
Weyl Group Orbits

DENNIS M. SNOW
University of Notre Dame

A new technique is presented for calculating the orbits of the finite Weyl group of a semisimple Lie
group G in the weight lattice of G. Such calculations are important in the representation theory of G,
and have previously been difficult to carry out for large Weyl groups such as E,. This new technique
allows large orbits to be computed using only a small fraction of the computer memory required when
using standard techniques. In the case of Eg, the memory requirements can be reduced by a factor of
30,000.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problem-computations on discrete structures; 1.1.2 [Algebraic Ma-
nipulation]: Algorithms-algebraic algorithms, analysis of algorithms; G.4 [Mathematics of Com-
puting]: Mathematical Software-efficiency

General Terms: Algorithms, Theory, Performance

Additional Key Words and Phrases: Lie groups, representation theory, Weyl group

Many formulas in the representation theory of a simple complex Lie group, G,
involve an associated finite group, W, the Weyl group of G. The most celebrated
of these is the formula of Weyl [6], which expresses the character of a represen-
tation as the quotient of two alternating sums, both indexed by W-orbits in the
weight lattice of G. In Bott’s Theorem [2] the level of a weight, that is, the
number of reflections it takes to move the weight to the dominant chamber,
identifies the degree in which the cohomology group of an irreducible homoge-
neous vector bundle does not vanish. In some applications, only certain subsets
of W, consisting of “distinguished coset representatives,” are needed, and these
too can be found by calculating the W-orbit of an appropriately chosen weight.
A difficulty one often encounters in explicit calculation with W is the large size
of its orbits. The number of elements in W greatly exceeds the order of magnitude
of other parameters of the group. For example, the exceptional group Es has
dimension 248 and 120 positive roots, but its Weyl group has 696,729,600
elements.

A straightforward way to compute an orbit of W is to start with an appropriate
dominant weight and reflect it by all the simple reflections. This produces a list
of weights of level 1. If the weight were regular, this list would correspond to the

This work was supported by NSF grant DMS 8420315.
Author’s address: Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0098-3500/90/0300-0094 $01.50

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990, Pages 94-108.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F77626.77634&domain=pdf&date_stamp=1990-03-01

Weyl Group Orbits - 95

list of all elements in W of length 1, the simple reflections themselves. Now
reflect each of these weights by each simple reflection again to create a new list
of weights. Disregarding repetitions and weights of level l-which we already
know-we now have a list of all weights in the orbit of level 2. For a regular
weight this would correspond to the list of elements in W of length 2. By repeating
this procedure, we can obtain a list of weights of any level using only the weights
of the next lower level and the simple reflections. Thus, the entire W-orbit, or
an image of the whole group if the original weight were regular, can be generated
this way. Now we see how the size of W can create a problem for explicit
calculation. If we use this technique to generate the Weyl group, W, of E8, the
lists which need to be remembered at any stage will eventually contain more
than 18 million entries, and such lists can easily outstrip available computer
memory. Another problem with this technique is the number of repetitions that
occur while generating the next list. Simply searching the list being created
for repetitions for each newly created orbit element is extremely slow and
inefficient.

I present here a simple technique for deciding whether or not an orbit element
should be added to the list of weights of next highest level which requires only
“local” data, that is, the new weight itself and the simple reflection that created
it. This solves the problem of repetitions and also enables a new technique for
generating Weyl group orbits. Instead of proceeding one level at a time, finding
all the weights of a given level, we may think of the orbit as a tree and compute
“depth first,” following the orbit of a weight as far as possible according to the
criterion for saving a weight before returning to uncomputed “branches.” This
latter technique can be managed easily with a stack that has an a priori bound
on the number of entries, namely, the number of positive roots in G. This is a
significant reduction in memory requirements. While it might not be easy to
store a large orbit permanently, this technique, due to its small memory require-
ments, could be used to calculate on the spot where it is needed in other formulas.

An implementation of this algorithm is given in Section 4. The procedures are
written in C and take advantage of the two-fold symmetry of Weyl groups. For
testing purposes, the Weyl groups of E6, E 7, and E8 were generated and the
number of elements of each length was counted, see Table I. Example times on
a Sun 31280 were as follows: 2.0 seconds for E6 which has only 51,840 elements;
117.9 seconds for E7 which has 2,903,040 elements; and 31611.0 seconds
(8.8 hours) for E8 which has the above-mentioned 696,729,600 elements.
Average performance was thus somewhere between 22,000 to 25,000 elements
processed per second.

1. PRELIMINARIES

The following facts are well known and can be found in [4] or [5]. We recall
them here to establish notation and terminology. Let G be a simple complex Lie
group and let .!Y be its Lie algebra. Let &” be a Cartan subalgebra of .Y (a maximal
Abelian subalgebra). The roots of .Y are defined to be the nonzero Eigenvalues of
Z’ acting on 5 via the adjoint representation. The roots are viewed as linear
functionals on z so that if (Y is a root and x E z?’ is a corresponding eigenvector,
then [h, x] = LY(~)X for all h E X’. The set of roots of Z will be denoted by

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

96 l Dennis M. Snow

Table I. Levels in the Weyl group orbit of 6 (times are in seconds)

E6 E-7 E8

level size level size level size level size

0,36 1
1,35 6
2,34 20
3,33 50
4,32 105
5,31 195
6,30 329
7, 29 514
8,28 754
9,27 1048

lo,26 1389
11,25 1765
12,24 2159
13,23 2549
14,22 2911
15,21 3222
16,20 3461
17,19 3611

18 3662

total 51840
time 2.0

0,63 1
1,62 7
2,61 27
3,60 77
4,59 182
5, 58 378
6,57 713
7,56 1247
8,55 2051
9,54 3205

10,53 4795
II, 52 6909
12,51 9632
13,50 13040
14,49 17194
15,48 22134
16,47 27874
17,46 34398
18,45 41657
19,44 49567
20,43 58009
21,42 66831
22,41 75852
23,40 84868
24,39 93659
25,38 101997
26,37 109655
27,36 116417
28,35 122087
29,34 126497
30,33 129514
31,32 131046

total 2903040
time 117.9

0,120 1
1,119 8
2,118 35
3,117 112
4,116 294
5,115 672
6,114 1386
7,113 2640
8,112 4718
9,111 8000

10,110 12978
11,109 20272
12,108 30645
13,107 45016
14,106 64470
15,105 90264
16,104 123829
17,103 166768
18,102 220849
19,101 287992
20,100 370250
21,99 469784
22,98 588833
23,97 729680
24,96 894613
25,95 1085880
26,94 1305640
27,93 1555912
28,92 1838523
29,91 2155056
30,90 2506798
31,89 2894688

32,88 3319268
33,87 3780640
34,86 4278429
35,85 4811752
36,84 5379194
37,83 5978792
38,82 6608029
39,81 7263840
40,80 7942628
41,79 8640288
42,78 9352240
43,77 10073472
44,76 10798593
45,75 11521896
46,74 12237428
47,73 12939064
48,72 13620586
49,71 14275768
50,70 14898464
51,69 15482696
52,68 16022740
53,67 16513208
54,66 16949127
55,65 17326016
56,64 17639957
57,63 17887656
58,62 18066494
59,61 18174568

60 18210722

total 696729600
time 31611.0

@. They span a real subspace, E, in the dual space Z* of real dimension 1 =
dim&? = rank .I!?. There always exists a special set of roots, called a base, A =

(al, ***, cq 1, which forms a basis for E and such that any other root CY E @ can
be written as a linear combination a! = Cf-1 nisi where the ni are either all
positive integers, in which case we say that CY is a positive root, or all negative
integers, in which case we say that a: is a negative root. The subset of positive,
respectively negative, roots is denoted by a+, respectively a-. The elements of a
base A are also called simple roots.

There is a natural inner product on F, called the Killing form, defined by
(x, y) := Tr(ad(x)ad(y)) where ad:F-+gl(kF), ad(x)(u) := [x, u], is the adjoint
representation. This form takes real values when restricted to E and is positive
ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Weyl Group Orbits - 97

definite there. One can show that for all pairs of roots (Y, ,0 E a,

(p, a) := y-$ E z.
,

Moreover, Q is invariant under the reflection through a hyperplane orthogonal
to any given root. Explicitly, given a root LY E a’, the reflection defined by

a,(x) := x - (x, a)cY

is an orthogonal linear transformation with respect to the Killing form such that
for all /3 E + we have that a,(P) E a. These two properties are the essential tools
in the classification of simple Lie algebras (and groups).

The finite group W generated by all reflections, ua, cx E a, is called the Weyl
group of 5 (or G). A reflection associated to a simple root is called a simple
reflection. Any element of the Weyl group, (r E W, can be written (not necessarily
uniquely) as a product of simple reflections u = gi,gi, . . . cri,. The minimum
number of simple reflections in an expression for u is called the length of g and
is denoted by 1 (u). It can be shown that the length of u is equal to the number
of positive roots which are sent to negative roots under u. For example, a simple
reflection ui has length 1; it sends the simple root ai to -ai and permutes the
other positive roots. From this, it follows that

l(UiU) =
-I

El:\ “_ ‘1
if U-l(Cfi) E !P+

, if U-l((Yi) E *- (1.1)

Let P,, (Y E a’, be the hyperplane (X E E 1 ((Y, X) = 0). The connected components
ofE-U aEQ P, are finite in number and are called the (open) Weyl chambers of
E. We say [E E is regular if [is in one of these open Weyl chambers, that is,
(a, [) # 0 for all LY E @. If (01, [) = 0 for some root (II, we say that [is singular.
The fundamental Weyl chamber is the unique chamber, %‘, satisfying [E g +
((u, 4) > 0 for all ol E @ (or for all CY E A). The Weyl group acts simply transitively
on the Weyl chambers and the closure of the fundamental chamber, SZ? is a
fundamental domain for the action of Won E. Thus, every [E E is conjugate to
a unique point in u E 5?. In this context, the word “conjugate” means “in the
same Weyl group orbit.” The level of 5 is the minimum length of a u E W such
that 5 = u(u). It is not hard to show that the level of [can also be defined as the
number of positive roots (Y such that ((u, [) < 0, or equivalently, as the number
of hyperplanes, P,, crossed by a straight line from [to a general point in g.

A weight is an element X E E such that (X, ol) E Z for all o(E a. The set
of weights A forms a subgroup of E containing the set of roots a. The weights
are the Eigenvalues of the Cartan subalgebra Z which occur in finite dimensional
representations of the Lie algebra k7. If A = ((Ye, . . . , LYE), then the vectors 2ai/(ai,
ai) again form a basis of E. Let X1, . . . , X1 be the associated dual basis of E
relative to the Killing form. Thus, 2(Xi, aj)/(aj , aj) = 6ij, and the Xi are
themselves weights, called the fundamental dominant weights. Any x E E can be
written as a linear combination Cf=i miXi where the coefficients are given by
mi = (x, pi). If X E A, then X is an integral linear combination of the Xi, X =
Cf=, (X, ai) Xi. Therefore, A is a lattice with basis X1, . . . , X1. A weight X is

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

98 - Dennis M. Snow

dominant if its coefficients are nonnegative, (X, ai) > 0, i = 1, . . . , 1. The set of
dominant weights is denoted by A+. Notice that A+ = h n @, so that any weight
is conjugate to a unique dominant weight.

We are interested in calculating the action of the Weyl group Won the weights
A. For a fixed base A = ((Ye, . . . , LYE] the set of fundamental dominant weights,
x l,..., Xl, is the best basis in which to perform these calculations, so we simply
write (m,, ml) for the weight CEE, mi Xi. The action of a simple reflection
ci=c,,.onaweight/*=(mr,...,ml)isgivenby

Ui(/.l.) = p - (p, Cti)Ck!i = (ml - T&Cil, . . . , ml - VZiCil) (1.2)

where (cil, . . . , cil) is the vector expression for the root ai. Since cij = (ai, aj),
this vector is just the ith row of the Cartan matrix ((ai, aj))f,jZl. The action of
a general element u E W can be found by expressing u as a product of simple
reflections and applying the above formula.

2. COMPUTING ORBITS BY LEVEL

Let us describe in more detail the procedure mentioned in the introduction for
generating a Weyl group orbit. We need, first of all, a simple way to determine
the level of ci([), for a simple reflection gi and a given point 4 = (xl, . . . , xl) E
E. Let u E W be such that 4 = u(v) for some u E @ with level (,$) = Z(u). If
Xi = 0, then ai = 4 and level (ai(= level([). If xi > 0, then (ai, [) > 0,
and therefore (~-~(a~), u) > 0, since the Killing form is invariant under W. Now,
u is dominant, so it must be that u-l (ai) is a positive root, and this implies that
Z(aia) = Z(u) + 1, see (1.1). Therefore, level (ai(= level([) + 1. A similar
argument shows that if Xi < 0, then level (ai ([)) = level([) - 1. TO summarize:
Ift=(X1,...,rl)EE,then

level([) + 1 if Xi > 0,
leVel(Ui([)) =

i
level([) if 3ci = 0, (2.1)
level([) - 1 if Xi < 0.

Now, suppose we are given a dominant weight P E A+. The weights in the orbit
W.w = (u.~ 1 u E W) can be organized by level. Let Lk denote the kth level of
W.p, that is, the set of weights in W.,u of level k. Then W.p is the disjoint union
OfLo, . ..) LN where N is the maximum possible level in W.p. Note that N is
bounded by the number of positive roots in Z, since this is the maximum length
of a Weyl group element. Level Lo consists only of P, Lo = (p). To create level
L1, we reflect P by all the simple reflections. By (2.1) we need only reflect by the
simple reflection ui if the ith coordinate of p is positive. The procedure is similar
for inductively generating level L k+l from the previously computed level Lk.
Obviously, every element of Lk+l will be of the form ai for some simple
reflection ui and some weight v E Lk. Therefore, by (2.1):

L k+l = (U;(V)1 i = 1, . . . , I, u = (nl, . . . , nl) E Lk, n; > 0).

This formula shows how simple it is to decide whether a weight in level Lk
should be reflected by a given simple reflection to obtain a weight in level L,,,.
On the other hand, the formula hides a real problem in actually computing a
W-orbit this way, namely, how to avoid repetitions during the calculation of level
ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Weyl Group Orbits l 99

L k+l. Since there are many occurrences of ci(v1) = uj(u2) with vi, v2 E Lk, and
the level Lk can be very large, simply searching the level being created for every
weight reflected from Lk to Lk+, is not practical. Hash tables would speed up this
task, but for very large Weyl groups the process is still too inefficient. By taking
advantage of a natural ordering of the weights, it is actually quite easy to avoid
repetitions. We shall now prove that the decision to save a weight ai depends
only on its coordinates and the index i.

THEOREM 2.1 Let Lk be the kth level in the orbit W.P of a dominant weight
PE@. Then,foreach[= (x1, x1) E Lk+l, there exists a unique Y E Lk and a
unique simple reflection ui such that ui (u) = l and Xj 2 0 for j > i. In particular,
the next level L,,, can be constructed without repetitions from the weights Y in Lk
by adding ai to L,+, if and only if the ith coordinate of u is positive and the
coordinates of ai after the ith are nonnegative:

L k+l = (Ui(U) = (X1, Xl)1 i = 1, . . ., 1, (2.2)
u= (nl, nl) E Lk, ni > 0, Xj 2 0, j > i).

PROOF. Let,$=(X,,..., x1) be an arbitrary element of Lk+l. Let i be the index
of the last negative coordinate of [, that is, xi < 0 and Xj 2 0 for j > i. Let u :=
ai = h, . . . , nl), SO that ai = 4. By (1.2), ni = Xi - xicii = -Xi > 0, and by
(2.1), u E Lb. This proves the equality (2.2). Now, suppose u,(o) = ,$ for some
o E Lk other than u. By (2.1), the mth coordinate of o must be positive, so that
x, < 0. Hence m < i by the choice of i (i # m because w # u). Since Xi < 0, this
proves that the representation of 4 as ai with u E Lk and Xj z 0 for j > i is
unique. 0

3. MEMORY EFFICIENT GENERATION OF ORBITS

Now that we have discussed how to generate a Weyl group orbit with minimal
computation, let us address the issue of memory requirements. If an orbit is
computed by level, as outlined in the previous section, then an entire level must
be stored somewhere in order to generate the next level. We have already
mentioned that even for the group Es, this means saving over 18 million 8-
dimensional vectors at a time. For reasons of speed, it is most natural to want to
keep these vectors in random access memory. However, in many systems today,
this amount of memory is not available. Permanent storage devices of the required
capacity are more readily available, but retrieval of this data slows the compu-
tations greatly. One may not even be interested in saving the weights generated,
but only in using them for other computations.

These concerns about memory requirements can be circumvented by reorgan-
izing the way an orbit is generated. Not only does Theorem 2.1 provide an
efficient way to compute one level from another, it also shows that the decision
to “save” a newly generated weight ai can be made solely on the basis of the
coordinates of ai(u) and the index i. This fact can be exploited in such a way
that one need never remember more weights at any one time than the number of
positive roots in the group, a significant reduction from the number of weights
in the largest level. Let us now describe this new algorithm.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

100 l Dennis M. Snow

We may think of a Weyl group orbit W.p as a directed graph whose nodes are
the weights. Two weight-nodes v , , uq are connected by an edge if there is a simple
reflection gi E W such that bi (vi) = v2. The direction of that edge is from the
weight-node at the lower level to the weight-node at the higher level. For a given
weight u2 E Lk+l, there are usually many “predecessors” v1 E LA such that ai
= b;(v2). Theorem 2.1 shows, however, that there is a systematic way of finding
a predecessor. If we include in our graph only those edges between the weight-
nodes that correspond to these uniquely determined predecessors, then our graph
becomes a tree. A weight-node can have several successors, but only one prede-
cessor. The “root” of the tree, or starting weight-node, is the dominant weight in
the orbit ~1 E @?. The “depth” of a particular weight-node is the level of that
weight; the collection of nodes at a particular depth forms a level, as we have
defined it above. With this structure in mind, we can now generate the orbit W.p
in the same way that a tree is commonly searched, that is, “depth first.” Let us
define a recursive algorithm, called Branch(v), which takes a weight-node v =
h, *a-, nl) E Lk and generates the branch of the tree which proceeds from the
weight-node v.

Branch(v):

1. Set i, = 0.
2. Let i be the first index such that i > i0 and ni > 0. If there is no such

index i, then stop.
3. Compute the reflected weight 4 = Us = (xi, . . . , xl>.
4. If Xi+1, . . . , xl L 0, then output [and execute Branch ([).
5. Set iO = i and go to step 2.

Branch(p) would report all the weight-nodes in the tree (all the weights in the
orbit W.p). The only operations needed in Branch are to compare integers and
to compute the reflection in step 3. The latter step can be streamlined into
performing no more than three additions and a sign change, as we shall see in
the next section. Clearly, in step 4, many other items of interest may also be
reported along with [while the necessary information is readily at hand, for
example, the number of weights computed up to that point, the simple reflection
that generated [, the position of v in the list, or the level of 4, to name a few.
Most of these things, of course, can be recovered from the weight 6 itself. To
illustrate this, let us show how one can quickly compute the level of 4 = (xi, . . . ,
x1) by finding the shortest path in the tree-as a sequence of simple reflections-
from [to the root node P.

Reflections ([):

1. Let i be the index of the first negative coordinate, 3~; < 0. If there is no
such index, then stop.

2. Compute the weight v = ui ([).
3. Output the index i.
4. Set [= v and go to step 1.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Weyl Group Orbits l 101

The number of reflections reported by Reflections ([) is clearly the level of 5,
since the level is reduced every time by exactly one in step 2, see (2.1), and the
process does not stop until all coordinates are positive.

The procedure Reflections is also useful as a “translator” between weights in a
W-orbit and elements of W. If one is interested in computing the group W itself,
then one can simply compute the orbit of the dominant weight 6 = (1, 1, . . . , 1).
Then the weights in the orbit W.6 are in one-to-one correspondence with the
elements in W, since the isotropy group of 6 is trivial, W, = {u E W 1 u (6) = 6) =
1. If Y E W.6, then Reflections(v) outputs the sequence of simple reflections,
Ui,, *--Y Uik7 whose product, u = gi, * * * uik, defines the Weyl group element
corresponding to Y.

One of the many reasons to compute W-orbits is to determine “distinguished
coset representatives.” These are elements u E W that represent a coset u W, in
W/ WJ . Here, W, is the subgroup of W generated by a subset of simple reflections,
uj,indexedbyjEJC (1, 11. The representative u is called distinguished if
it is the uniquely determined element of minimal length among the elements of
the coset u W,,, [3]. Let p = (ml, . . . , ml) E 6? be the dominant weight defined by
mi = 0 for i E J, and mi = 1 for i $ J. Then the isotropy subgroup W, is precisely
the subgroup W,, since ai = p H mi = 0. The weights in the orbit W.p are
thus in one-to-one correspondence with the cosets in W/W,. We can use
Brunch(p) to find all the weights in W.p and then apply the procedure Reflections
to translate the weights to corresponding Weyl group elements. These elements
will obviously have minimal length in their cosets, and therefore form the set of
distinguished coset representatives. Notice that Brunch could include the reflec-
tion information in step 4, so that a separate application of Reflections is not
necessary.

There is a certain symmetry in all Weyl group orbits, which can be exploited
to cut memory and time requirements for computing an orbit in half. Let w.
denote the unique Weyl group element of maximum length. This length Z(wo) is
equal to the number of positive roots in the group G. Now ~0’ = 1, so w. acts as
an involution on any W-orbit. What makes this useful is that the action of 00 on
the weight lattice is trivial to calculate. Namely, w. maps a fundamental weight
hi to -h,(i) where s is a permutation of the indices (1, . . . , Zj satisfying s2 = id.
In fact, s is the identity for all simple groups except types Ai, Dl , and E, where
it is equivalent to the obvious Dynkin diagram automorphism. Furthermore, if
u=(q,..., nl) has level k, then

w0b) = (-n,(l), . . . , --n,(l)) (3.1)

has level N - k where N is the highest level in the orbit W.U. Note that N is
always zs I (wo). In practical terms, this means that we need only compute weights
up to level N/2 and obtain the others by this simple formula.

4. COMPUTER IMPLEMENTATIONS

In this final section, we shall sketch in the language C how to implement the
important parts of the above algorithms for computing Weyl group orbits. First,
we need a fast procedure for carrying out the reflection of a weight by a simple

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

102 l Dennis M. Snow

root. As mentioned in the previous section, this need not take more than three
additions and a sign change. To reduce the reflection operation to such minor
calculations, we must first encode the Cartan matrix M = (cij) into a more
appropriate form, which we call the Dynkin matrix. Let D be a matrix whose ith
row, Di, is a list of the column numbers of the negative entries of the ith row of
M with the added adjustment that if the entry is -2 (respectively -3), then the
column number is repeated two (respectively three) times. The list Di is termi-
nated by 0 to mark its end. With this convention, the number of entries in the
list Di is never more than 4, and this we may take as the column dimension of
D. The row dimension of D is, of course, always equal to the rank 1. For example,
the Cartan matrix for the group GP is

2 -1 [1 -3 2’

The corresponding Dynkin matrix D has the form

For the group Es the Cartan matrix is

- 2 -1 0 0 0 0
-1 2 0 -1 0 0

0 -1 2 -1 0 -1
0 0 2 -1 -1 0
0 0 o-1 2 0

-0 o-1 0 0 2

and the Dynkin matrix D is

2 0 * *-
1 3 0 *
2 4 6 0
350*’
40**
3 0 * *-

According to formula (1.2), for the reflection of a weight P = (ml, . . . , ml), by
the simple reflection gi, only the coordinates indexed by the numbers in the list
Di will change, along with the ith coordinate which always changes sign (since
cii = 2). If cij = -1, then mj changes to mj - micij = mj + mi; if cij = -2, then mj
changes to mj - mj + micij = mj + mi + mi; and if cij = -3, then mj changes to
mj - micij = mj + mi + mi + mi. Thus, to carry out the reflection of p by ai, we
must only change mi to -mi , and for each j in the list Di, increment the coordinate
mj by mi. An outline of this reflection algorithm is as follows (r is the row Di
ACM Transactions on Mathematical Software. Vol. 16, No. 1, March 1990.

Weyl Group Orbits l 103

and m is the weight h):

Reflect

Input: m=(ml,..., ml) : weight vector
i : identifies the ith simple reflection
r = h, rl, r2, rd : row i of the Dynkin matrix

output: m’ = (m:, . . . , ml) : reflection of m under gi
Procedure : setn=mi,j=ro,k=O

set m; = -n
while (j>O) 1

add n to mi
increment k by 1
setj=r,

In C, the increment step can be performed directly on a pointer variable. In
fact, the best way to maintain the Dynkin matrix is as an array of pointers
to arrays of integers (int **d;) initialized so that d[i] points to the array of
integers in Di terminated by 0. The code for the above procedure is then very
simple:

reflect(m,r,i)
int em, *r, i;

int n = m[i], j;
m[i] = -n;
while (j = *(r++)) m[j] += n;

Thus, after reflect(m,d[i],i), the array m contains the coordinates of gi(p). Notice
that at most three additions and a change of sign are required in reflect.

It should be mentioned at this point that we are indexing the above arrays
from 1 to 1, instead of the usual 0 to 1 - 1 for arrays in C. (We still index the
rows of D from 0, however.) One could either declare the arrays to be one element
longer than necessary, and ignore the offset 0 element, or one could subtract one
from the array name, right after it is declared to automatically adjust later
references to the array. In any case, the procedures and programs to follow will
be clearer if we retain the natural indexing 1 to 1.

Before we present the routines for computing orbits, let us first sketch an
implementation of the algorithm Reflections of the previous section. In step 1 of
the algorithm Reflections, the index, say i, of the first negative coordinate of the
weight must be found. However, after a reflection is performed, we do not need
to go back to the first index to start searching for the first negative coordinate
of the reflected weight. Before the reflection, all of the coordinates mj, j < i, are
nonnegative, and (excluding mi < 0, which becomes -mi > 0) the first coordinate
altered by the reflection gi is given by the first element of Di. Therefore, we
should jump to this coordinate after any reflection in our search for the first
negative coordinate of the reflected weight.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

104 l Dennis M. Snow

Reflections
Input: m=(m,,..., ml) : weight vector

D : Dynkin matrix
1:rank of G

output: list of integers identifying the sequence of simple reflections
level : the level of m
m’=(m{,..., ml) : the dominant conjugate of m

Procedure : set level = 0, i = 1
while (i 5 1)

if(mi<O) {
increment level by 1
output i
replace m by its reflection under ui
set i equal to the first element in DC

) otherwise increment i by 1
output m, level

This translates easily into C, as follows:

reflections(m, d, rank)
int *m, **d, rank;

I
int level = 0, i = 1;
printf(“reflections: ‘I);
while (i <= rank)

if (m[i] < 0) (
++level;
printf(“\%d “,i);
reflect(m,d[i],i);
i = d[i][O];

) else i++;
printf(“\nlevel: %d”,level);
printf(” \nconjugate: I’);
for (i=l; i <= rank; i++) printf(“%d ‘I, m[i]);
printf(“\n”);

I

Let us now tackle the computation of orbits. The first procedure we shall
implement for this is the computation of orbits by level described in Section 2.
It is important to be able to control the maximum number of levels computed,
since an orbit need only be computed up to level N/2 where N is the number of
levels in the orbit. The rest of the orbit can be obtained by the simple formula
(3.1). A routine like Reflections applied to we(p) would quickly give the value of
N. The basic data structures needed to compute an orbit by level are two linked
lists of weight-nodes. These weight-nodes each consist of a weight vetor and a
pointer to the next weight-node in the list. The first list, current-Zeuel, stores the
weights just computed (at the start, current-level only contains the dominant
weight p), and the second list, next-level, stores the new weights as they are
generated from current-level. Each weight in current-list is examined for positive
coordinates. If the ith coordinate is positive, the weight is reflected by cri and
ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Weyl Group Orbits l 105

stored in next-level if it meets the requirements of Theorem 2.1. When current-
level is exhausted, it is set equal to next-level and the original list is freed. To
summarize:

Orbit-by-Level

Data Structures:

Input:

output:

Procedure:

levelcount : array of integers to count each level (initialized to 0)
current-level, next-level : linked lists of weight-nodes
each weight-node contains:

w = (WI,. . . , w,) :weight vector
next : pointer to the next weight-node

m= (m,,..., ml) : dominant weight vector (all mi 2 0)
D : the Dynkin matrix
1:rankofG
maxlevel: maximum level to compute

list of weight vectors w = (wl, . . . , wL) and three associated
integers
the first integer identifies w (its position in the list)
the second and third integers identify the weight vector and the

reflection, respectively, which generated w

output m
install m at the head of list current-level
set level = 0, levelcount [level] = 1
set from = 1 (position of parent weight)
set to = 1 (position of new weight, also the current total of weights

computed)
while (levelcount [level] > 0 and level < maxlevel) (

increment level by 1
set from = to (start count-down of weights in current-level)
for (each weight w in list current-level) (

for(i=ltol)
if (wi > 0) (

reflect w to v by ci
if(v,ZOfori<jSl)((saveu?)

install v at the head of list next-level
increment levelcount [leuel] and to by 1
output v, to, from, i

1
I

decrement from by 1 (first-in, last-out order in current-list)
1
free the previous list current-level
set list current-level = next-level
set list next-level = empty list

1

The structure for weight-nodes can be set up with type-definitions in C.

typedef struct wnode (
int weight[MAXRANK+l];
struct wnode *next;

) WEIGHTNODE, *WEIGHTPTR;

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

106 l Dennis M. Snow

The corresponding code in C for the above procedure is given below.

orbit-by-level(m, d, rank, levelcount, maxlevel)
int *m, **d, rank, *levelcount, maxlevel;

I
int level = 0, from = 1, to = 1, i;
int v[MAXRANK+l];
WEIGHTPTR current-level, next-level, wp, install();
levelcount[level] = 1;
output(m,rank,from,O,to);
current-level = install(m,rank,(WEIGHTPTR)NULL);
next-level = NULL;
while (levelcount[level] > 0 && ++level <= maxlevel) (

from = to;
for (wp = current-level; wp != NULL; wp = wp > next, from--) (

for (i = 1; index <= rank; i++)
if (wp > weight[i] > 0) {

reflect(wp > weight,v,rank,d[i],i);
if (verify(v,rank,i)) (

next-level = install(v,rank,next-level);
++levelcount[level];
output(v,rank,from,i,++to);

I
free((char *)wp);

I
current-level = next-level; next-level = NULL;

printf(“total: %d\n”, to);
1

The supporting routine verify(v,rank,i) returns one if the coordinates of v after
the ith are nonnegative and 0 otherwise. This is the criterion of Theorem 2.1 for
saving a new weight in the orbit. New weights are added to the head of the list
of weights being created by install, which returns a pointer to the first weight in
the list. The routine output prints out a weight in the orbit (v), its position on
the list of weights (to), the reflection which created it (i), and the position of the
weight from whence it came (from). The routine reflect(v1 ,v2,rank,r,i) has been
modified here to reflect vl onto v2 via the ith simple reflection. The memory
used by a weight in the list current-level is freed as soon as possible. Nevertheless,
the lists can grow quite large and become the main obstacle to using this technique
for large orbits. MAXRANK is a constant representing the maximum rank of the
group G allowed in the program. Since MAXRANK affects the size of the weight
nodes, and thus the total size of the linked weight lists, its value will depend on
the amount of memory available.

The last example we give generates the Weyl group orbit depth first by
implementing the algorithm Branch in Section 3.

Orbit-Depth-First

Data Structures: levelcount : array of integers to count each level (initialized to 0)
stack of weight-structures
each weight-structure contains:

w = (w,, . . .) w,) : weight vector
level : level of w
from : integer identifying the parent weight
i : next index to examine

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Weyl Group Orbits l 107

Input: m=(ml,..., ml) : dominant weight
D : Dynkin matrix
1:rankofG

output :
maxleuel : the maximum level to compute
list of weight vectors w = (wl, . . . , wI) and four associated
integers

Procedure:

the first integer identifies w (its position in the list)
the second integer is the level of w
the third and fourth integers identify the weight vector and the

reflection, respectively, which generated w
set level = 0, leveZcount[level] = 1, i = 1
set from = 1 (position of parent weight)
set to = 1 (position of new weight, also the current total of weights

computed)
output m
push m, level, from, i onto stack
while (stack is not empty) (

pop w, level, from, i from stack
while (i s 1)

if (Wi > 0, {

reflect w to u by ci
if(IJjZOfori<j51)((savev?)

if(i+lrl)
push w, level, from, i + 1 onto stack (return to w later)

increment level by 1
increment leuelcount [leuel] and to by 1
output u, level, from, i, to
if (he1 2 maxleuel) jump out of this while loop
copy u to w (continue with orbit of w = v)
set from = to (position of w in list)
set i = first element in Di

) otherwise increment i by 1
) otherwise increment i by 1

I

The C code to implement this procedure appears below. The routines for
managing the stack are the usual pop and push; copy(v1 ,v2,rank) simply copies
the array vl to the array v2. The variable from holds the position of the previous
weight, the variable to holds the position of the new weight (which is also the
current total number of weights generated), and i identifies the simple reflection
that generates the new weight from the previous one. The level of each weight is
maintained in the variable level and the total number in each level is recorded
in the array levelcount. Thus, even though the output of orbit-depth-first is
not naturally organized according to levels, the level information can. still be
maintained.

orbit-depth-first(m, d, rank, levelcount, maxlevel)
int *m, **d, rank, *levelcount, maxlevel;

int level = 0, from = 1, to = 1, i = 1;
int w[MAXRANK+l], v[MAXRANK+l];
levelcount[level] = 1;
output(m,rank,level,from,O,to);
push(m,rank,level,from,i);

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

108 l Dennis M. Snow

while (pop(w,rank,&level,&from,&i))
while (i <= rank)

if (w[i]>O) (
reflect(w,v,rank,d[i],i);
if (verify(v,rank,i)) (

if (i < rank)
push(w,rank,level,from,i+l);

++levelcount[++level];
output(v,rank,level,from,i,++to);
if (level >c maxlevel) break;
copy(v,w,rank);
from = to;
i = d[i][O];

1 else i++;
) else i++;

In this implementation the values of from, to, and i are saved and recalled with
the weights to make it easier to reconstruct information about the orbit, but
none of them is strictly necessary for the algorithm. The first coordinate to
examine when a weight is popped from the stack is stored in i (one could always
start at 0), and level is used to cut off the computation when maxlevel is reached
(one could always compute the whole orbit and never apply (3.1)). In any case,
the total memory requirements for this algorithm are quite small. The stack can
be an array of structures, each containing the coordinates of the weight, the level,
i, and so on. The total number of structures in the stack never needs to be more
than the number of positive roots in the group, or even just half of this number
if symmetry is exploited. Thus even for E 8 one could manage with a stack of
only 60 structures. A rough general estimate for the required stack size is the
square of MAXRANK divided by 2 as long as the rank is at least 11.

Table I lists the size of each level of the Weyl group orbit of 6 = X1 + . . . + X1
for the groups E 6, E 7, and E8. These sizes also correspond to the number of
Weyl group elements of a given length (= level), see Section 3. The results were
obtained using a version of the routine orbit-depth-first on a Sun 3/280.

REFERENCES

1. BOREL, A. Linear Algebraic Groups. Benjamin, New York, 1971.
2. BOTT, R. Homogeneous vector bundles. Ann. Math. 66 (1957), 203-248.
3. CARTER, R. Simple Groups of Lie Type. Wiley, New York, 1972.
4. HUMPHREYS, J. Introduction to Lie Algebras and Representation Theory. Springer Verlag, New

York, 1972.
5. JACOBSON, N. Lie Algebras. Wiley, New York, 1962.
6. WEYL, H. Theorie der Darstellung der halb-einfacher Gruppen durch lineare Transformationen.

Math. Z. 24 (1926), 377-395.

Received October 1988; revised April 1989; accepted April 1989

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

