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ABSTRACT
Streaming media objects are often cached in segments. Previous
segment-based caching strategies cache segments with constant or
exponentially increasing lengths and typically favor caching the be-
ginning segments of media objects. However, these strategies typ-
ically do not consider the fact that most accesses are targeted to-
ward a few popular objects. In this paper, we argue that neither
the use of a predefined segment length nor the favorable caching
of the beginning segments is the best caching strategy for reduc-
ing network traffic. We propose an adaptive and lazy segmentation
based caching mechanism by delaying the segmentation as late as
possible and determining the segment length based on the client ac-
cess behaviors in real time. In addition, the admission and eviction
of segments are carried out adaptively based on an accurate utility
function. The proposed method is evaluated by simulations using
traces including one from actual enterprise server logs. Simulation
results indicate that our proposed method achieves a 30% reduction
in network traffic. The utility functions of the replacement policy
are also evaluated with different variations to show its accuracy.
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1. INTRODUCTION
Proxy caching has been shown to reduce network traffic and

improve client-perceived startup latency. However, the prolifer-
ation of multimedia content makes caching difficult. Due to the
large sizes of typical multimedia objects, a full-object caching strat-
egy quickly exhausts the cache space. Two techniques are typi-
cally used to overcome this problem, namely prefix caching and
segment-based caching. Prefix caching [17] works well when most
clients access the initial portions of media objects as noted in [4, 5].
It also reduces startup latency by immediately serving the cached
prefix from the proxy to the client while retrieving subsequent seg-
ments from the origin server. In prefix caching, the determination
of the prefix size plays a vital role in the system’s performance.

Segment-based caching methods have been developed for in-
creased flexibility. These methods also cache segments of media
objects rather than entire media objects. Typically two types of seg-
mentation strategies are used. The first type uses uniformly sized
segments. For example, authors in [14] consider caching uniformly
sized segments of layer-encoded video objects. The second type
uses exponentially sized segments. In this strategy, media objects
are segmented with increasing lengths; for example, the segment
length may double [19]. This strategy is based on the assumption
that later segments of media objects are less likely to be accessed.
A combination of these methods can be found in [2], in which con-
stant lengths and exponentially increased lengths are both consid-
ered. This type of method also favors the beginning segments of
media objects.

The prefix and segmentation-based caching methods discussed
above have greatly improved media caching performance. How-
ever, they do not address the following considerations: 1) Client ac-
cesses to media objects typically represent a skewed pattern: most
accesses are for a few popular objects, and these objects are likely
to be watched in their entirety or near entirety. This is often true for
movie content in a VoD environment and training videos in a cor-
poration environment. A heuristic segment-based caching strategy
with a predefined segment size, exponential or uniform, always fa-
vorably caches the beginning segments of media objects and does
not account for the fact that most accesses are targeted to a few
popular objects. 2) The access characteristics of media objects are
dynamically changing. The media object’s popularity and most-
watched portions may vary with time. For example, some objects



may be popular for an initial time period where most users access
entire objects. Then, as the time goes on, there may be fewer re-
quests for these objects and there may be fewer user accesses to the
later portions of the objects. In this scenario, using a fixed strategy
of caching several early segments may not work, since during the
initial time period this may overload the network as later segments
need to be retrieved frequently; then during the later time, caching
all the initial segments may become wasteful of resources. The lack
or poorness of adaptiveness in the existing proxy caching schemes
may render proxy caching to be ineffective. 3) The uniform or the
exponential segmentation methods always use the fixed base seg-
ment size to segment all the objects through the proxy. However,
a proxy is always exposed to objects with a wide range of sizes
from different categories and the access characteristics to them can
be quite diverse. Without an adaptive scheme, an overestimate
of the base segment length may cause an inefficient use of cache
space, while an underestimate may cause increased management
overhead.

In this paper, we propose an adaptive and lazy segmentation
based caching strategy, which responsively adapts to the real time
accesses and lazily segments objects as late as possible. Specif-
ically, we design an aggressive admission policy, a lazy segmen-
tation strategy, and a two-phase iterative replacement policy. The
proxy system supported by the proposed caching strategy has the
following advantages: 1) It achieves maximal network traffic re-
duction by favorably caching the popular segments of media ob-
jects, regardless of their positions within the media object. If most
of the clients tend to watch the initial portions of these objects, the
initial segments are cached. 2) It dynamically adapts to changes in
object access patterns over time. Specifically, it performs well in
common scenarios in which the popularity characteristics of me-
dia objects vary over time. The system automatically takes care of
this situation without assuming a priori access pattern. 3) It adapts
to different types of media objects. Media objects from different
categories are treated fairly with the goal of maximizing caching
efficiency.

Specifically, the adaptiveness of our proposed method falls into
two areas. 1) The segment size of each object is decided adaptively
based on the access history of this object recorded in real time. The
segment size determined in this way more accurately reflects the
client access behaviors. The access history is collected by delay-
ing the segmentation process. 2) Segment admission and eviction
policies are adapted in real time based on the access records. A
utility function is derived to maximize the utilization of the cache
space. Effectively, the cache space is favorably allocated to popular
segments regardless of whether they are initial segments or not.

Both synthetic and real proxy traces are used to evaluate the
performance of our proposed method. We show that (1) the uni-
form segmentation method achieves a similar performance result
as the exponential segmentation method on average; (2) our pro-
posed adaptive and lazy segmentation strategy outperforms the ex-
ponential and the uniform segmentation methods by about 30% in
byte hit ratio on average, which represents a server workload and
network traffic reduction of 30%.

The rest of the paper is organized as follows. The design of the
adaptive and lazy segmentation based caching system is presented
in Section 2. Performance evaluation is presented in Section 3 and
further evaluation is presented in Section 4. We evaluate the utility
function of the replacement policy in Section 5 and make conclud-
ing remarks in Section 6.

1.1 Related Work
Proxy caching of streaming media has been explored in [17, 6,

20, 10, 13, 14, 15, 19, 8, 18, 12, 2]. Prefix caching and its re-
lated protocol considerations as well as partial sequence caching
are studied in [17, 7, 6]. It had been shown that prefix/suffix caching
is worse than exponential segmentation in terms of caching effi-
ciency in [19]. Studies have also shown that it is appropriate to
cache popular media objects in their entirety.

Video staging [20] reduces the peak or average bandwidth re-
quirements between the server and proxy channel by considering
the fact that coded video frames have different sizes depending on
the scene complexity and coding method. Specifically, if a coded
video frame exceeds a predetermined threshold, then the frame is
cut such that a portion is cached on the proxy while the other por-
tion remains on the server, thus reducing or smoothing the band-
width required between the two. In [13, 14, 15], a similar idea
is proposed for caching scalable video, and this is done in a man-
ner that co-operates with the congestion control mechanism. The
cache replacement mechanism and cache resource allocation prob-
lems are studied according to the popularity of video objects.

In [10], the algorithm attempts to partition a video into different
chunks of frames with alternating chunks stored in the proxy, while
in [11], the algorithm may select groups of non-consecutive frames
for caching in the proxy. The caching problem for layer-encoded
video is studied in [8]. The cache replacement of streaming media
is studied in the [18, 12].

2. ADAPTIVE AND LAZY SEGMENTATION
BASED CACHING SYSTEM

This section describes our proposed segmentation-based caching
algorithm. In our algorithm, each object is fully cached according
to the proposed aggressive admission policy when it is accessed for
the first time. The fully cached object is kept in the cache until it
is chosen as an eviction victim by the replacement policy. At that
time, the object is segmented using the lazy segmentation strategy
and some segments are evicted by the first phase of the two-phase
iterative replacement policy. From then on, the segments of the
object are adaptively admitted by the aggressive admission policy
or adaptively replaced as described in the second phase of the two-
phase iterative replacement policy.

For any media object accessed through the proxy, a data structure
containing the following items is created and maintained. This data
structure is called the access log of the object.

• T1: the time instance the object is accessed for the first time;

• Tr: the last reference time of the object. It is equal to T1

when the object is accessed for the first time;

• Lsum: the sum of the duration of each access to the object;

• n: the number of accesses to the object;

• Lb: the length of the base segment;

• ns: the number of the cached segments of the object.

Quantities Tr , n and ns are dynamically updated upon each access
arrival. Quantity Lsum is updated upon each session termination.
Quantity Lb is decided when the object is segmented.

In addition, the following quantities can be derived from the
above items and are used as measurements of access activities to
each object. In our design, Tc is used to denote the current time
instance. At time instance Tc, we denote the access frequency F as

n

Tr−T1

, and denote the average access duration Lavg as Lsum
n

. Both
of these quantities are also updated upon each access arrival.



We now present the three major modules of the caching system.
The aggressive admission policy is presented in section 2.1. Sec-
tion 2.2 describes the lazy segmentation strategy. Details of the
two-phase iterative replacement policy are presented in section 2.3.

2.1 Aggressive Admission Policy
For any media object, cache admission is evaluated each time it

is accessed with the following aggressive admission policy.

• If there is no access log for the object, the object is accessed
for the first time. Assuming the full length of the object
is known to the proxy, sufficient cache space is allocated
through an adaptive replacement algorithm as described in
section 2.3. The accessed object is subsequently cached en-
tirely regardless of the request’s accessing duration. An ac-
cess log is also created for the object and the recording of the
access history begins.

• If an access log exists for the object (not the first time), but
the log indicates that the object is fully cached, the access log
is updated. No cache admission is necessary.

• If an access log exists for the object (not the first time), but
the log indicates that the object is not fully cached, the sys-
tem aggressively considers caching the (ns + 1)th segment
if Lavg ≥ 1

a
∗ (ns +1)∗Lb, where a is a constant determined

by the replacement policy (see section 2.3). The inequality
indicates that the average access duration is increasing to the
extent that the cached ns segments can not cover most of the
requests while a total of ns +1 segments can. Therefore, the
system should consider the admission of the next uncached
segment. The final determination of whether this uncached
segment is finally cached or not is determined by the replace-
ment policy (see section 2.3). (In our system, a = 2, that is,
when Lsum

n
≥ ns+1

2
∗ Lb is true, the next uncached segment

of this object is considered to be cached.)

In summary, using aggressive admission, the object is fully ad-
mitted when it is accessed for the first time. Then the admission of
this object is considered segment by segment.

2.2 Lazy Segmentation Strategy
The key of the lazy segmentation strategy is as follows. Once

there is no cache space available and thus cache replacement is
needed, the replacement policy calculates the caching utility of
each cached object (see section 2.3). Subsequently, the object with
the smallest utility value is chosen as the victim if it is not active
(no request is currently accessing it). If the victim object is fully
cached, the proxy segments the object as follows. The average ac-
cess duration Lavg at current time instance is calculated. It is used
as the length of the base segment of this object, that is, Lb = Lavg.
Note that the value of Lb is fixed once it is determined. The object
is then segmented uniformly based on Lb. After that, the first a
segments are kept in the cache, while the remaining segments are
evicted (see section 2.3). The number of cached segments, ns, is
updated in the access log of the object accordingly. If a later re-
quest demands more than the cached number of segments of this
object, data of length Lb (except for the last segment) is prefetched
from the server.

In contrast with existing segmentation strategies, in which seg-
mentation is performed when the object is accessed for the first
time, the lazy segmentation strategy delays the segmentation pro-
cess as late as possible, thus allowing the proxy to collect a suffi-
cient amount of accessing statistics to improve the accuracy of the

segmentation for each media object. By using the lazy segmen-
tation strategy, the system adaptively sets different base segment
lengths for different objects according to real time user access be-
haviors.

2.3 Two-Phase Iterative Replacement Policy
The replacement policy is used to select cache eviction victims.

We design a two-phase iterative replacement policy as follows. First
of all, a utility function is derived to help the victim selection pro-
cess. Several factors are considered to predict future accesses.

• The average number of accesses;

• the average duration of accesses;

• the length of the cached data (could be the whole object, or
could be some segments), which is the cost of the storage;
and

• the probability of the future access. In addition to the above
factors used to predict the users’ future access behaviors, the
two-phase iterative replacement policy considers the possi-
bility of future accesses as follows: the system compares the
Tc − Tr, the time interval between now and the most re-
cent access, and the Tr−T1

n
, the average time interval for an

access happening in the past. If Tc−Tr > Tr−T1

n
, the possi-

bility that a new request arrives soon for this object is small.
Otherwise, it is more likely that a request may be coming
soon.

Intuitively, the caching utility of an object is proportional to the
average number of accesses, the average duration of accesses and
the probability of accesses. In addition, it is inversely proportional
to the size of the occupied cache space. Therefore, the caching
utility function of each object is defined as follows:

f1(
Lsum

n
)p1 ∗ f2(F )p2 ∗ MIN{1,

Tr−T1

n

Tc−Tr
}

f3(ns ∗ Lb)p3

, (1)

where
f1(

Lsum
n

) represents the average duration of future access;
f2(F ) represents the average number of future accesses;

MIN{1,
Tr−T1

n

Tc−Tr
} denotes the possibility of future accesses; and

f3(ns ∗ Lb) is the cost of disk storage.
Equation 1 can be simplified as

Lsum
Tr−T1

∗ MIN{1,
Tr−T1

n

Tc−Tr
}

ns ∗ Lb

(2)

when p1 = 1, p2 = 1 and p3 = 1.
Compared with the distance-sensitive utility function 1

(Tc−Tr)×i

(i represents the ith segment, 1
Tc−Tr

is the estimated frequency)
used in the exponential segmentation method [19] which favorably
caches segments closer to the beginning of media objects, the pro-
posed utility function provides a more accurate estimation based on
the popularity of segments regardless of their relative positions in
the media object. This helps to ensure that less popular segments
get evicted from the cache.

Given the definition of the utility function, we design a two-
phase iterative replacement policy to maximize the aggregated util-
ity value of the cached objects. Upon object admission, if there is
not enough cache space, the system calculates the caching utility
of each object currently in the cache. The object with the smallest
utility value is chosen as the victim and partial cached data of this
object is evicted in one of the two phases as follows.



• First Phase: If the access log of the object indicates that the
object is fully cached, the object is segmented as described
in section 2.2. The first a (a = 2) segments are kept and
the rest segments are evicted right after the segmentation is
completed. Therefore, the portion of the object left in cache
is of length 2 ∗ Lb. Given that Lb = Lavg at this time in-
stance, the cached 2 segments cover a normal distribution in
the access duration.

• Second Phase: If the access log of the object indicates that
the object is partially cached, the last cached segment of this
object is evicted.

The utility value of the object is updated after each replacement
and this process repeats iteratively until the required space is found.

The design of the two-phase iterative replacement policy reduces
the chances of making wrong decisions of the replacement, and
gives fair chances to the replaced segments so that they can be
cached back into the proxy again by the aggressive admission pol-
icy if they become popular again. In addition, the iterative nature of
the replacement procedure ensures that the aggregated utility value
of the cached objects is maximized.

Note that even after an object is fully replaced, the system still
keeps its access log. If not, when the object is accessed again, it
should be fully cached again. Since media objects tend to have
diminishing popularity as the time goes on, if the system caches
the object in full again, it results in an inefficient use of the cache
space. Our design enhances the resource utilization by avoiding
this kind of situation.

3. PERFORMANCE EVALUATION
An event-driven simulator is implemented to evaluate the perfor-

mance of the exponential segmentation, the uniform segmentation,
and our proposed adaptive and lazy segmentation techniques by
using synthetic and real traces. For the adaptive and lazy segmen-
tation strategy, Equation 2 is used as the utility function. The ex-
ponential segmentation strategy always reserves a portion of cache
space (10%) for beginning segments, and leaves the rest for later
segments. The utility function used is as described in section 2.3 for
the replacement of later segments, while the LRU policy is used for
the beginning segments. The only difference between the uniform
segmentation and the exponential segmentation method is as fol-
lows. Instead of segmenting the object exponentially, the uniform
segmentation strategy segments the object with a constant length.
Since the exponential segmentation strategy always caches the first
6 segments as in [19], for a fair comparison, the uniform segmen-
tation strategy always caches the same length of first several seg-
ments of media objects. Thus whether the exponentially increasing
segment length plays an important role can also be evaluated.

The byte hit ratio is defined as how many bytes are delivered to
the client from the proxy directly, normalized by the total bytes the
client requested. It is used as the major metric to evaluate the re-
duction of the network traffic to the server and the disk bandwidth
utilization on the server. The delayed start request ratio is defined
as how many requests among the total do not have a startup latency
since the initial portion of the requested object is cached on the
proxy. It is used to indicate the efficiency of these techniques in
reducing the user perceived startup latency. The average number
of cached objects per time unit denotes that the average number of
objects whose segments are partially or fully cached. It is used to
indicate whether the method favorably caches the beginning seg-
ments of a large number of different objects or favorably caches
the popular segments of a small number of different objects.

3.1 Workload Summary
Table 1 lists some known properties of synthetic traces and an

actual enterprise trace.

Trace Num of Num of Size λ α Range Duration
Name Request Object (GB) (minute) (day)

WEB 15188 400 51 4 0.47 2-120 1
VOD 10731 100 149 60 0.73 60-120 7
PART 15188 400 51 4 0.47 2-120 1
REAL 9000 403 20 - - 6 - 131 10

Table 1: Workload Summary

WEB and VOD denote the traces for the Web and VoD envi-
ronment with complete viewing, while PARTIAL denotes the trace
for the Web environment with partial viewing. These synthetic
traces assume a Zipf-like distribution (pi = fi/

� N

i=1 fi, fi =
1/iα) for the popularity of media objects. They also assume the
request arrival follows the Poisson distribution (p(x, λ) = e−λ ∗
(λ)x/(x!), x = 0, 1, 2...).

REAL denotes the trace extracted from server logs of HP Cor-
porate Media Solutions, covering the period from April 1 through
April 10, 2001.

3.2 Evaluation on Complete Viewing Traces
Figure 1 shows the performance results from simulations using

the WEB trace. Lazy segmentation refers to our proposed adaptive
and lazy segmentation method. Exponential segmentation refers to
the exponential segmentation method. Uniform segmentation (1K)
refers to the uniform segmentation method with 1KB sized seg-
ments, while uniform segmentation (1M) refers to the uniform seg-
mentation method with 1MB sized segments1. Evident from Figure
1(a), lazy segmentation achieves the highest byte hit ratio. When
the cache size is 10%, 20% and 30% of the total object size, the
byte hit ratios of lazy segmentation and exponential segmentation
are more than 50% and 13%, 67% and 39%, 75% and 29%, respec-
tively. The absolute performance gap is more than 30% on average
and gradually decreases with the increase of available cache space.
On average, uniform segmentation achieves a similar result as ex-
ponential segmentation, which indicates that the exponentially in-
creased length does not have an obvious effect on the byte hit ratio.

Figure 1(b) shows that in terms of the delayed start request ratio,
uniform segmentation (1K) achieves the best result, while expo-
nential segmentation is ranked second. This is expected since both
of them always favorably cache the beginning segments of media
objects. Lazy segmentation achieves the worst percentage among
the three. The results indicate that the achieved high byte hit ratio
is paid at the expense of a high delayed start request ratio.

Figure 1(c) shows the average number of cached objects per time
unit. Lazy segmentation always has the least number of objects
cached on average, while it always achieves the best byte hit ratio.
The results implicitly indicate that favorably caching the beginning
segments of media objects is not efficient in reducing network traf-
fic to the server and disk bandwidth utilization on the server.

The results of the VOD trace shown in Figure 2 show similar
trends as those of WEB. The byte hit ratio of lazy segmentation
is improved by 28, 24 and 10 percentage points over exponential
segmentation when the cache size is 10%, 20% and 30% of the
total object size correspondingly.

Since WEB and VOD are the complete viewing scenarios, re-
sults from simulations using these two traces demonstrate that in
1In the following context, we also use them to represent their cor-
responding strategies for brevity.
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Figure 1: WEB: (a) Byte Hit Ratio, (b) Delayed Start Request ratio, and (c) Average Number of Cached Objects
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Figure 2: VOD: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects

terms of the byte hit ratio, it is more appropriate to cache the pop-
ular segments of objects instead of favorably caching the begin-
ning segments of a media object. It also implicitly shows that the
two-phase iterative replacement policy of our proposed method can
successfully identify the popular objects when compared with the
distance-sensitive replacement policy used in the the exponential
segmentation technique.

3.3 Evaluation on Partial Viewing Traces
Figure 3 shows the performance results from simulations using

PARTIAL. 80% of requests in PARTIAL only access 20% of the
object. Shown in Figure 3(a), lazy segmentation achieves the best
byte hit ratio: when the cache size is 10%, 20% and 30% of the to-
tal object size, the byte hit ratio increases by 28, 42, and 7 percent-
age points, respectively, over the exponential segmentation method.
Compared with results of WEB, the improvement of our proposed
method over the exponential segmentation method is reduced due
to the 80% partial viewing sessions. Again, uniform segmentation
(1K) achieves a similar byte hit ratio as that of exponential segmen-
tation on average.

Figure 3(b) shows the delayed start request ratio. As expected,
the lowest is achieved by uniform segmentation (1K) while expo-
nential segmentation still gets the second lowest percentage. Lazy
segmentation achieves the highest. This confirms that the higher
byte hit ratio is paid by a higher delayed start request ratio.

Figure 3(c) shows the average number of cached objects of PAR-
TIAL. It shows that lazy segmentation always has the least number
of objects cached, while it always achieves the highest byte hit ra-
tio. The results further indicate that favorably caching the begin-
ning segments of media objects is not effective for alleviating the
bottlenecks of delivering streaming media objects.

For the real trace REAL, Figure 4(a) shows the byte hit ratio as a
function of increased cache size. When the cache size is 20%, 30%,
40% and 50% of the total object size, the byte hit ratio increases
of lazy segmentation are 31, 28, 29, 30 percentage points, respec-
tively, over exponential segmentation. The average performance
improvement is about 30 percentage points. The trends shown in
Figure 4(a) are consistent with the previous ones.

Figure 4(b) shows the delayed start request ratio for the REAL
trace. It shows that lazy segmentation has similar results as expo-
nential segmentation. Its performance even exceeds that of expo-
nential segmentation when the cache size is 10% and 20% of the
total cache size. This is due to the nature of partial viewing in
REAL. In our proposed method, much cache space is available for
the beginning segments of objects. The result reflects the adaptive-
ness of our proposed method.

Figure 4(c) shows that consistent with previous evaluations, our
proposed method still has the least number of objects cached on
average while achieving the highest byte hit ratio.

The results of REAL show that lazy segmentation achieves the
highest byte hit ratio and nearly the lowest delayed start request
ratio. The adaptiveness of our proposed method shown in this eval-
uation confirms our analysis in Section 1.

All these performance results show that: (1) in terms of byte hit
ratio (reductions of server workload and network traffic), our pro-
posed adaptive and lazy segmentation method always performs best
with the least number of objects cached; (2) uniform segmentation
(1K) achieves a similar result on both the byte hit ratio and the de-
layed start request ratio as the exponential segmentation method on
average.

The performance results also indicate that favorably caching the
beginning segments of media objects is not effective in alleviating
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Figure 3: PART: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects
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Figure 4: REAL: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects

the bottlenecks for delivering streaming media and exponentially
increasing segment length does not have an obvious advantage over
constant segment length in terms of byte hit ratio.

Uniform segmentation with other base segment lengths are also
tested. They achieve similar performance results as those of uni-
form segmentation (1M) in byte hit ratio and worse results in de-
layed start request ratio.

4. ADDITIONAL RESULTS
In Section 3, the adaptive and lazy segmentation strategy is eval-

uated comparatively with the exponential segmentation and the uni-
form segmentation strategies. We have learned that generally the
adaptive and lazy segmentation strategy achieves a higher byte hit
ratio. We also know that the adaptive and lazy segmentation strat-
egy does not reserve space for beginning segments of media ob-
jects, while the exponential segmentation and uniform segmenta-
tion strategies do reserve space for beginning segments (10% of
the total cache size in the experiments). Thus one may argue that
the higher byte hit ratio achieved by lazy segmentation comes from
freeing the reserved space. To examine whether this is true or not,
two groups of experiments are designed and performed based on
the changes of either the lazy segmentation strategy, either the ex-
ponential and uniform segmentation strategies. These experiments
are used to evaluate whether the freeing of reserved space has a sig-
nificant impact on the byte hit ratio improvement achieved by lazy
segmentation.

4.1 Small Cache Size for Lazy Segmentation
Firstly, we use a smaller cache space for lazy segmentation. It

means that the available cache space for the adaptive and lazy seg-
mentation strategy is the same as the cache space for the exponen-

tial segmentation strategy other than the reserved part. In these
experiments, the reserved portion for the exponential segmentation
strategy is set to 10%, thus the totally available cache space for
lazy segmentation is only 90% of the cache space for exponential
segmentation. The remaining 10% is reserved for no use.

Figure 5 shows the corresponding results using the WEB trace.
Compared with Figure 1, the achieved byte hit ratio of lazy segmen-
tation does decrease a little. However, it still achieves the highest
byte hit ratio among all the strategies as shown in Figure 5(a). In
Figure 5(b), the delayed start request ratio achieved by lazy seg-
mentation is even worse compared to Figure 1(b), due to the de-
crease of the total available cache size. Figure 5(c) shows that due
to the case when only 90% space is available for lazy segmentation,
the average number of cached objects is less than the total number
of objects when the cache size is 100% of the total object size.

The results using the VOD trace is shown in Figure 6. All the
trends indicated on Figure 6 are similar to those on Figure 5, with
smaller changes correspondingly. The smaller changes are due to
the longer durations of the VOD trace.

Compared with Figure 3, the variations of results using the trace
PARTIAL in Figure 7 are more significant on byte hit ratio and de-
layed start request ratio. Due to the partial viewing nature of this
trace, the performance results are more sensitive to the changes
of the available cache size for the adaptive and lazy segmentation
strategy. However, lazy segmentation still has a significant advan-
tage over the others in achieving a high byte hit ratio. Note that
in Figure 7, the average number of cached objects reaches the total
number of objects when the cache size is 100%. This is different in
Figure 5 and Figure 6.

Figure 8 shows the corresponding results using the REAL trace.
The byte hit ratio, delayed start request ratio, and average number
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Figure 5: WEB: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects
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Figure 6: VOD: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects
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Figure 7: PART: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects
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Figure 8: REAL: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects
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Figure 9: WEB: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects
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Figure 10: VOD: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects(c)

of cached objects change little for lazy segmentation. We believe
this is due to the fact that the REAL trace has many prematurely
terminated sessions.

In summary, the results of these experiments show that the high-
est byte hit ratio achieved by lazy segmentation is not from freeing
the reserved space.

4.2 Eliminating Reserved Space for Uniform
and Exponential Segmentation

In previous section, we have altered the available cache space
for lazy segmentation to show that the freeing of reserved space
does not change the conclusion we made. In this section, we de-
sign another group of experiments for this purpose. In these ex-
periments, the available cache space for the uniform and exponen-
tial segmentation strategies and the lazy segmentation strategy are
the same. However, for uniform and exponential segmentation,
no cache space is reserved for the beginning segments. Following
the original strategy, for the uniform and exponential segmentation
strategies, the first several segments will be cached when the ob-
ject is initially accessed while the rest will not. Once the rest of
an object is accessed again, it is considered to be cached according
to its caching utility as defined in [19]. The beginning segments
and the remaining segments compete together for the cache space
when they need it. These comparisons can provide more insights
into whether the byte hit ratio improvement of our proposed adap-
tive and lazy segmentation strategy comes from the reserved cache
space.

Figure 9 shows the corresponding results using the WEB trace.
Compared with Figure 1, the uniform and exponential segmenta-
tion strategies have similar performance results, and the lazy seg-
mentation strategy still achieves the highest byte hit ratio among

all the strategies as shown in Figure 9(a). In Figure 9(b), the de-
layed start request ratio achieved by the uniform and exponential
segmentation strategies are almost same. Figure 9(c) shows that
the average number of cached objects for uniform and exponential
segmentation are close to each other.

The results using the VOD trace is shown in Figure 10. All the
trends indicated on Figure 10 are similar to those shown on Fig-
ure 9.

We show the results using the PARTIAL trace in Figure 11. It
is interesting to see that lazy segmentation has a larger number of
cached objects on average when the cache size increases from 30%
in Figure 11(c). The reason behind this is that a large portion of the
sessions are terminated earlier. In Figure 11(a), we find that lazy
segmentation still achieves the highest byte hit ratio.

The corresponding results using the trace REAL are shown in
Figure 12. Again, the results do not show significant impact of the
reserved space on the byte hit ratio improvement for the uniform
and exponential segmentation strategies.

5. EVALUATION OF THE REPLACEMENT
UTILITY FUNCTION

In the previous evaluation, we always use Equation 2 as the util-
ity function for lazy segmentation. To examine the effects of the
variant utility function on system performance, we vary p1 and p2

in Equation 1 to simulate the different weights of the frequency and
the average access duration. To simulate different weights of stor-
age space, we vary p3 in Equation 1. The corresponding results are
presented in this section.

Figure 13 shows the performance results using the WEB trace.
Figure 13(a) shows that the byte hit ratio changes slightly when the
caching utility is changing with the available cache size. Figure
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Figure 11: PART: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects
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Figure 12: REAL: (a) Byte Hit Ratio, (b) Delayed Start Request Ratio, and (c) Average Number of Cached Objects
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Figure 13: WEB: Variant Utility Functions of Replacement
Policy
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Figure 14: VOD: Variant Utility Functions of Replacement Pol-
icy

13(b) indicates that the delayed start request ratio has larger varia-
tions when the cache size increases, especially when the cache size
increase from 40% to 90% of the total object size. It also shows
that for lazy segmentation, a better delayed start request ratio can
be achieved once the priority of the cache space consumption is
increased.

The results from the VOD trace in Figure 14 indicate similar
trends as before. Figure 14(a) shows that the byte hit ratio varies
widely compared to those of the WEB trace while Figure 14(b)
indicates the changes of the delayed start request ratio are not as
significant as those of the WEB trace.

Figure 15 shows the results using the PARTIAL trace, which is a
partial viewing case of the WEB trace. Generally, the trends shown
in Figure 15 are similar to those of WEB. However, Figure 15(b)
does show larger variations of the delayed start request ratio when
the cache space is increasing. This indicates that the PARTIAL
trace is more sensitive to the storage space consumption.

Figure 16 shows the results using the REAL trace. It indicates
similar trends as shown in Figure 15. As shown on Figure 16, the
increase of the priority on storage space consumption will worsen
and fluctuate the delayed start request ratio for the lazy segmenta-
tion strategy. This is due to the large number of early terminated
sessions.

Through all these experiments, we find the performance of the
adaptive and lazy segmentation strategy can be adjusted depending
on available cache space to a certain extent. However, in general,
increasing the weights of average access duration and frequency
has less impact on the performance results.

6. CONCLUSION
We have proposed a streaming media caching proxy system based
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Figure 15: PART: Variant Utility Functions of Replacement
Policy
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Figure 16: REAL: Variant Utility Functions of Replacement
Policy

on an adaptive and lazy segmentation strategy with an aggressive
admission policy and two-phase iterative replacement policy. The
proposed system is evaluated by simulations using synthetic traces
and an actual trace extracted from enterprise media server logs.
Compared with a caching system using uniform and exponential
segmentation methods, the byte hit ratio achieved by the proposed
method is improved by 30% on average, which indicates a 30%
reduction in the server workload and network traffic. Additional
evaluations show that the improvement in byte hit ratio of the lazy
segmentation is not from the freeing of reserved space. The results
show that the adaptive and lazy segmentation strategy is a highly
efficient segment-based caching method that alleviates bottlenecks
for the delivery of streaming media objects.

We are currently investigating the trade-offs between network
traffic reduction and client startup latency.
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