
Query Optimization in a Memory-Resident
Domain Relational Calculus Database
System

KYU-YOUNG WHANG and RAVI KRISHNAMURTHY
IBM Thomas J. Watson Research Center

We present techniques for optimizing queries in memory-resident database systems. Optimization
techniques in memory-resident database systems differ significantly from those in conventional disk-
resident database systems. In this paper we address the following aspects of query optimization in
such systems and present specific solutions for them: (1) a new approach to developing a CPU-
intensive cost model; (2) new optimization strategies for main-memory query processing; (3) new
insight into join algorithms and access structures that take advantage of memory residency of data;
and (4) the effect of the operating system’s scheduling algorithm on the memory-residency assumption.
We present an interesting result that a major cost of processing queries in memory-resident database
systems is incurred by evaluation of predicates. We discuss optimization techniques using the Office-
by-Example (OBE) that has been under development at IBM Research. We also present the results
of performance measurements, which prove to be excellent in the current state of the art. Despite
recent work on memory-resident database systems, query optimization aspects in these systems have
not been well studied. We believe this paper opens the issues of query optimization in memory-
resident database systems and presents practical solutions to them.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design--access meth-
ods; H.2.3 [Database Management]: Languages-query languages; H.2.4 [Database Manage-
ment]: Systems--query processing

General Terms: Algorithms, Experimentation, Languages, Performance

Additional Key Words and Phrases: CPU-intensive cost model, database query language, domain
relational calculus, example element, memory-resident database, query optimization

1. INTRODUCTION

Office-by-example (OBE) [43,48,49] is an integrated office system that has been
under development at IBM Research. OBE extends the concept of query-by-
example (QBE) [501-a relationally complete database language [36]. It supports
various objects needed in a typical office environment: database relations, text
processors, electronic messages, menus, graphics, and images. In OBE most
applications involving these objects are processed by the database manager,

Authors’ current addresses: K.-Y. Whang, Computer Science Department, Korea Advanced Institute
of Science and Technology, P.O. Box 150, Cheong-Ryang Ni, Seoul, Korea; R. Krishnamurthy,
M.C.C., 3500 West Balcones Center Dr., Austin, TX 78759.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0362~5915/90/0300-0067 $01.50

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990, Pages 67-95.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F77643.77646&domain=pdf&date_stamp=1990-03-01

68 * K.-Y. Whang and R. Krishnamurthy

which constitutes the backbone of the entire system. We discuss query optimi-
zation in a domain relational calculus language in the context of the OBE system.

The database system consists of three components: a hierarchical relational
memory structure (HRMS), the query processor, and the query optimizer. HRMS
is the low-level system component that provides elementary access functions
that retrieve individual tuples. (Even though the name might indicate otherwise,
facilities supporting hierarchies of relations have not been implemented.) Based
on these primitives, the query processor implements various types of high-level
scans over the relations for retrieving tuples satisfying certain criteria (i.e.,
predicates). The query optimizer, using these high-level primitives as its options,
finds the optimal access strategy for processing a query.

For the design of the database manager, we adopt the unconventional assump-
tion of memory residency of data; that is, part of the database accessed in
processing a query resides in main memory. This assumption entails many
interesting ramifications. In particular, the data structures and algorithms must
be designed to maximize the benefit of memory residency of data. Simply keeping
the data in main memory does not automatically guarantee good performance.
We discuss in Section 6 how the assumption of memory residency can be
reasonably approximated in a practical environment. Since a practical time-
sharing system does not always allow a large amount of real memory for each
user, we emphasize the importance of proper coupling of the memory-residency
idea to the operating system’s scheduling algorithm. Especially, pure demand
paging is not adequate for memory-residency assumption. We also present the
result of measurements on OBE’s performance.

The idea of memory-residency of data has also been investigated in [lo, 11,25,
26, 331. Dewitt et al. [lo] compare performance of conventional data structures
when a large amount of real memory is available. Garcia-Molina et al. [ll]
present a new logging/recovery scheme with specialized hardware in a memory-
resident database system with infinite real memory. Lehman and Carey [25, 261
introduce a new indexing structure called the T-tree and present join algorithms
based on the T-trees (we discuss them later). Shapiro [33] introduces a hash-
based join algorithm that can be applied efficiently when the size of the main-
memory buffer is equivalent to the square root of the size of the relation processed.
Dewitt et al. [lo] and Shapiro [33] consider the large main memory as a buffer
for the disk-resident databases. On the other hand, Garcia-Molina et al. [111 and
Lehman and Carey [25, 261 regard main memory as the main depository of
data. Here, disks are used only for permanent storage of data and backup. Our
approach belongs to the latter, in which different sets of data structures and
algorithms have to be devised to take full advantage of the memory-residency of
data.

Implementations of Prolog [9] that has been widely used as a logic programming
language also have some flavor of memory-resident database systems. Warren
[38] points out the similarity between a subset of Prolog and the relational
database and proposes an optimization technique based on a variant of the hill-
climbing technique [45] with an objective (i.e., optimization criterion) of mini-
mizing tuple accesses. In this heuristic technique, only the goal (relation) ordering
is considered; various access structures, such as indexes, typically used in database
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization * 69

management systems are not taken into account in the optimization. In Section
5 we present different optimization criteria suitable for memory-resident database
systems and the optimization techniques based on the new criteria. Our technique
is not a heuristic since it employs a systematic search based on a complete cost
model. In general, Prolog has been emphasized more as a programming language
than as a memory-resident database system.

Typically, in a modern relational database system, optimization involves a cost
model specific for the system. The cost can be classified into two categories: the
CPU computation cost and the I/O access cost. Since I/O devices are typically
much slower than the CPU, many traditional approaches to query optimization
emphasized the I/O access cost [6, 14, 27, 31, 321. (The CPU computation cost
has been incorporated in System R [32] to a limited extent.) In memory-resident
database systems, however, the CPU computation cost becomes the dominant
cost. Since all the data are supposed to be in main memory, ideally, only the
CPU computation cost will exist. Modeliing the CPU computation cost is difficult
for various reasons. We discuss the problems in Section 5 and propose a new
technique of developing the cost model for CPU-intensive memory-resident
database systems.

Many optimization algorithms have been reported in the literature [16, 19,30,
32, 461. We classify these techniques into two classes: heuristic optimization and
systematic optimization. Heuristic optimization employs heuristic rules to trans-
form the query into an equivalent one that can be processed more efficiently.
Typically, heuristic optimization has been widely used for relational algebra
optimization [13, 28, 341. (Heuristic optimization is also used in INGRES [35,
461-a relational calculus based system.)

Systematic optimization finds the optimal solution by computing and compar-
ing the costs of various alternative access strategies. For the estimation of the
costs, it uses a cost model that reflects details of the physical access structures.
The systematic optimization has been initially proposed by Selinger et al. [32]
for System R [2, 71. System R’s query optimizer uses statistics of data (such as
relation cardinalities and column cardinalities) extensively in its cost model. It
also incorporates CPU computation in the cost model to a limited extent.
Systematic optimization has also been used in a later version of INGRES [23].

Warren’s technique [38] falls somewhat in between the two approaches. It uses
a rudimentary cost model based on the cardinalities of predicates (relations) and
domains and is driven by a heuristic (hill-climbing) technique to find a suboptimal
solution.

Our approach employs systematic optimization using a cost model of CPU
computation suitable for memory-resident database systems. As in System R, we
use statistics extensively to produce a cost estimation. To avoid exhaustive search
for alternative access strategies, we use the branch-and-bound algorithm [15].
The branch-and-bound algorithm is functionally equivalent to an exhaustive
search in that it produces an optimal solution: it prunes the search space only
when it is guaranteed that no optimal solution can be found in that search space.

The purpose of this paper is to present the architecture of the query optimizer,
the technique for developing a CPU-intensive cost model, and new aspects of
query processing, optimization, scheduling algorithms, and data structures that

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

70 - K.-Y. Whang and R. Krishnamurthy

are derived from the memory-residency assumption of data. In addition, we
present the concept of example-element binding that is unique in domain rela-
tional calculus languages. We discuss how this concept is integrated into the
optimization process in our system. Despite recent work on memory-resident
databases (especially on join algorithms and data structures), the query optimi-
zation issues in these systems have not been seriously studied. We believe this
paper provides a significant progress toward understanding comprehensive issues
involved in designing a practical query optimizer for a memory-resident database
system.

The paper is organized as follows. In Section 2 we briefly review the part of
the OBE language that is necessary for the discussion of query optimization. In
Section 3 we present query processing techniques in our system and define some
terminology. Especially, we focus on the aspects specific to domain relational
calculus languages. Then, in Section 4, we briefly discuss the storage represen-
tation of the database manager. Next, Section 5 presents in detail the optimiza-
tion strategies, optimization algorithm, and the method for developing the cost
model. In Section 6, we present the results of performance measurements and
discuss the impact of the operating system’s scheduling algorithm on the memory-
residency assumption. Finally, Section 7 summarizes the results and concludes
the paper.

2. A DOMAIN RELATIONAL CALCULUS LANGUAGE

In this section we illustrate how queries are expressed in the OBE language by
using a few examples. We concentrate only on the data manipulation part of the
language. The detailed description of the language can be found in Zloof [48].

Example 1. Consider a relation, Sales. Suppose we want a relation of sales-
persons and their sales to date exceeding $50,000. An OBE program to do this is
shown in Figure 1. In Figure 1 the operator P. stands for present and specifies
projection of the corresponding columns in the output.

Example 2. This is an example of a join query involving three relations. A
join can be specified using an example element to map the matching columns. An
example element begins with an underline followed by any alphanumeric string.
The appearance of an example element in two or more positions indicates that
the data instances corresponding to those positions should have the same value.

Consider relations, Directory, Sales, and Employees. We want to see the names
of salespersons who are not managers and their phone numbers if their sales to
date exceed $50,000. The program for this query is illustrated in Figure 2. In
Figure 2 the example element -N maps the columns in the relations Directory
and Sales to specify a join. The operator 1 specifies row negation (meaning NOT
EXIST) [50]. The row negation in Employee relation specifies that there be no
tuples having the value of-N in the Manager column.

Operators and Commands

The OBE language supports the following operators: P. (present), I. (insert), D.
(delete), U. (update), S. (send), X. (execute). The language also provides aggregate
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization l 71

Sales Salesperson

P.

Sales Quota Sales To Date

p.>!io,ooo

Fig. 1. An OBE program containing one relation.

Directory Name Phone
I

1 P.-N I p,

Sales Salesperson

-N

Sales Quota Sales To Date

>50,000

Employee Ename Manager

-N

Fig. 2. An OBE program containing three relations and
negation.

Fig. 3. An example query.

functions: SUM. (sum), CNT. (count), AVG. (average), MAX. (maximum), MIN.
(minimum), UNQ. (unique), ALL. (duplicate), and G. (grouping). The operator
1 specifies row negation.

Other Constructs

To project results derived from more than one relation, we use a user-created
output. We prefix the relation name with the symbol & to indicate that the
relation is a user-created output. An example is shown in Figure 3.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

72 * K.-Y. Whang and Ft. Krishnamurthy

3. QUERY PROCESSING

In this section we present the issues involved in processing queries in a domain
relational calculus language. We also define terminology that is used throughout
this paper. We use the example in Figure 3 for illustrative purposes.

On the screen for a query, multiple rows can appear in a relation skeleton.
Each row contains predicates and operators that are to be applied to the tuples
of the relation. Each row refers to a different instantiation of the relation. We
define a node as an instantiation of a relation with associated predicates and
operators as specified in a row. For example, in Figure 3, we have four nodes,
two of which represent different instantiations of relation Rl. Objects that do
not have corresponding base relations are not treated as nodes. For example, the
user-created output and the condition box are not nodes. We call a node a negated
node if it involves row negation; otherwise, we call it an ordinary node. Node 2
in Figure 3 is an example of a negated node.

A restriction predicate is a predicate containing only literal values. Node 3.Co13
= 150 in relation skeleton R2 is an example of the restriction predicate. A join
predicate is a predicate containing an example element that appears in a node or
in a condition box. Node 4.Coll = -X is an example of the join predicate. It
becomes a bound join predicate if all of its example elements have been assigned
specific values (i.e., bound); otherwise, it becomes an unbound join predicate.

A join predicate can be used for two purposes. (1) It can bind example elements
to specific values contained in the tuple retrieved from the database. For this
purpose, the join predicate must be a “bindable instance” of an example element.
A join predicate is a bindable instance of an example element if, when interpreted
with values in a tuple, the example element can be bound unambiguously. For
example, the join predicates in Node 1 and Node 4 are all bindable instances,
whereas the join predicate in Node 3 is not. In our implementation, we treat only
join predicates of the form Column = -X as bindable instances. We do not treat
a predicate of the form Column = -X + 5 as a bindable instance for performance
reasons since we have to perform an arithmetic operation to bind the example
element. (2) A join predicate can select qualified tuples. For this purpose, all
example elements in the join predicate must be bound. If any example element
is unbound, the evaluation of the predicate is deferred until all the example
elements are bound.

We define a column of a node with a restriction predicate as a restriction
column; a column with a join predicate is a join column. For example, Co11 of
Node 1 is a join column; Co13 of Node 3 is a restriction column.

Processing a query consists of retrieving the data, checking for satisfaction of
the conditions, computing aggregations if necessary, and constructing the output
result. The most important part of query processing is evaluation of the join.
The query processor treats all the queries as joins; thus, a single-node query is a
special case of the join. We first discuss join methods and then describe other
aspects of query processing.

There are numerous join methods reported in the literature [6, 21, 32, 46, 471.
Two join methods are frequently used in database systems: the nested-loop join
method and the sort-merge join method [32, 401.

In disk-based database systems the sort-merge join method has an advantage
over the nested-loop join method when a majority of tuples in the relations are
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization - 73

accessed. Since it processes all the tuples in a block sequentially after sorting, it
avoids a situation in which accessing one tuple requires one block access. On the
other hand, the nested-loop join method is advantageous when only a small
fraction of tuples needs to be processed. Since it accesses the tuples in a random
fashion, it is very likely to incur one block access per tuple. However, sorting is
not needed in this method. Since only a small fraction of tuples is considered,
the disadvantage of random access can be easily compensated for by the saving
of the sorting cost. Clearly, the sort-merge join method should be used only when
the benefit of sequential access exceeds the cost of sorting the tuples in the
relations.

In OBE we choose to implement only the nested-loop join method. We believe
that the nested-loop join (with proper usage of indexes) alone is adequate in
memory-resident databases.l Basically, we argue that an index can be built in
time equivalent to that for sorting a relation-both order of n log n, where n is
the number of tuples satisfying restriction predicates. A relation already sorted
corresponds to an existing index. Once the relation is sorted or an index created,
since there is no concept of blocking (i.e., many tuples in one disk block) [44] in
a memory-resident database, most of the benefit of using the sort-merge join
method can no longer be achieved. In fact, a relation can be viewed as a set of
blocks each containing only one tuple. Thus we conclude that, in a memory-
resident database, the nested-loop join method is as good as or better than the
sort-merge join method in most cases.

Notice that many variations of hash join methods [10, 261 are by our definition
nested-loop join methods, but use hash indexes. Such indexes are created on the
fly and not permanently stored. One of the access structures we define in Section
5.1 considers creating an index on the fly for a specific query. However, we did
not implement hash indexes because we decided to use the same index structure
for both permanent and temporary indexes.

Incidentally, Lehman and Carey [26] compare new join algorithms based on
the T-tree with other join methods. The T-tree is a compromise between the
array index and the AVL tree [22] that achieves more flexibility in updates than
the former and less storage space than the latter. However, their conclusion that
the T-tree merge join is the best is based on the following assumptions:

(1) They consider only unconditional joins (i.e., without any restriction predi-
cates). Typically, the nested-loop join is much preferred if there are strong
restriction predicates so that only a small number of tuples need to be joined.

(2) They define the nested-loop join as the method that does not use (or create
and use) any indexes. Clearly, the nested-loop join by this definition would
be the worst method.

(3) They do not consider the nested-loop join method as we define in this paper
(i.e., using the best index available, or creating one if beneficial).

(4) In the T-tree merge join cost, the cost of creating indexes is omitted assuming
that the indexes already exist. In all other algorithms compared, the corre-
sponding costs are included.

1 Some authors [25] define the nested-loop join as a method that does not use (nor create and use)
any indexes. Clearly, the nested-loop join by this definition would have an unacceptable performance.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

74 ’ K.-Y. Whang and R. Krishnamurthy

In the nested-loop join method, there is a total order among relations to be
joined. We define this total order as the join sequence. Also, we define the nested
loop executing the join according to the join sequence as the join loop.

Using the nested-loop join method, the query processor evaluates a query as
follows. It processes the nodes in the order of the join sequence. We define the
node currently being processed as the current node. For the current node, it first
evaluates the column predicates (the predicates that are specified in the column
of the relation skeleton) and then evaluates the cross-reference predicates (those
in a condition box or the column predicates of the previous nodes, the evaluation
of which were deferred because they were not bound). However, not all the cross-
reference predicates need to be evaluated; only those containing an example
element that gets bound at the current node are considered for evaluation since
these are the only ones that can become bound at the current node. We discuss
more refinement of this concept in Section 5.

Example 3. Let us evaluate the query in Figure 3 according to the sequence
(Node 3, Node 4, Node 1, Node 2). The query processor first retrieves a tuple
from Node 3 that satisfies the restriction predicate Co13 = 150. Then.it tries to
evaluate the join predicate Co11 = -X + -Z. Having found the predicate is
unbound, however, it tries to bind the value of the example elements, which also
fails because the predicate is not a bindable instance of either -X or -Z. (This
paradigm is improved by the query optimizer. We discuss the improvement in
Section 5.3.) Thus evaluation of this predicate is deferred by making it a cross-
reference predicate for subsequent nodes in the join sequence. Next, the query
processor retrieves a tuple from Node 4. Node 4 has two join predicates that are
unbound but bindable. Thus the query processor binds the example elements
-X and -Y with the values of Co11 and Co12 in the tuple retrieved. The cross-
reference predicate Node 3.Coll = -X + -Z still cannot be evaluated because
-Z is not bound. However, the cross-reference predicate -X > 5 in the condition
box can be evaluated here. Next the query processor retrieves a tuple from
Node 1 that satisfies the bound join predicate Co11 = -X. It subsequently
binds the example element -Z with the value of Co13 in this tuple. Note that
Co13 = -Z is a bindable instance of -Z. Since both -X and -Z are bound by
now, the query processor successfully evaluates the cross-reference predicate
Node 3.Coll = -X + -Z. If the predicate is false, the join loop backtracks
to Node 4, retrieves a new tuple in Node 4, and enters Node 1 again. If the
predicate is true, the join loop continues to Node 2. At Node 2, the query
processor checks whether the value of -Y, which has been bound in Node 4, is
in any tuple of Node 2 (i.e., evaluates the row negation). If not, the entire
evaluation is successful and the value of projection columns (which are specified
with P.; in this case, they are -X, -Y, and -Z + 5) is calculated and returned as
a result. This process is repeated until all tuples satisfying the query are
constructed.

For operations such as insertions, deletions, and updates, the query processor
employs a deferred update policy [12, 351. It first collects the tuples (together
with tuple identifiers (TIDs)) to be inserted, deleted, or updated in a temporary
relation and then updates the base relation in batch with the tuples in the

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization l 75

temporary relation. This policy makes the update part in an operation indepen-
dent of the query part. Since the update part is common in all access strategies,
optimization involves only the query part. As a result, the optimizer treats all
the operations on the database as (read-only) queries.

Aggregations are also evaluated at the end; thus they are independent of
optimization. Many DBMSs employ the same strategy. As an exception, System
R keeps track of an interesting ordering [32] so that, in the best case, it can save
a cost of sorting the result to evaluate the aggregation. Although it may be
beneficial at times, it adds significant complexity to the optimization process. In
our approach, we do not consider interesting ordering.

We define a hypothetical result relation for node Nj in the join sequence
(NI, Nz, - * * 3 Nj, . * * 9 Nd) as the result of joining nodes in the partial join
sequence (NI, Nz, . . . , Nj). As we discuss in Section 4, a result relation is never
materialized until the completion of the query. We define the result cardinality
for a node as the cardinality of the hypothetical result relation for that node.
Finally, we define access structures as the methods of accessing data that the
optimizer can select in the process of optimization.

4. STORAGE STRUCTURES

In this section we briefly introduce the storage structures implemented by the
low-level system component HRMS. More details on the storage structures can
be found in Ammann et al. [l]. HRMS provides the data storage organization
and primitive access functions. We introduce here only those features that are
relevant for query optimization, that is, the representations of relations and
indexes.

4.1 Relations

A relation is represented as a doubly linked list of tuples. Each tuple is an array
of pointers to column values. Each column value is stored as a variable-length
string with two bytes of information on its length. HRMS tries to store a unique
column value only once; thus tuples having the same column value point to the
same string. Unique values of a column can be easily detected if an index is
maintained for that column.

4.2 Indexes

HRMS provides two types of indexes: the single-column index and the multiple-
column index. A single-column index is an index defined for a column of a
relation and can be permanently stored in the database. A multiple-column index
is an index defined for a list of columns, but cannot be permanently stored in
the database.

A multiple-column index is created as follows: first, the tuples of the relation
that satisfy the restriction predicates are selected; then, an index is constructed
for the list of columns having bound equality join predicates. The lists of
restriction and join columns are designated by the optimizer. Since a multiple-
column index is always specific to a query, it is not relevant to store the index
permanently in the database. The multiple-column index has an advantage of

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

76 - K.-Y. Whang and R. Krishnamurthy

reducing the size of the relation because it selects only those tuples that satisfy
restriction predicates. Due to this reduction both the cost of creating the index
and the cost of accessing tuples using this index can be reduced.

Example 4. Consider constructing a multiple-column index for Node 3 in
Figure 3. We assume that the join predicate Co11 = -X + -Z is bound by the
time Node 3 becomes the current node. We create a multiple-column index by
first finding the tuples satisfying the restriction predicate Co13 = 150 and then
creating an index on Co11 (having a bound equality join predicate) only for these
tuples. In general, there may be more than one bound equality join predicate; in
such cases, we build an index on the list of all the join columns having bound
equality join predicates. (Hence we have the name “multiple-column index.“)
Suppose that Node 3 has 10,000 tuples and that 100 tuples satisfy the restriction
predicate Co13 = 150. Since the index is created only for these 100 tuples, the
costs of creating and accessing the index are reduced. In addition, we have an
added advantage of indexing based on more than one column simultaneously.

An index (of either type) is implemented as an array of tuple identifiers (TIDs)
that are pointers to tuples. Accessing an index uses a binary search. To avoid
arithmetic computation in the binary search as was used by Lehman and Carey
[25], we use the shift instruction instead of the division operator. Lehman and
Carey [25] point out that arithmetic operations are the major source of the cost
in searching the array index. This scheme contrasts with the conventional method
of implementing an index as a binary search tree such as the AVL tree [22].
Since the scheme does not store the tree structure explicitly, it requires less
memory space for storing indexes. In our implementation it showed a six-to-one
reduction in memory space as compared with the AVL tree. The scheme achieves
further reduction in memory space by storing only pointers to TIDs in the index;
the key values can be easily found (by two pointer references) from the tuples
they point to. In comparison, in conventional disk-based database systems, the
index storage cost is a major problem because original key values must be stored
in the index.

Updating an index is straightforward. For example, when an index entry is
inserted, the upper half of the index is block-copied to a new memory location; a
new entry is inserted; and then, the lower half of the index is block-copied next
to the new entry. For block-copying we use the instruction MOVE LONG (C)
(meaning move a long character string) defined in the IBM 370 architecture.
This instruction is a very efficient operation in IBM mainframes. Experiments
show that, in a 3081 processor, copying 1 Mbyte of memory using this instruction
takes less than 0.1 second. For this reason, updating indexes is not a major
problem in our system. We briefly present the performance of update operations
in Section 6.2.

5. QUERY OPTIMIZATION

The query optimizer determines the optimal join sequence and specific access
structures to be used in processing individual nodes. The results the optimizer
produces are recorded in a data structure called the access plan. The information
in these data structures is subsequently interpreted by the query processor to
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization - 77

evaluate the query. In this section we present the query optimizer’s algorithm,
access structures, cost model, and data structures.

Let us note that query optimization in OBE is quite simplified due to the
nature of the language. Queries written in OBE are in the canonical form as
defined by Kim [20]. In particular, queries have no substructures such as nested
queries in SQL. The advantages of the canonical representation are well explained
by Kim [20]. (Queries having aggregate operations in a condition box are
exceptions; further details on these are beyond the scope of this paper.)

In addition, the concept of example elements provides more flexibility in
optimization compared with conventional query languages where the columns
participating in a join are explicitly named. For example, consider the join
predicate: Column A = Column B AND Column B = Column C. In conventional
languages, the optimizer has to derive the fact Column A = Column C. (In many
systems, this is not done.) In OBE, since all three columns are represented by
the same example element, the information is readily available to the optimizer.

5.1 Access Structures

The optimizer defines the following access structures:

(1) Relation Scan;
(2) Single-Column Index (existing);
(3) Single-Column Index (created);
(4) Multiple-Column Index.

Relation Scan specifies that each tuple in the relation be accessed sequentially.
Single-Column Index (existing) specifies that tuples be accessed associatively
through an existing single-column index. Single-Column Index (created) also
specifies access through a single-column index, but requires that the index be
created for each query and be dropped at the completion of the query. Lastly,
Multiple-Column Index specifies that tuples be accessed through a multiple-
column index.

5.2 Cost Model

We define the minimum query processing cost (response time) as the criterion
for optimality. Since the cost of processing a query must be determined before
actually executing it, we need a proper model for estimating this cost. Since we
assume memory residency of data, we consider only the CPU computation cost.

In many conventional database systems, the cost model has been constructed
by simply counting the number of I/O accesses for processing a query. Modelling
the CPU cost, however, is not as straightforward for the following reasons.
(1) There are many parameters affecting the CPU computation cost; examples
are the design of the software, the architecture of the hardware, and even the
programming styles of the programmers. Moreover, as the system evolves, these
parameters are subject to change. (2) Even if the parameters do not change,
analyzing the overall computation cost for the entire program code is next to
impossible. For example, the most straightforward method would be to add all
the machine cycles of the machine instructions. In a large system program,
however, counting machine cycles would be impossible.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

78 l K.-Y. Whang and R. Krishnamurthy

As a solution to this problem we propose an approach using both experimental
and analytic methods. First, we identify the system’s bottlenecks, that is, those
sections of the program code that take most of the processing time. Then we
model the CPU computation cost based on only these system bottlenecks. Next,
we improve the bottlenecks to the extent that no tangible enhancement can be
made. This step prevents the cost model from drifting frequently as a result of
the changes in the program. Since usually there are only a small number of
bottlenecks, they can be thoroughly examined. In fact, our experience shows that
most bottlenecks include very small numbers of machine instructions. The next
step is to find, by experiments, relative weights of different bottlenecks and to
determine their unit costs. Finally, we develop comprehensive cost formulas based
on these unit costs.

In OBE the bottlenecks have been identified with the aid of PLEA8 execution
analyzer [29]. The execution analyzer provides the statistics on the percentage
of the time spent in individual procedures. Once a procedure is identified, it is
relatively straightforward to locate the section of the code that causes the
bottleneck.

We have measured the following unit costs:

(1) the cost of evaluating the expressions involved in predicates (unit cost = C,);
(2) the cost of comparison operations needed to finally determine the outcome

of predicates (unit cost = C,);
(3) the cost of retrieving a tuple from a (memory-resident) relation (unit

cost = (25);
(4) the cost of unit operation in creating an index (unit cost = C,; there are

n logzn unit operations in creating an index, where n is the number of tuples
in the relation);

(5) the cost of unit operation in the sorting needed to prepare a multiple-column
index (unit cost = C,).

The five parameters, C, , CZ, C3, Cd, C, have been determined by experiments
using the execution analyzer and have been stable for a long period of program
development.

An interesting result of our modeling effort has been to find that the evaluation
of the predicates (especially, expressions in the predicates) is the costliest
operation in our system. Among the five parameters, CZ, Cs, Cd, and C5 are of
the same order, and C, is approximately ten times as large as the others. Basically,
CZ, Cq, or C, represents a comparison operation. In many conventional database
systems the major cost comes from tuple retrieval due to the I/O cost involved
and the CPU cost for copying and manipulating the data structures for the
tuples. In OBE, however, tuple retrieval (C,) is as simple as following a pointer.
Since all the data are in main memory, we only have to locate the tuple without
having to copy or manipulate the tuple data structure. On the other hand,
predicate evaluation is much costlier because it requires traversing the expression
tree that has a more general form in order to accommodate various forms of
expressions. Although the complexity of expressions varies, we encounter the
simplest forms (such as -X or 5 for column predicates and -X > 5 for condition
boxes) most of the time. The measurement is based on these simple expressions.
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization l 79

The cost formulas are composed using the statistical parameters maintained
by HRMS. There are two types of parameters. The relation cardinality is the
number of tuples in a relation. The column cardinality is the number of unique
values in a column. The cost formulas are constructed in three steps. First, using
the statistical parameters, the selectivities of the predicates are calculated. Next
the cardinalities of the hypothetical result relations are calculated. Based on the
selectivities of the predicates and result cardinalities thus obtained, the total
access cost for processing a query is finally calculated.

Typically, two assumptions are used in many relational database implemen-
tations: (1) uniform distribution of data and (2) independence among columns.
The uniform distribution assumption states that the values in a column occur
with an equal probability. The independence assumption states that a value in a
column is in no way related to values in another column, that is, they are not
correlated. Although in reality the distribution of data will not conform to these
assumptions, we adopt them for practical implementation considerations. Re-
cently, some papers discussed potential deviation of the cost caused by these
assumptions. Christodoulakis [8] points out that the uniform distribution rep-
resents the worst case in single-relation case (i.e., simple selection). Vander
Zanden et al. [3’7] presents a mechanism to deal with correlation with the
clustering column. Nevertheless, the proposed techniques require a significant
amount of storage space and overhead to store and maintain the distributions of
the data. We believe that the two assumptions, although not absolutely accurate,
are sufficiently effective in eliminating any solutions that significantly deviate
from the true optimal solution. Our experience with the OBE optimizer supports
this belief.

Before concluding this subsection, let us note an interesting consideration in
constructing cost formulas. Counting the number of predicates that are to be
evaluated is an important part of the cost model. We use the following function
for this purpose. Suppose number,, is the number of bound predicates considered
for a node. Then, the number of predicates to be evaluated for a tuple in that
node is given by

if number, = 0
if number, = 1
if number, 2 2.

The function f is derived as follows. In OBE predicates specified in columns of a
node or in condition boxes are implicitly ANDed. Hence, if the first predicate is
false, the second predicate will not be evaluated. Accordingly, the probability
that the second predicate is evaluated is the same as the selectivity of the first
predicate. Likewise, the probability of the third predicate is evaluated is the
product of the selectivities of the first and the second, and so forth. We assume
that, in most cases, the selectivity of a predicate is less than one-third. Then, the
number of predicates to be evaluated will be bound by 1 + 5 + $ + . . . = 1.5.
Estimating the number of predicates based on the selectivities of individual
predicates will complicate the optimization process substantially. By using the
function f, we can obtain a reasonable estimate without overhead in most practical
cases.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

80 - K.-Y. Whang and R. Krishnamurthy

For illustrative purposes, we present example cost formulas for the access
structure Relation Scan in Appendix A. A complete set of cost formulas can be
found in Whang [391.

5.3 Optimization Strategies

As we discussed in Section 5.2, predicate evaluation (especially, expression
evaluation) is the costliest operation in processing a query. Thus, query optimi-
zation is geared to minimizing the number of predicate evaluations. For this
purpose, the optimizer employs the following strategies:

(1) binding an example element as early as possible;
(2) evaluating a predicate as early as possible;
(3) avoiding useless evaluation of a predicate;
(4) avoiding unnecessary evaluation of an expression.

An example element appearing more than once in a query may have multiple
places in the join sequence where it can be bound. In other words, it may appear
in multiple bindable instances (predicates). For example, the example element
-X in Figure 3 may be bound at either Node 1 or Node 4. Given a join sequence,
however, an example element should be bound as early as possible for better
performance. Early binding of an example element leads to early binding and
evaluation of the predicates containing the example element. Early evaluation of
predicates, in turn, results in a smaller cost by reducing the number of tuples to
be considered in the rest of the join sequence. According to strategies 1 and 2,
the optimizer finds the earliest point in the join sequence at which an example
element can be bound. For instance, in Figure 3, the optimizer specifies that the
example element -X be bound at Node 1 or Node 4, whichever comes earlier in
the join sequence. We call such specification by the optimizer static binding.
Static binding information is subsequently used by the query processor to bind
the example elements at run time. We call this process dynamic binding. Let
us note that these strategies are not heuristics since they always reduce the
processing cost.

A useless evaluation of a predicate is defined as an evaluation of an unbound
(join) predicate. A useless evaluation will eventually be aborted when an unbound
example element is encountered. We note that predicate evaluation is the costliest
operation. Useless evaluation of a predicate is equally costly because the data
structure for the expression has to be interpreted and the predicate partially
evaluated until an unbound example element is found. According to strategy 3,
the optimizer detects an unbound predicate at optimization time and sets
an indicator. The query processor can avoid useless evaluation by simply
looking up this indicator. In Example 3, the evaluation of the join predicate
Node 3.Coll = -X + -Z at Node 3 is a useless evaluation, and so is the evaluation
of the same predicate as a cross-reference predicate at Node 4.

We use two types of indicators: the column-evaluation flag and the cross-
reference-evaluation flag. The column-evaluation flag for a node is an array; each
entry is associated with a column of the node. An entry is set to 1 if the
corresponding column predicate can be evaluated successfully at the node, that
is, if it is bound by the time the node becomes the current node. For instance, in
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization l 81

Example 5, column-evaluation flag for Node 3 is (0, 0, 1). The flag for Node 4 is
(0, 0, 0) since both join predicates are not bound when Node 4 becomes the
current node.

The optimizer sets the column-evaluation flag of a node to 1 if the following
conditions are met:

(1) The predicate is bound (a restriction or bound join predicate) at the node
(i.e., when the node is the current node).

(2) The predicate is not used in indexing (with either a single-column index or
a multiple-column index). This condition applies because the predicate is
already evaluated through indexing.

The cross-reference-evaluation flag is an array of (example element, join
predicate) pair. Each entry in the flag is associated with an example element and
a join predicate that contains it. An entry is set to 1 if the three conditions are
met:

(1) The join predicate is a cross-reference predicate for the node at which the
example element gets bound.

(2) The join predicate becomes bound as the example element gets bound.
(3) The join predicate is not used to bind the example element.

For instance, in Example 3, at Node 4, the cross-reference predicate Node
3.Coll = -X + -Z (predicate[Node 3, Coll]) does not become bound when
example element -X gets bound. Hence, cross-reference-evaluation flag[-X,
predicate[Node 3, Coll]] is 0. At Node 1, however, predicate[Node 3, Co111
becomes bound when -Z gets bound. Thus cross-reference-evaluation flag[-Z,
predicate[Node 3, Coll]] is 1. Note that predicate[Node 1, Co111 is “not” a cross-
reference predicate for Node 4 because Node 4 comes before Node 1 in the join
sequence. Since the first condition is not satisfied, cross-reference-evaluation
flag[-X, predicate[Node 1, Coll]] is 0 even if the predicate becomes bound when
the example element -X gets bound at Node 4. Instead, this predicate is evaluated
as a column predicate at Node 1 since it is bound by the time Node 1 becomes
the current node.

An interesting special case occurs when there are multiple binding instances
of an example element in different columns of the same node. (Imagine there is
an example element -X in Node 4, Co13.) In this case, if one is used for binding
the example element, the other is treated as a cross-reference predicate.

The query processor evaluates column predicates of a node whenever the node
becomes current, but considers only those with their column-evaluation flag
entries set to 1. Similarly, it evaluates the cross-reference predicates whenever
an example element gets bound but considers only those for which the corre-
sponding (example element, join predicate) entry is set to 1. This way, the query
processor avoids useless evaluation completely.

Column predicates are evaluated in two steps. First, the expression is evaluated,
and then the result is compared with the value retrieved from the tuple. For
instance, in Figure 3, -X + -Z is an expression that is evaluated and compared
with the value of Coll. We regard even -X or 150 as an expression because it is
stored in the expression structure in the same general form as more complex

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

a2 l K.-Y. Whang and FL Krishnamurthy

expressions. As we discussed in Section 5.2, expression evaluation is the costliest
operation, which should be avoided as much as possible. We note that there is
no need for reevaluating the expression unless its value changes.

There are two cases where reevaluation is not needed. First, for a restriction
predicate, the expression (such as 150 in Node 3.Co13 in Figure 3) needs to be
evaluated only once at the initial stage of processing the query. The result is
stored in a program variable. Then, at run time, predicate evaluation simply
becomes a comparison between the value of the column in the tuple and the one
stored in the variable.

Second, the expression for a bound join predicate (except for a cross-reference
predicate) needs to be evaluated only once when the node containing the predicate
is entered in the join loop (i.e., is made the current node). Once the node is
entered, the value of the expression stays constant until the join loop backtracks
to the previous ;mde in the join sequence after examining all the eligible tuples
in the current node. Thus, the expression does not need reevaluation. For
example, ihe expression in the predicate Node l.Coll = -X in Figure 3 is
evaluated only when Node 1 is entered. It stays constant until all tuples of Node
1 having the specific value of -X are processed. Cross-reference predicates are
exceptions because their example elements are bound to different values every
time a new tuple is retrieved from the current node.

According to strategy 4, the optimizer identifies these two cases and set
indicators, so that the query processor can avoid unnecessary evaluation by
simply looking up the indicators. We use two types of indicators: the comparison-
restriction-predicate flag and the comparison-bound-join-predicate flag. Both
flags are arrays, each entry being associated with a column of a node. An entry
in the comparison-restriction-predicate flag is set to 1 for any column having a
restriction predicate. An entry in the comparison-bound-join-predicate flag is set
to 1 for any column having a bound join predicate. Columns used for indexing
are excepted since the predicates are already evaluated through indexing.

The results of optimization are recorded in the access plan. The access plan
contains the following information: (1) the optimal join sequence, (2) for each
node, the access structure chosen for that node, (3) static binding for each
example element, and (4) four predicate-evaluation indicators (the column-
evaluation flag, cross-reference-evaluation flag, comparison-restriction-predicate
flag, and comparison-bound-join-predicate flag).

Example 5. Figure 4 shows an example of the optimization process. We
assume that, initially, the database contains no index permanently defined. As
we discuss in Section 5.4, the optimizer employs a systematic search technique
called the brunch-and-bound algorithm [15]. In this example, however, we provide
an “intuitive” explanation on the optimality of the solution in Figure 4. Both
Node 2 and Node 3 have very selective restriction predicates involving the column
DEPT. Since selective predicates reduce the number of tuples to be considered
in the rest of the join sequence, it is very likely that the nodes they belong to are
chosen to be the first in the join sequence. Here Node 2 is chosen first. Then
example elements -X and -Z can be bound in Node 2 since the predicates are
bindable instances. The next node in the join sequence is chosen to be Node 1.
Since example element -X has been bound, Node 1 can be accessed efficiently
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization l 83

EMP

(NODE,) P.

(NODE21

(NODE31

NAME SALARY D-HIRED MANAGER DEPT

,Y -X >-z

,X ,Z 511

3 526

I

ACCESS PLAN AND OUTPUT INFORMATION . RELATION SCAN

. BIND -X, -2

. COLUMN-EVALUATION-FLAGIDEPT] = ‘I’

. COMPARISON-RESTRICTION-PREDICATE-FLAGIDEPT] = ‘I’

NODE, ----

-1;‘l

. SINGLE-COLUMN INDEX (CREATED)

. INDEXING ON ‘SALARY’

. BIND Y -

. COLUMN-EVALUATION-FLAG[D-HIRED] = ‘I’

. COMPARISON-BOUND-JOIN-PREDICATE-FLAGID-HIRED] = ‘1’

&----{ : MULTIPLE-COLUMNINDEX

LIST OF RESTRICTION COLUMNS = <DEPT>

. LIST OF BOUND JOIN COLUMNS = <MANAGER>

Fig. 4. An example of optimization.

through an index for the column SALARY. Similarly, since example element -Z
has been bound, the predicate D-HIRED > -Z can be evaluated. Example element
-Y is bound here. The last is Node 3. Since it is the last node in the join sequence,
tuples in this node are likely to be accessed repeatedly. Hence, it would be
beneficial to reduce the size of the relation by selecting in advance only those
tuples satisfying restriction predicates. Multiple-Column Index is chosen as the

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

84 l K.-Y. Whang and R. Krishnamurthy

access structure to serve this purpose. The list of restriction columns is (DEPT),
and the list of bound join columns is (MANAGER). The optimizer’s decisions
on predicate-evaluation flags and predicate-comparison flags are self-explanatory
and are not further discussed.

5.4 Searching Algorithm

The optimizer finds the optimal solution by exploring the search tree using a
branch-and-bound algorithm. At each node in the search tree, the optimizer
performs the following tasks:

(1) According to the optimization strategies 1 and 2, it statically binds all example
elements that can be bound.

(2) It chooses the most efficient access structure. For this purpose, single-column
indexes for all the columns having restriction or bound join predicates are
considered. If an index is not available, creating and using one is considered.
The relation scan and the multiple-column index are also compared.

At the same time, it calculates the total cost of processing the node considering
optimization strategies 3 and 4. The cost is multiplied by the result cardinality
from the previous node in the join sequence, which represents the number of
entering the node in the join loop.

Given a cost model, the branch-and-bound algorithm always produces the
optimal solution. Although the branch-and-bound algorithm is functionally
equivalent to an exhaustive search, it substantially reduces the search time by
means of pruning. The pruning of a subtree occurs whenever there is a clue that
the optimal solution cannot be found in the subtree. The clue can be obtained by
comparing a lower bound of the cost associated with the subtree with the global
upper bound, which is maintained as the minimum cost of alternative solutions
that have been examined. If the lower bound exceeds or equals to the global
upper bound, the subtree is pruned.

A branch-and-bound algorithm can be characterized by three rules: (1) a rule
for finding a lower bound for a subtree, (2) a branching rule, and (3) a rule for
resolving a tie among candidate subtrees to be explored. For the query optimizer
we use the following rules. First, we define the accumulated access cost for the
current node as the lower bound for the subtrees to be explored. The accumulated
access cost of a node is the cost of obtaining the hypothetical result relation for
the node according to the join sequence. Second, we employ the newest bound
branching rule, which selects the most recently created (or to be created) subtrees
as the candidate subtrees. Third, we use a fixed priority scheme to resolve a tie
among these candidate subtrees. Let us note that, due to the definition of the
lower bound, the candidate subtrees always form a tie.

We define the order of priority among nodes as follows:

(1) An ordinary node with a bound equality predicate.
(2) A negated node with all its predicates bound.
(3) An ordinary node with a bound inequality predicate (i.e., a range or not-

equal predicate).
(4) An ordinary node without any bound predicate.
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization l 85

A negated node having an unbound join predicate should never be given a priority
because it can be evaluated only when all the predicates are bound.

This priority scheme seems to work reasonably well. In retrospect, however,
the authors believe that the priority should not be based on the type of the node;
instead, it should be based on combined selectivity of the predicates in the node.
In fact, if a range predicate has a better selectivity than an equality predicate,
the former should be given a higher priority.

The accumulated access cost for a node is obtained by adding the cost of
processing the node to the accumulated access cost for the previous node in the
join sequence. The cost of processing a node is calculated as the cost of processing
the tuples of the node through the most efficient access structure. The result
cardinality for the previous node in the join sequence is implicitly multiplied
since it represents the frequency of entering the current node in the join loop.

6. PERFORMANCE

The OBE database manager has been designed with the assumption that data
reside in main memory. Naturally, one important question is to what extent this
assumption would be satisfied in a real environment. Obviously, a steady tendency
toward cheaper memory hardware is encouraging. Yet this will not solve all the
problems because the cheaper the memory becomes, the larger the data require-
ment becomes. Thus we need other means of satisfying the memory-residency
assumption.

In OBE the memory-residency assumption is approximated by virtual memory
and the working-set scheduling algorithm. We argue that the operating system’s
scheduling algorithm has a vital effect on the memory-residency assumption. In
particular, pure demand paging is not suitable for this assumption because it
would suffer from thrashing if the total memory requirement from many users
far exceeds the size of the physical memory of the system. However, when coupled
with the working-set algorithm, virtual memory provides an excellent approxi-
mation of real memory.

6.1 Operating System Environment

In this subsection we describe a very simplified version of VMf370’s scheduling
algorithm [171 to investigate its effect on the memory-residency assumption. The
scheduling algorithm uses two types of time units: time slice and dispatch time
slice. For convenience, let us call them long time slice and short time slice. In
addition, there are two types of queues for virtual machines: dispatch list and
eligible list. The short time slice is the unit time for allocating CPU among
members in the dispatch list. A long time slice is a fixed multiple of short time
slices, during which a virtual machine is entitled to stay in the dispatch list. If
there are other virtual machines with higher priorities when the long time slice
expires, a virtual machine may be relocated to the eligible list waiting for another
long time slice to be assigned to it.

The scheduler puts virtual machines in the dispatch list only to the extent
that the total memory requirement of the virtual machines does not exceed the
size of real memory. The memory requirement of a virtual machine (working set)
is first estimated as the average number of memory-resident pages for that virtual

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

86 l K.-Y. Whang and R. Krishnamurthy

machine while in the dispatch list. The number thus obtained is adjusted
according to some formula that provides a feedback mechanism to stabilize the
performance toward the system’s global goal for paging activities. Once the set
of virtual machines on the dispatch list is determined, paging is controlled on a
demand basis. This way, ideally, if access patterns of the virtual machines are
constant, the virtual machines must get sufficient real memory with which to
work.

Let us summarize the ramifications of the scheduling algorithm.

(1) As long as a query is evaluated within one long time slice, there will be no
additional I/O’s except for the initial loading of data (one access for each page).

(2) Even when a query spans multiple long time slices, provided that a long
time slice is long enough to dominate the cost of initial loading, the I/O time will
be negligible compared with the CPU time.

(3) There will be no significant thrashing because the memory requirement of
a virtual machine is satisfied while the machine is on the dispatch list.

(4) The system’s feedback mechanism, imbedded in the estimation of the
working set, stabilizes the overall paging activity (e.g., 15 percent).

We have informally discussed the advantages of the working-set scheduling
algorithm, the detailed analysis of which is beyond the scope of this paper. They
support our claim that virtual memory, in conjunction with the working-set
algorithm, serves as a reasonable approximation to real memory in practical
environments. Here we address the problem of the total size of the physical
memory (of the entire system, not per user) being less than the size of the data
of a single user. Experiments indicate that performance is gradually degraded as
the size of data crosses over the physical memory size. This shows that as the
data size/physical memory size ratio doubles, the degradation approximately
quadruples [4]. Note that, as long as the system’s total memory is greater than
the data requirement of a single user, there is no significant degradation due to
thrashing. Of course, the response time would be increased (approximately
linearly) as the number of users increases. In a system adopting pure demand
paging, the degradation would be far more significant in a multiuser environment
due to thrashing.

6.2 Test Results

Extensive tests were made on the performance of OBE; some of the results are
presented here. These tests were made on IBM’s 3090 processor with the total
system’s physical memory of 32 Mbytes. They were also tested with SQL/D&
and those results are presented in Table II. For comparison, we also provide a
conservative estimation of the performance of a hypothetical I/O bound database
system, which will result in an environment adopting demand paging when the
system’s total memory does not satisfy the total data requirement of all the users.

Table I shows the results of the tests. The tests were made under the following
conditions. The machine was lightly loaded. (The tests were made at lunch time,
when a large virtual machine size is allowed.) Each relation in the queries
contained 10,000 tuples occupying 1.91 Mbytes of storage space. Each relation
had indexes on all columns. (The indexes occupied approximately 12 percent of
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization l 87

Table I. Performance Results for OBE on an IBM 3090
Processor

Degree Data volume Virtual CPU time Elapsed time
of join (Mbytes) (seconds) (seconds)

1 1.91 1.5 3.7
2 3.82 1.7 5.3
3 5.73 2.0 5.7
4 7.64 11.7 32.0
5 9.56 13.7 42.0

the total space.) The queries were designed as joins with one restriction (range)
predicate. The column values of the relations were generated by a random number
generator. The intermediate results of the queries ranged from 3,000 to 15,000
tuples before duplicate elimination. (Duplicate elimination is done only at the
completion of the query.) Each query was run three times, and the average
elapsed time was obtained. Since the virtual CPU time stayed fairly stable over
different executions of the same query, only one representative value is shown in
Table I.

In Table I, the degree of join is the number of relations joined in a query, the
virtual CPU time is the total CPU time the virtual machine (a user process)
consumed in processing a query, and the elapsed time is the real time measured
from the start of a query to its end.

We tested the same queries with the same data in a disk-resident database
management system, SQL/DS, running on the same 3090 processor. Indexes
were created only on the join columns and the restriction columns for space
considerations. Indexes on the other columns would not have affected the test
results since they were not used in processing the test queries. The results of the
tests are presented in Table II together with the performance of a hypothetical
I/O bound system using the nested-loop join. In this system, we assumed two
pages are accessed to retrieve one tuple (one for the index and one for the data)
[31,44]. An average seek and rotation time of 30 ms was used. Since intermediate
results were always more than 3,000, we used this figure as a conservative estimate
of tuples retrieved from each node. Thus the time to evaluate a query in this
system was estimated as 3,000 x 2 x degree of join x 30 ms.

From the results summarized in Tables I and II, we conclude that the perfor-
mance of OBE justifies memory residency of data. The performance estimation
of the I/O bound system indicates that a demand paging should not be used in a
memory-resident database system. Formal benchmarking has been done inde-
pendently of the tests presented in this paper, and the results can be found in
Bitton et al. [3] and Bitton and Turbyfill [4]. We briefly summarize the results
here.

(1) OBE does very well with selections and joins, as indicated in Tables I
and II.

(2) OBE is slow in update, insertion, and deletion. For update of nonkey
columns and deletion, maintenance of indexes causes the major cost. However,
this problem does not come from our index update algorithm; instead, it comes

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

88 - K.-Y. Whang and R. Krishnamurthy

Table II. Performance Results for SQL/DS
and a Hypothetical I/O Bound System

Degree
of join

Elapsed time Elapsed time
(seconds) (seconds)
SQL/DS I/O Bound system

1 10 180

2 39 360
3 58 540
4 155 720

5 482" 900

“The figures were extrapolated using the SQL/DS optim-
izer’s estimation. The queries were not actually run due to
space problems.

from our decision to provide indexes for all columns by default, although there
is a provision for selective indexing. Experiments indicate that the cost of
updating all indexes is comparable to (somewhat slower than) that of updating
one index in conventional disk-based DBMSs. Insertion and update of key
columns are quite slow; the reason is duplicate elimination by default. Note that
many other DBMSs, such as SQL/DS or INGRES do not provide this feature;
instead, they allow duplicate records to be stored. Also note that duplicate
elimination in a permanent relation is different than that in a temporary relation,
for which we use an efficient hash-based method.

(3) OBE is slow for certain types of projections in which our efficient, hash-
based duplicate elimination is not used. Nevertheless, this problem is not inher-
ently related to the memory-residency assumption. We believe that this problem
can be fixed by more careful design of data structures for these operations.

(4) The test data we provided (Table I) are based on the fact that the relations
are already in main memory. If they are not, they have to be brought into main
memory at the first reference. Nevertheless, reading a relation into main memory
is very fast in our system because we store a relation as one record in a file. The
file system has a built-in mechanism to try to store a contiguous virtual file
address space in contiguous physical disk pages as much as possible. Typically,
the system takes 0.67 second to read in 1 Mbyte of data.

6.3 Optimization Cost

While the purpose of the optimizer is to minimize the cost for processing queries,
optimization itself accompanies computation cost. Clearly, efficiency of optimi-
zation is essential for good overall performance.

We measured the optimization cost in terms of virtual CPU time using the
same set of tests as in Table I. The results are summarized in Table III and
indicate that the optimization cost is not significant even for the join queries
involving as many as five nodes. Join queries of degree five or higher are fairly
complex in practice and must be issued very rarely. For this reason, we conclude
that the optimization cost can be ignored in our system for most practical
situations.
ACM Transactions on Database Systems, Vol. 15, No. I, March 1990.

Query Optimization - 89

Table III. The Cost of Optimization

Degree of join
Virtual CPU time

(milliseconds)

1 3

2 7
3 12

4 22

5 60

6.4 Limitations

OBE’s database manager was designed primarily for small databases that are
suitable for office application environments. In Section 6.2 we tested the system
to its limit by using a volume of data that was close to the system’s maximum
capability. The conventional IBM 370 architecture without extended addressing
provides only 24 bits for addresses-equivalently, 16 Mbytes of address space.
The results of the tests indicate that the system performs well with a fairly large
volume of data. Nevertheless, we note that, in our system, the amount of data
that the system can accommodate is inherently limited by the maximum size of
virtual memory. We also note that the performance degrades more than linearly
if the memory requirement of a single user exceeds the system’s physical memory
size. This is caused by increased paging activity, which is beyond the control of
the operating system’s working-set scheduling algorithm.

7. SUMMARY AND CONCLUSIONS

We have presented the design of a query optimizer for a memory-resident
database system and have implemented the database system in the context of
the OBE project. A single-user version of the system is fully operational at the
time of this writing.

The major contribution of this paper is to show that the memory-residency of
data is a viable idea in realistic environments. We have proved this claim through
a concrete implementation and performance measurement. The results in Table
I show that OBE can process a large volume of data with excellent performance
concurrently with other transactions in a time-shared system.

We have emphasized that the techniques for query optimization in memory-
resident database systems differ significantly from those in conventional disk-
based database systems. In particular, we have addressed the following aspects
of query optimization:

(1) a CPU-intensive cost model,
(2) optimization strategies,
(3) join algorithms and access structures,
(4) the scheduling algorithm of the operating system.

We summarize our findings on these issues below.
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

90 - K.-Y. Whang and R. Krishnamurthy

We have presented a new approach to developing a cost model suitable for
memory-resident database systems. In such systems CPU computation consti-
tutes the major part of the processing cost. Our technique is based on the system’s
bottlenecks and their unit costs. The complete cost formulas are constructed
analytically using these unit costs. We have found an interesting result that the
dominant cost in memory-resident database systems is incurred by evaluation of
predicates. Thus, in its simplest form, the cost model should reflect the number
of predicate evaluations necessary to process a query. This contrasts with the
case of disk-based database systems, in which the cost of I/O accesses dominates.
A critical aspect of a CPU-intensive cost model is stability. We have proposed a
technique for achieving stability of such a model.

We have formalized four optimization strategies for processing queries in
memory-resident database systems. They are (1) binding an example element as
early as possible, (2) evaluating a predicate as early as possible, (3) avoiding
useless evaluation of a predicate, and (4) avoiding unnecessary evaluation of an
expression. These strategies are geared to minimizing predicate evaluations,
which are the costliest operations. We have presented detailed data structures to
implement such strategies. Based on these strategies, the optimizer uses a branch-
and-bound algorithm with a fixed priority to search for the optimal access plan.

The four optimization strategies are closely tied to the notion of example-
element binding (a simpler version of unification in the predicate logic), which
is a unique concept in domain relational calculus languages such as QBE. In
Section 3 we presented a complete technique for processing domain relational
calculus queries based on example-element binding. The technique differs signif-
icantly from those for tuple relational calculus or relational algebra systems,
where only the notion of the column value exists. Example-element binding is
not done in such systems. We have introduced the notion of a cross-reference
predicate, whose evaluation is delayed until it becomes evaluable. This notion is
an enhancement over many Prolog implementations, in which premature evalu-
ation of such a predicate is considered an error. Query processing in domain
relational calculus systems has not been well addressed in the literature. Our
approach should provide new insight into these problems.

We have argued that the nested-loop join method is a prevalent technique in
memory-resident database systems. Specifically, the benefit of the sort-merge
join method disappears in such systems because there is no concept of blocking
when the data reside in main memory.

We have presented a simple index data structure suitable for a memory-
resident database. The index is implemented as a flat array of TIDs that are
pointers to tuples. This structure saves the storage space significantly compared
with conventional index structures. The reduction of the storage space allows us
to have more indexes with less storage overhead. In fact, in OBE, it is possible
to implement the strategy of having indexes for all the attributes in the database.
This strategy obviates physical database design problem, which is a nuisance for
novice users.

We have emphasized that a proper scheduling algorithm of the operating
system is crucial for realizing a memory-resident database system. In particular,
we have shown that the working-set scheduling algorithm provides an excellent
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization l 91

approximation for memory-residency of data. By using this algorithm, the system
prevents potential thrashing due to heavy usage of virtual memory. In contrast,
a pure demand paging scheme would not work in a practical time-shared envi-
ronment (even with a physical memory size sufficient for a single user) because
of potential thrashing.

Finally, we believe that a database system based on the memory-residency
assumption is suitable for efficient main-memory applications including many
aspects of artificial intelligence and logic programming (such as Prolog [9]). In
particular, nonrecursive queries expressed in function-free Horn-clause logic can
be directly processed by the techniques proposed in this paper [40].

APPENDIX A

We present cost formulas for the access structure Relation Scan. We first define
some notation and introduce a function that is used in calculating the result
cardinalities.

Notation

Nrpreds
NbndJpreds
NbndXpreds

Rsel
Jsel
Xsel

RXsel
Se1
Rcard
Rsltcard(N)
Tuplesperaccess

Number of restriction predicates in Curr-Node.
Number of bound join predicates in Curr-Node.
Number of cross-reference predicates that are bound at Curr-
Node.
Joint selectivity of all restriction predicates in Curr-Node.
Joint selectivity of bound join predicates in Curr-Node.
Joint selectivity of cross-reference predicates that are bound
at Curr-Node.
Rsel x Xsel.
Joint selectivity of all bound predicates for Curr-Node.
Number of tuples in the base relation of Curr-Node.
Result cardinality for node N.
Number of tuples retrieved in one access through an access
structure.

Function b

Let tuples be partitioned into m groups (1 5 m zz n), each containing p = n/m
tuples. If k tuples are randomly selected from the n tuples, the expected number
of groups hit (blocks with at least one tuple selected) is given by

bh P, k)
m

Details of the derivation of this function can be found in Whang et al. [41].
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

92 l K.-Y. Whang and R. Krishnamurthy

Result Cardinality

We now construct the formulas for the result cardinality. These formulas are
independent of the specific access-structures chosen, but dependent on the partial
join sequence.

IF Curr-Node is a negated node THEN
Rsltcard(Curr-Node) = Rsltcard(Prev-Node) x (1 - b(l/Jsel, Jsel x Rcard,

RXsel x Rcard) X Jsel))
ELSE IF Curr-Node is an ordinary node THEN

Rsltcard(Curr-Node) = Rsltcard(Prev-Node) X (Rcard X Sel).

For a negated node, function b gives the number of groups selected according
to the restriction predicates and cross-reference predicates. A group is a set of
tuples having the same join column value. A group is selected if one or more of
the tuples in the group satisfies these predicates. The value of function b is
multiplied by Jsel (or, equivalently, divided by l/Jsel) to obtain the probability
that a specific group is selected. Since the negation specifies nonexistence of such
a group, this probability must be subtracted from 1 to produce the probability
that the group is not selected. The result is finally multiplied by Rsltcard(Prev-
Node) to obtain Rsltcard(Curr-Node) since the selection process for Curr-Node
is repeated as many times as Rsltcard(Prev-Node).

For an ordinary node the number of tuples selected according to the predicates
is given by Rcard x Sel. Again, this number is multiplied by Rsltcard(Prev-Node)
to produce Rsltcard(Curr-Node).

Cost Formulas for Relation Scan

Using the result cardinality, we construct the cost formula for the access structure
Relation Scan as follows:

IF Curr-Node is a negated node THEN
Tuplesperaccess = MIN(l/Sel, Rcard)

ELSE IF Curr-Node is an ordinary node THEN
Tuplesperaccess = Rcard.

COStRelation Scan =
C, X Nrpreds !expression evaluation for restriction predicates
+ Rsltcard(Prev-Node)

x (C, x Nbndjpreds
+ C, X Tuplesperaccess !expression evaluation for join predicates
x (f(Nrpreds + NbndJpreds + NbndXpreds)
- f(Nrpreds + NbndJpreds)) cross-reference predicate evaluation

C5 X Tuplesperaccess tuple retrieval
+ C, x Tuplesperaccess X f(Nrpreds + Nbndjpreds))

!comparison operations

For an ordinary node the search goes through all the tuples in the relation.
Therefore, Tuplesperaccess, the average number of tuples to be searched until
termination, must be Rcard. For a negated node, however, the search stops as
soon as a tuple satisfying the predicates is found (hence, rendering the negated
predicate false). Thus, Tuplesperaccess is l/Se1 with the restriction that it cannot
be larger than Rcard.

The cost of Relation Scan is the summation of the costs for (1) expression
evaluation for restriction predicates, (2) expression evaluation for bound join
ACM Tqansactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization - 93

predicates, (3) evaluation of cross-reference predicates, (4) tuple retrieval, and
(5) comparison operations.

Expressions in restriction predicates are evaluated only once for a given query
(according to the comparison-restriction-predicate flags, as explained in Section
5.3). On the other hand, those in bound join predicates must be evaluated every
time Curr-Node is entered in the join loop (according to the comparison-bound-
join-predicate flags, as explained in Section 5.3). Thus, the number of bound join
predicates is multiplied by Rsltcard(Prev-Node). Cross-reference predicates are
evaluated for every tuple because example elements in these predicates are bound
to different values for different tuples. Thus, for them, the number of predicate
evaluations is multiplied by Tuplesperaccess as well as Rsltcard(Prev-Node).
Note that the function f is used to calculate the number of evaluations of cross-
reference predicates because they are evaluated only “after” all restriction and
bound join predicates prove to be true. The next term accounts for the tuple
retrieval cost. Finally, the last term is the number of comparison operations for
both restriction and bound join predicates.

ACKNOWLEDGMENTS

Arthur Ammann designed HRMS and deserves the credit for initiating the
memory-residency idea. This idea was picked up and fully expanded by the
authors.

The authors also wish to acknowledge the contributions of other m,embers of
the OBE project in designing and implementing the OBE system: Anthony
Bolmarcich, Maria Hanrahan, Guy Hochgesang, Kuan-Tsae Huang, Al Khora-
sani, Gary Sockut, Paula Sweeney, Vance Waddle, and Moshe Zloof. Carolyn
Turbyfill and Dina Bitton performed the formal benchmarking. Anil Nigam and
John Robinson read an earlier version of this paper and contributed valuable
comments.

REFERENCES

1. AMMANN, A. C., HANRAHAN, M., AND KRISHNAMURTHY, R. Design of a memory resident
DBMS. In Proceedings of the International Conference Compcon Spring ‘85. IEEE, New York,
1985.

2. ASTRAHAN, M. M., ET AL. System R: Relational approach to database management. ACM
Trans. Database Syst. 1, 2 (June 1976), 97-137.

3. BITTON, D., HANRAHAN, M. B., AND TURBYFILL, C. Performance of complex queries in main
memory database systems. In Proceedings of the 3rd International Conference on Data Engineering
(Los Angeles, Calif., Feb. 1987).

4. BITTON, D., AND TURBYFILL, C. Main memory database support for office systems: A perfor-
mance study. In Proceedings of IFIP WG8.4 Working Conference on Methods and Tools for Office
Systems (Piss, Italy, Oct. 1986).

5. BITTON, D., AND TURBYFILL, C. Performance evaluation of main memory database systems.
Tech. Rep. 85-735, Cornell University, Ithaca, N.Y., Feb. 1986.

6. BLASGEN, M. W., AND ESWAREN, K. P. On the evaluation of queries in a database system. IBM
Res. Rep. RJ1945, IBM, San Jose, Calif., April 1976.

7. CHAMBERLIN, D. D., ET AL. SEQUELB: A unified approach to data definition, manipulation,
and control. IBM J. Res. Deu. 20, 6 (Nov. 1976), 560-575.

8. CHRISTODOULAKIS, S. Implications of certain assumptions in database performance evaluation.
ACM Trans. Database Syst., 9, 2 (June 1984), 163-186.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

94 * K.-Y. Whang and FL Krishnamurthy

9. CLOCKSIN, W. F., AND MELLISH, C. S. Programming in Prolog. Springer-Verlag, New York,
1981.

10. DEWITT, D. J., ET AL. Implementation techniques for main memory database systems. In
Proceedings of the ACM SZGMOD International Conference on Management of Data (Boston,
Mass., 1984). ACM, New York, 1984, pp. l-8.

11. GARCIA-M• LINA, ET AL. A massive memory database system. Unpublished manuscript, Dept.
of Electrical Engineering and Computer Science, Princeton University, Princeton, N.J.

12. GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R., PRICE, T., PUTZOLU, F., AND
TRAIGER, J. The recovery manager of the System R database manager. ACM Comput. Suru.
13,2 (June 1981), 223-242.

13. HALL, P. A. V. Optimization of a single relational expression in a relational database. IBM J.
Res. Deu. 20, 3 (1976), 244-257.

14. HAMMER, M., AND CHAN, A. Index selection in a self-adaptive database management system.
In Proceedings of the ACM International Conference on Management of Data (Washington, D.C.,
June 1976). ACM, New York, 1976, pp. l-8.

15. HILLER, F. S., AND LIEBERMAN, G. J. Introduction to Operations Research, 3rd ed. Holden-Day,
San Francisco, Calif., 1980.

16. IBARAKI, T., AND KAMEDA, T. On the optimal nesting order for computing N-relational joins.
ACM Trans. Database Syst. 9,3 (Sept. 1984), 482-502.

17. IBM. VM/SP: System Logic and Problem Determination Guide (CP), LY20-0892-2, 3rd ed.
IBM Marketing, Sept. 1983.

18. JARKE, M., AND KOCH, J. Query optimization in database systems. ACM Cornput. Suru. 16, 2
(June 1984), 111-152.

19. KAMBAYASHI, Y., AND YOSHIKAWA, M. Query processing utilizing dependencies and horizontal
decomposition. In Proceedings of ACM International Conference on Management of Data (San
Jose, Calif., May 1983). ACM, New York, 1983, pp. 55-67.

20. KIM, W. On optimizing an SQL-like nested query. ACM Trans. Database Syst. 7,3 (Sept. 1982),
443-469.

21. KITSUREGAWA, M., ET AL. Application of hash to data base machine and its architecture. New
Generation Comput. 1 (1983), 62-74.

22. KNUTH, D. The Art of Computer Programming-Sorting and Searching, Vol. 3. Addison-Wesley,
Reading, Mass., 1973.

23. KOOI, R., AND FRANKFORTH, D. Query optimization in INGRES. IEEE Database Eng. Bull. 5,
3 (Sept. 1982), 2-5.

24. KRISHNAMURTHY, R., BORAL, H., AND ZANIOLO, C. Optimization of nonrecursive queries. In
Proceedings of the 12th International Conference on Very Large Data Bases (Kyoto, Japan, 1986),
pp. 128-137.

25. LEHMAN, T., AND CAREY, M. A study of index structures for main memory database manage-
ment systems. In Proceedings of the 12th International Conference on Very Large Data Bases
(Kyoto, Japan, Sept. 1986), pp. 294-303.

26. LEHMAN, T., AND CAREY, M. Query processing in main memory database management systems.
In Proceedings of the ACM International Conference on Management of Data (Washington, D.C.,
May 1986). ACM, New York, 1986, pp. 239-250.

27. LUK, W. S. On estimating block accesses in database organization. Commun. ACM 26, 11 (Nov.
1983), 945-947.

28. PECHERER, R. M. Efficient evaluation of expressions in a relational algebra. In Proceedings of
the ACM Pacific Conference (1975). ACM, New York, 1975, pp. 44-49.

29. POWER, L. R. EPLEA, using execution profiles to analyze and optimize programs. IBM Res.
Rep. RC9932, IBM T. J. Watson Research Center, Yorktown Heights, N.Y., April 1983.

30. REINER, D. S., Ed. IEEE Database Eng. Bull. 5, 3 (Sept. 1982).
31. SCHKOLNICK, M., AND TIBERIO, P. Estimating the cost of updates in a relational database.

ACM Trans. Database Syst. IO, 2 (June 1985), 163-179.
32. SELINGER, P. G., ET AL. Access path selection in a relational database management system. In

Proceedings of the ACM International Conference on Management of Data (Boston, Mass., May
1979), pp. 23-24.

33. SHAPIRO, L. D. Join processing in database systems with large main memories. ACM Trans.
Database Syst. 1 I, 3 (Sept. 1986), 239-264.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Query Optimization l 95

34. SMITH, J. M., AND CHANG, P. Y.-T. Optimizing the performance of a relational algebra database
interface. Commun. ACM 28, 10 (1975), 568-579.

35. STONEBRAKER, M., ET AL. The design and implementation of INGRES. ACM Trans. Database
Syst. 1,3 (Sept. 1976), 189-222.

36. ULLMAN, J. D. Principles of Database Systems. Computer Science Press, Rockville, Md., 1982.
37. VANDER ZANDEN, B. T., TAYLOR, H. M., AND BITTON, D. Estimating block accesses when

attributes are correlated. In Proceedings of the 12th International Conference on Very Large Data
Bases (Kyoto, Japan, Aug. 1986), pp. 119-127.

38. WARREN, D. H. D. Efficient processing of mteractive relational database queries expressed in
logic. In Proceedings of the 7th Znternational Conference on Very Large Data Bases (Cannes,
France, 1981), pp. 272-281.

39. WHAN’J, K.-Y. Query optimization in office-by-example. IBM Res. Rep. RC11571, IBM T. J.
Watson Research Center, Yorktown Heights, N.Y., Dec. 1985.

40. WHANG, K.-Y., AND NAVATHE, S. An extended disjunctive normal form approach for processing
recursive logic queries in loosely coupled environments. In Proceedings of the 13th Znternational
Conference on Very Large Data Bases (Brighton, England, Sept. 1987), pp. 275-287.

41. WHANG, K.-Y., WIEDERHOLD, G., AND SAGALOWICZ, D. Estimating block accesses in database
organizations-A closed noniterative formula. Commun. ACM 26, 11 (Nov. 1983), 940-944.

42. WHANG, K.-Y., WIEDERHOLD, G., AND SAGALOWICZ, D. Separability-An approach to physical
database design. IEEE Trans. Comput. C-33, 3 (Mar. 1984), 209-222.

43. WHANG, K.-Y., ET AL. Office-by-example: An integrated office system and database manager.
ACM Trans. Office Znf. Syst. 5, 4 (Oct. 1987), 393-427.

44. WIEDERHOLD, G. Database Design. McGraw-Hill, New York, 1983.
45. WINSTON, P. H. Artificial Intelligence. Addson-Wesley, Reading, Mass., 1979.
46. WONG, E., AND YOUSEFFI, K. Decomposition-A strategy for query processing. ACM Trans.

Database Syst. 1, 3 (Sept. 1976), 223-241.
47. YAO, S. B. Optimization of query evaluation algorithms. ACM Trans. Database Syst. 4, 2 (June

1979), 133-155.
48. ZLOOF, M. M. Office-by-example: A business language that unifies data and word processing

and electronic mail. IBM Syst. J. 21, 3 (1982), 272-304.
49. ZLOOF, M. M. QBE/OBE: A language for office and business automation. IEEE Comput. 14,

53 (May 1981), 13-22.
50. ZLOOF, M. M. Query-by-example: A data base language. IBM Syst. J. 16, 4 (1977), pp.

324-343.

Received February 1987; revised March 1983; accepted January 1989

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

