among the
equations in El. That is, we can define the value of a term t in G to be a unique
(finite) term analogously to how we defined the value of a term in an acyclic
graph term.

Augmented cyclic head reduction proceeds in the following manner. Initially,
G is an acyclic graph term representing the term we want to reduce with Ez
empty. A step in the augmented process works as follows. For combinators other
than Y, proceed as usual, making use of just the equations in E,. Suppose that
the Y rule is applied to an equation x = Yz derived from the set E. The new set
E ’ of equations is constructed from E by (1) removing from El the equation
beginning with x; (2) adding to E, the equation x = .zxi, where i is the first
positive integer that has not already been used as a superscript on the variable
x; and (3) adding to EZ the equation xi = t, where t is the value of x in G.

If a term t is given and the augmented cyclic reduction algorithm is applied to
G(t), producing a sequence of (augmented) graph terms G,, . . . , G;, . . . , then
the result of applying the ordinary cyclic reduction algorithm to t is just G; , . . . ,
G;,..., where Gc is obtained form Gi by (1) removing the E, equations from Gc
and (2) erasing the superscripts from all the variables in G;. It follows then that
if the augmented algorithm always terminates when t has a head normal form,
then so does the ordinary algorithm.

This notion of augmented cyclic head reduction is best explained with an
example.

Example 2. Consider the term YY. As with the term YIin Example 1, ordinary
term rewriting produces an infinite reduction sequence, but graph rewriting
cannot proceed past two steps.

/‘\ * /*a * co3
Y Y Y

Notice that the last graph term has the form (lx = xx), x). Our augmentation of
graph rewriting provides enough information to convert this last graph into a
term and to recognize that a cycle has occurred in the term reduction process.

The augmented algorithm begins with the simple equations that define the
term YY:

x = yz
y=Y
z= Y

The first graph reduction step produces

x = 2x1 x1= YY
y=Y
z=Y

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

A Correctness Proof for Combinator Reduction with Cycles l 131

The second graph reduction step produces

x = x1x2 x1= YY
y=Y x2 = Y(YY)
z= Y

Reduction terminates at this point, because there is no head symbol in the last
graph. The term represented by this last graph is determined by solving for x
using the equations in E1 U E2. This gives the result x = YY(Y(YY)), and this
term appears in the term head reduction of YY. Since YY is a prefix of
YY(Y(YY)), it follows that term head reduction of YY is infinite:

YY +* YY(Y(YY)) +* (YY(Y(YY)))(Y(YY)) -0..

In the general case, the term we construct as the value of the last graph is either
a head normal form of the original term, or is part of the proof that the original
term has no head normal form.

In the two examples above, all cycles that occur have length one. Cycles of
arbitrary size can also be produced. For example, the term Y(Sxy) reduces as
follows:

/‘\ * P

I’ /‘\ /‘\

A y I’\ y
s t s 2

A
J /’ l

z Y

3.2 Correctness Proof

Let G be an augmented graph term produced by the augmented algorithm. For
each variable in G, there is a unique term that is the value of that variable in G.
The value of a superscripted variable is given directly by an equation in G, and
the value of an ordinary variable x is computed starting from the simple equation
with x as its left side. In this section the value of x in G is denoted by XC, and we
drop the subscript when only one graph is under discussion.

We need one additional piece of notation: x +=q y means that either x = y or
x+qy.

LEMMA 1
(a) In any run of the augmented cyclic graph head reduction algorithm, if x and

xi are variables in G, then xi jq x.
(b) If G ’ is produced from G by one step of augmented cyclic graph head reduction

and y is a variable in both G and G ‘, then yo +* yo, .

PROOF. We prove parts (a) and (b) by a joint induction. Consider some run
of the augmented algorithm. The initial graph contains no superscripted vari-
ables, so (a) holds for the first graph. Let G = (E, r) be any augmented graph
term for which (a) holds; we prove that (b) holds for the reduction step from G

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

132 l W. M. Farmer et al.

to G’ as follows: In El, we must have a finite chain of equations:

x0 = xTt1

X] = x;t2

Xi = x:1&+1

x, = C.

Here x7 denotes either xi itself or xi for some positive superscript j, and ti is
either empty or some variable y. Because (a) is true for G, we have that

x,, +=’ cy, * . . y,,.++l

following the same approach as used in Section 2.2. The construction of G’
introduces a new equation for xh by applying the C rule. All other equations of G
are carried over unchanged into G ‘. It follows that xhc +q xhc’ . An arbitrary
variable appearing in G will have a new value in G ’ only if it depends somehow
onxh; hence,yc+*yc,.

To complete the proof of the lemma, we must prove that (a) holds for G’. Let
xi be an arbitrary superscripted variable in G ‘. If xi is not in G, then the equation
for xi was created by applying the Y rule to G, and (a) clearly holds in this case.
If xi is in G, then & jq xc since (a) holds for G, and XG +=* xc, since (b) holds
for the reduction step from G to G’. Since x& = XL,, we obtain that xc, +=q xG’,
and thus (a) holds for G’. q

LEMMA 2. Assume that r is the root variable of an acyclic graph term Gl. If
G1, . . e 2 Gi, . . e is a sequence of augmented graph terms produced by augmented
cyclic head reduction, then ro,, . . . , rG,, . . . is a quasi-head reduction sequence of
terms.

PROOF. Each time a graph reduction step occurs, there is a unique variable
xh where the reduction process applies. The value of xh is head reduced for
one step by the graph reduction process, and r dzq xhyh . . - yl. It follows that
rG’ jq r&+1. q

LEMMA 3. If cyclic head reduction of G(t) produces a graph without a head,
then there is an infinite quasi-head reduction starting at t.

PROOF. Assume that the augmented graph head reduction is performed
starting from a graph term G = (E, r), and that an augmented graph term G’ =
(E ‘, r) is produced in which the head search process enters a cycle. This means

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

A Correctness Proof for Combinator Reduction with Cycles l 133

that in Ei we have a chain of equations of the form

x0 = XT&

Xl = ix,*&

Xi = Xr+*ti+l

xnz = x*t,+1.

It follows using Lemma l(a) that

If xr = xi, then we have that xi +=q x~Y~+~ . . . yi+l, and combining this with
xi -4 Xi yields that there is an infinite quasi-head reduction starting at Xi. If
XT = xi, then there must exist a k such that i c k I m and xi = xi for some
j, because otherwise the cycle would be present in the augmented set of equa-
tions, which is impossible. This gives that Xi +4 Xiyn+l . . . yi+l, and again there
must be an infinite quasi-head reduction starting at xi. Because rG +q r-o, and
r +=’ Xiyi * . . yl, we have an infinite quasi-head reduction starting at t, as
required. 0

THEOREM 2. Cyclic combinator head reduction is correct, meaning that

(a) If a term t has a head normal form, then cyclic reduction of G(t) finds the
head symbol and the number of arguments in a head normal form.

(b) If a term t has no head normal form, then cyclic reduction of G(t) either
produces an infinite sequence of graph terms or produces a graph term with
no head symbol.

PROOF. Consider augmented cyclic head reduction applied to G(t) = (E, r).
Ordinary cyclic reduction can be extracted by considering just the El sets and
ignoring the superscripts. There are three possibilities: If the reduction terminates
in a graph term with a head symbol, then the head symbol and number of
arguments are determined from the final E, without superscripts, and Lemma 2
assures that they are correct. If the reduction terminates in a graph term without
a head, then Lemma 3 assures that t has no head normal form. If the reduction
is infinite, Lemma 2 and Theorem 1 establish that t has no head normal form. 0

The augmented cyclic reduction process can provide actual finite terms for the
arguments in a head normal form, while ordinary cyclic head reduction provides
only possibly cyclic graph terms as arguments. When fully normal forms are
required, head reduction is recursively applied to the arguments in a head normal
form.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, Jahary 1990.

134 l W. M. Farmer et al.

REFERENCES

1. BARENDREGT, H. P. The Lambda CaZculus, Its Syntax and Semantics, rev. ed. North-Holland,
New York, 1984.

2. BARENDREGT, H. P., VAN EEKELEN, M. C. J. D., GLAUERT, J. R. W., KENNAWAY, J. R.,
PLASMEIJER, M. J., AND SLEEP, M. R. Term graph rewriting. In PARLE-Parallel Architectures
and Languages Europe. Springer Lecture Notes in Computer Science, vol. 259. Springer, New
York, 1987, pp. 141-158.

3. CURRY, H. B. Grundlagen der kombinatorischen Logik. Amer. J. Math. 52, 1930.
4. DERSHOWITZ, N., AND KAPLAN, S. Rewrite, Rewrite, Rewrite In Conference Record of the

16th Annual ACM Symposium on Principles of Programming Languages, Jan. 1989, pp. 250-259.
5. DILLER, A. Compiling Functional Languuges. Wiley, New York, 1988.
6. FARMER, W. M., AND WATRO, R. J. Redex Capturing in Term Graph Rewriting. Tech. Rep.

M89-36, The MITRE Corporation, Bedford, Mass., July 1989.
7. FELLEISEN, M. The calculi of lambda-v-CS conversion: A syntactic theory of control and state

in imperative higher-order programming languages. Ph.D. dissertation, Indiana Univ., 1987.
8. HUET, G. Confluent reductions: Abstract properties and applications to term rewriting systems.

J. ACM 27, 4 (Oct. 1980), 797-821.
9. KLOP, J. W. Combinatory Reduction Systems. Mathematisch Centrum, Amsterdam, 1980.

10. MORRIS, J. M. A proof of the Schorr-Waite algorithm. In Theoretical Foundations of Progrum-
ming Methodology, M. Broy and G. Schmidt, Eds. NATO Advanced Study Institute, D. Reidel,
1982, pp. 43-51.

11. PEYTON JONES, S. L. The Implementation of Functional Programming Languages. Prentice-
Hall, Englewood Cliffs, N.J., 1987.

12. RAMSDELL, J. D. The CURRY chip. In 1986 ACM Symposium on LISP and Functional
Programming (Cambridge, Mass., Aug. 1986), pp. 122-131.

13. SCH~NFINKEL, M. Uber die bausteine der mathematischen Logik. Math. Ann. 92 (1924),
305-316.

14. SCHORR, H., AND WAITE, W. M. An efficient machine-independent procedure for garbage
collection in various list structures. Commun. ACM 10, 8 (Aug. 1967), 501-506.

15. STAPLES, J. Computation on graph-like expressions. Theoretical Comput. Sci. 10 (1980),
171-185.

16. TURNER, D. A. A new implementation technique for applicative languages. Softw. Pruct. Enper.
9 (1979), 31-49.

17. WADSWORTH, C. P. Semantics and Pragmatics of the Lambda Calculus. Ph.D. dissertation,
Programming Research Group, Oxford Univ., Oxford, U.K., 1971.

Received November 1988; revised July 1989; accepted August 1989

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

