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We present techniques for optimizing queries in memory-resident database systems. Optimization 
techniques in memory-resident database systems differ significantly from those in conventional disk- 
resident database systems. In this paper we address the following aspects of query optimization in 
such systems and present specific solutions for them: (1) a new approach to developing a CPU- 
intensive cost model; (2) new optimization strategies for main-memory query processing; (3) new 
insight into join algorithms and access structures that take advantage of memory residency of data; 
and (4) the effect of the operating system’s scheduling algorithm on the memory-residency assumption. 
We present an interesting result that a major cost of processing queries in memory-resident database 
systems is incurred by evaluation of predicates. We discuss optimization techniques using the Office- 
by-Example (OBE) that has been under development at IBM Research. We also present the results 
of performance measurements, which prove to be excellent in the current state of the art. Despite 
recent work on memory-resident database systems, query optimization aspects in these systems have 
not been well studied. We believe this paper opens the issues of query optimization in memory- 
resident database systems and presents practical solutions to them. 

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design--access meth- 
ods; H.2.3 [Database Management]: Languages-query languages; H.2.4 [Database Manage- 
ment]: Systems--query processing 

General Terms: Algorithms, Experimentation, Languages, Performance 

Additional Key Words and Phrases: CPU-intensive cost model, database query language, domain 
relational calculus, example element, memory-resident database, query optimization 

1. INTRODUCTION 

Office-by-example (OBE) [43,48,49] is an integrated office system that has been 
under development at IBM Research. OBE extends the concept of query-by- 
example (QBE) [501-a relationally complete database language [36]. It supports 
various objects needed in a typical office environment: database relations, text 
processors, electronic messages, menus, graphics, and images. In OBE most 
applications involving these objects are processed by the database manager, 
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which constitutes the backbone of the entire system. We discuss query optimi- 
zation in a domain relational calculus language in the context of the OBE system. 

The database system consists of three components: a hierarchical relational 
memory structure (HRMS), the query processor, and the query optimizer. HRMS 
is the low-level system component that provides elementary access functions 
that retrieve individual tuples. (Even though the name might indicate otherwise, 
facilities supporting hierarchies of relations have not been implemented.) Based 
on these primitives, the query processor implements various types of high-level 
scans over the relations for retrieving tuples satisfying certain criteria (i.e., 
predicates). The query optimizer, using these high-level primitives as its options, 
finds the optimal access strategy for processing a query. 

For the design of the database manager, we adopt the unconventional assump- 
tion of memory residency of data; that is, part of the database accessed in 
processing a query resides in main memory. This assumption entails many 
interesting ramifications. In particular, the data structures and algorithms must 
be designed to maximize the benefit of memory residency of data. Simply keeping 
the data in main memory does not automatically guarantee good performance. 
We discuss in Section 6 how the assumption of memory residency can be 
reasonably approximated in a practical environment. Since a practical time- 
sharing system does not always allow a large amount of real memory for each 
user, we emphasize the importance of proper coupling of the memory-residency 
idea to the operating system’s scheduling algorithm. Especially, pure demand 
paging is not adequate for memory-residency assumption. We also present the 
result of measurements on OBE’s performance. 

The idea of memory-residency of data has also been investigated in [lo, 11,25, 
26, 331. Dewitt et al. [lo] compare performance of conventional data structures 
when a large amount of real memory is available. Garcia-Molina et al. [ll] 
present a new logging/recovery scheme with specialized hardware in a memory- 
resident database system with infinite real memory. Lehman and Carey [25, 261 
introduce a new indexing structure called the T-tree and present join algorithms 
based on the T-trees (we discuss them later). Shapiro [33] introduces a hash- 
based join algorithm that can be applied efficiently when the size of the main- 
memory buffer is equivalent to the square root of the size of the relation processed. 
Dewitt et al. [lo] and Shapiro [33] consider the large main memory as a buffer 
for the disk-resident databases. On the other hand, Garcia-Molina et al. [ 111 and 
Lehman and Carey [25, 261 regard main memory as the main depository of 
data. Here, disks are used only for permanent storage of data and backup. Our 
approach belongs to the latter, in which different sets of data structures and 
algorithms have to be devised to take full advantage of the memory-residency of 
data. 

Implementations of Prolog [9] that has been widely used as a logic programming 
language also have some flavor of memory-resident database systems. Warren 
[38] points out the similarity between a subset of Prolog and the relational 
database and proposes an optimization technique based on a variant of the hill- 
climbing technique [45] with an objective (i.e., optimization criterion) of mini- 
mizing tuple accesses. In this heuristic technique, only the goal (relation) ordering 
is considered; various access structures, such as indexes, typically used in database 
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management systems are not taken into account in the optimization. In Section 
5 we present different optimization criteria suitable for memory-resident database 
systems and the optimization techniques based on the new criteria. Our technique 
is not a heuristic since it employs a systematic search based on a complete cost 
model. In general, Prolog has been emphasized more as a programming language 
than as a memory-resident database system. 

Typically, in a modern relational database system, optimization involves a cost 
model specific for the system. The cost can be classified into two categories: the 
CPU computation cost and the I/O access cost. Since I/O devices are typically 
much slower than the CPU, many traditional approaches to query optimization 
emphasized the I/O access cost [6, 14, 27, 31, 321. (The CPU computation cost 
has been incorporated in System R [32] to a limited extent.) In memory-resident 
database systems, however, the CPU computation cost becomes the dominant 
cost. Since all the data are supposed to be in main memory, ideally, only the 
CPU computation cost will exist. Modeliing the CPU computation cost is difficult 
for various reasons. We discuss the problems in Section 5 and propose a new 
technique of developing the cost model for CPU-intensive memory-resident 
database systems. 

Many optimization algorithms have been reported in the literature [16, 19,30, 
32, 461. We classify these techniques into two classes: heuristic optimization and 
systematic optimization. Heuristic optimization employs heuristic rules to trans- 
form the query into an equivalent one that can be processed more efficiently. 
Typically, heuristic optimization has been widely used for relational algebra 
optimization [13, 28, 341. (Heuristic optimization is also used in INGRES [35, 
461-a relational calculus based system.) 

Systematic optimization finds the optimal solution by computing and compar- 
ing the costs of various alternative access strategies. For the estimation of the 
costs, it uses a cost model that reflects details of the physical access structures. 
The systematic optimization has been initially proposed by Selinger et al. [32] 
for System R [2, 71. System R’s query optimizer uses statistics of data (such as 
relation cardinalities and column cardinalities) extensively in its cost model. It 
also incorporates CPU computation in the cost model to a limited extent. 
Systematic optimization has also been used in a later version of INGRES [23]. 

Warren’s technique [38] falls somewhat in between the two approaches. It uses 
a rudimentary cost model based on the cardinalities of predicates (relations) and 
domains and is driven by a heuristic (hill-climbing) technique to find a suboptimal 
solution. 

Our approach employs systematic optimization using a cost model of CPU 
computation suitable for memory-resident database systems. As in System R, we 
use statistics extensively to produce a cost estimation. To avoid exhaustive search 
for alternative access strategies, we use the branch-and-bound algorithm [15]. 
The branch-and-bound algorithm is functionally equivalent to an exhaustive 
search in that it produces an optimal solution: it prunes the search space only 
when it is guaranteed that no optimal solution can be found in that search space. 

The purpose of this paper is to present the architecture of the query optimizer, 
the technique for developing a CPU-intensive cost model, and new aspects of 
query processing, optimization, scheduling algorithms, and data structures that 
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are derived from the memory-residency assumption of data. In addition, we 
present the concept of example-element binding that is unique in domain rela- 
tional calculus languages. We discuss how this concept is integrated into the 
optimization process in our system. Despite recent work on memory-resident 
databases (especially on join algorithms and data structures), the query optimi- 
zation issues in these systems have not been seriously studied. We believe this 
paper provides a significant progress toward understanding comprehensive issues 
involved in designing a practical query optimizer for a memory-resident database 
system. 

The paper is organized as follows. In Section 2 we briefly review the part of 
the OBE language that is necessary for the discussion of query optimization. In 
Section 3 we present query processing techniques in our system and define some 
terminology. Especially, we focus on the aspects specific to domain relational 
calculus languages. Then, in Section 4, we briefly discuss the storage represen- 
tation of the database manager. Next, Section 5 presents in detail the optimiza- 
tion strategies, optimization algorithm, and the method for developing the cost 
model. In Section 6, we present the results of performance measurements and 
discuss the impact of the operating system’s scheduling algorithm on the memory- 
residency assumption. Finally, Section 7 summarizes the results and concludes 
the paper. 

2. A DOMAIN RELATIONAL CALCULUS LANGUAGE 

In this section we illustrate how queries are expressed in the OBE language by 
using a few examples. We concentrate only on the data manipulation part of the 
language. The detailed description of the language can be found in Zloof [48]. 

Example 1. Consider a relation, Sales. Suppose we want a relation of sales- 
persons and their sales to date exceeding $50,000. An OBE program to do this is 
shown in Figure 1. In Figure 1 the operator P. stands for present and specifies 
projection of the corresponding columns in the output. 

Example 2. This is an example of a join query involving three relations. A 
join can be specified using an example element to map the matching columns. An 
example element begins with an underline followed by any alphanumeric string. 
The appearance of an example element in two or more positions indicates that 
the data instances corresponding to those positions should have the same value. 

Consider relations, Directory, Sales, and Employees. We want to see the names 
of salespersons who are not managers and their phone numbers if their sales to 
date exceed $50,000. The program for this query is illustrated in Figure 2. In 
Figure 2 the example element -N maps the columns in the relations Directory 
and Sales to specify a join. The operator 1 specifies row negation (meaning NOT 
EXIST) [50]. The row negation in Employee relation specifies that there be no 
tuples having the value of-N in the Manager column. 

Operators and Commands 

The OBE language supports the following operators: P. (present), I. (insert), D. 
(delete), U. (update), S. (send), X. (execute). The language also provides aggregate 
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Sales Salesperson 

P. 

Sales Quota Sales To Date 

p.>!io,ooo 

Fig. 1. An OBE program containing one relation. 

Directory Name Phone 
I 

1 P.-N I p, 

Sales Salesperson 

-N 

Sales Quota Sales To Date 

>50,000 

Employee Ename Manager 

-N 

Fig. 2. An OBE program containing three relations and 
negation. 

Fig. 3. An example query. 

functions: SUM. (sum), CNT. (count), AVG. (average), MAX. (maximum), MIN. 
(minimum), UNQ. (unique), ALL. (duplicate), and G. (grouping). The operator 
1 specifies row negation. 

Other Constructs 

To project results derived from more than one relation, we use a user-created 
output. We prefix the relation name with the symbol & to indicate that the 
relation is a user-created output. An example is shown in Figure 3. 
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3. QUERY PROCESSING 

In this section we present the issues involved in processing queries in a domain 
relational calculus language. We also define terminology that is used throughout 
this paper. We use the example in Figure 3 for illustrative purposes. 

On the screen for a query, multiple rows can appear in a relation skeleton. 
Each row contains predicates and operators that are to be applied to the tuples 
of the relation. Each row refers to a different instantiation of the relation. We 
define a node as an instantiation of a relation with associated predicates and 
operators as specified in a row. For example, in Figure 3, we have four nodes, 
two of which represent different instantiations of relation Rl. Objects that do 
not have corresponding base relations are not treated as nodes. For example, the 
user-created output and the condition box are not nodes. We call a node a negated 
node if it involves row negation; otherwise, we call it an ordinary node. Node 2 
in Figure 3 is an example of a negated node. 

A restriction predicate is a predicate containing only literal values. Node 3.Co13 
= 150 in relation skeleton R2 is an example of the restriction predicate. A join 
predicate is a predicate containing an example element that appears in a node or 
in a condition box. Node 4.Coll = -X is an example of the join predicate. It 
becomes a bound join predicate if all of its example elements have been assigned 
specific values (i.e., bound); otherwise, it becomes an unbound join predicate. 

A join predicate can be used for two purposes. (1) It can bind example elements 
to specific values contained in the tuple retrieved from the database. For this 
purpose, the join predicate must be a “bindable instance” of an example element. 
A join predicate is a bindable instance of an example element if, when interpreted 
with values in a tuple, the example element can be bound unambiguously. For 
example, the join predicates in Node 1 and Node 4 are all bindable instances, 
whereas the join predicate in Node 3 is not. In our implementation, we treat only 
join predicates of the form Column = -X as bindable instances. We do not treat 
a predicate of the form Column = -X + 5 as a bindable instance for performance 
reasons since we have to perform an arithmetic operation to bind the example 
element. (2) A join predicate can select qualified tuples. For this purpose, all 
example elements in the join predicate must be bound. If any example element 
is unbound, the evaluation of the predicate is deferred until all the example 
elements are bound. 

We define a column of a node with a restriction predicate as a restriction 
column; a column with a join predicate is a join column. For example, Co11 of 
Node 1 is a join column; Co13 of Node 3 is a restriction column. 

Processing a query consists of retrieving the data, checking for satisfaction of 
the conditions, computing aggregations if necessary, and constructing the output 
result. The most important part of query processing is evaluation of the join. 
The query processor treats all the queries as joins; thus, a single-node query is a 
special case of the join. We first discuss join methods and then describe other 
aspects of query processing. 

There are numerous join methods reported in the literature [6, 21, 32, 46, 471. 
Two join methods are frequently used in database systems: the nested-loop join 
method and the sort-merge join method [32, 401. 

In disk-based database systems the sort-merge join method has an advantage 
over the nested-loop join method when a majority of tuples in the relations are 
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accessed. Since it processes all the tuples in a block sequentially after sorting, it 
avoids a situation in which accessing one tuple requires one block access. On the 
other hand, the nested-loop join method is advantageous when only a small 
fraction of tuples needs to be processed. Since it accesses the tuples in a random 
fashion, it is very likely to incur one block access per tuple. However, sorting is 
not needed in this method. Since only a small fraction of tuples is considered, 
the disadvantage of random access can be easily compensated for by the saving 
of the sorting cost. Clearly, the sort-merge join method should be used only when 
the benefit of sequential access exceeds the cost of sorting the tuples in the 
relations. 

In OBE we choose to implement only the nested-loop join method. We believe 
that the nested-loop join (with proper usage of indexes) alone is adequate in 
memory-resident databases.l Basically, we argue that an index can be built in 
time equivalent to that for sorting a relation-both order of n log n, where n is 
the number of tuples satisfying restriction predicates. A relation already sorted 
corresponds to an existing index. Once the relation is sorted or an index created, 
since there is no concept of blocking (i.e., many tuples in one disk block) [44] in 
a memory-resident database, most of the benefit of using the sort-merge join 
method can no longer be achieved. In fact, a relation can be viewed as a set of 
blocks each containing only one tuple. Thus we conclude that, in a memory- 
resident database, the nested-loop join method is as good as or better than the 
sort-merge join method in most cases. 

Notice that many variations of hash join methods [ 10, 261 are by our definition 
nested-loop join methods, but use hash indexes. Such indexes are created on the 
fly and not permanently stored. One of the access structures we define in Section 
5.1 considers creating an index on the fly for a specific query. However, we did 
not implement hash indexes because we decided to use the same index structure 
for both permanent and temporary indexes. 

Incidentally, Lehman and Carey [26] compare new join algorithms based on 
the T-tree with other join methods. The T-tree is a compromise between the 
array index and the AVL tree [22] that achieves more flexibility in updates than 
the former and less storage space than the latter. However, their conclusion that 
the T-tree merge join is the best is based on the following assumptions: 

(1) They consider only unconditional joins (i.e., without any restriction predi- 
cates). Typically, the nested-loop join is much preferred if there are strong 
restriction predicates so that only a small number of tuples need to be joined. 

(2) They define the nested-loop join as the method that does not use (or create 
and use) any indexes. Clearly, the nested-loop join by this definition would 
be the worst method. 

(3) They do not consider the nested-loop join method as we define in this paper 
(i.e., using the best index available, or creating one if beneficial). 

(4) In the T-tree merge join cost, the cost of creating indexes is omitted assuming 
that the indexes already exist. In all other algorithms compared, the corre- 
sponding costs are included. 

1 Some authors [25] define the nested-loop join as a method that does not use (nor create and use) 
any indexes. Clearly, the nested-loop join by this definition would have an unacceptable performance. 
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In the nested-loop join method, there is a total order among relations to be 
joined. We define this total order as the join sequence. Also, we define the nested 
loop executing the join according to the join sequence as the join loop. 

Using the nested-loop join method, the query processor evaluates a query as 
follows. It processes the nodes in the order of the join sequence. We define the 
node currently being processed as the current node. For the current node, it first 
evaluates the column predicates (the predicates that are specified in the column 
of the relation skeleton) and then evaluates the cross-reference predicates (those 
in a condition box or the column predicates of the previous nodes, the evaluation 
of which were deferred because they were not bound). However, not all the cross- 
reference predicates need to be evaluated; only those containing an example 
element that gets bound at the current node are considered for evaluation since 
these are the only ones that can become bound at the current node. We discuss 
more refinement of this concept in Section 5. 

Example 3. Let us evaluate the query in Figure 3 according to the sequence 
(Node 3, Node 4, Node 1, Node 2). The query processor first retrieves a tuple 
from Node 3 that satisfies the restriction predicate Co13 = 150. Then.it tries to 
evaluate the join predicate Co11 = -X + -Z. Having found the predicate is 
unbound, however, it tries to bind the value of the example elements, which also 
fails because the predicate is not a bindable instance of either -X or -Z. (This 
paradigm is improved by the query optimizer. We discuss the improvement in 
Section 5.3.) Thus evaluation of this predicate is deferred by making it a cross- 
reference predicate for subsequent nodes in the join sequence. Next, the query 
processor retrieves a tuple from Node 4. Node 4 has two join predicates that are 
unbound but bindable. Thus the query processor binds the example elements 
-X and -Y with the values of Co11 and Co12 in the tuple retrieved. The cross- 
reference predicate Node 3.Coll = -X + -Z still cannot be evaluated because 
-Z is not bound. However, the cross-reference predicate -X > 5 in the condition 
box can be evaluated here. Next the query processor retrieves a tuple from 
Node 1 that satisfies the bound join predicate Co11 = -X. It subsequently 
binds the example element -Z with the value of Co13 in this tuple. Note that 
Co13 = -Z is a bindable instance of -Z. Since both -X and -Z are bound by 
now, the query processor successfully evaluates the cross-reference predicate 
Node 3.Coll = -X + -Z. If the predicate is false, the join loop backtracks 
to Node 4, retrieves a new tuple in Node 4, and enters Node 1 again. If the 
predicate is true, the join loop continues to Node 2. At Node 2, the query 
processor checks whether the value of -Y, which has been bound in Node 4, is 
in any tuple of Node 2 (i.e., evaluates the row negation). If not, the entire 
evaluation is successful and the value of projection columns (which are specified 
with P.; in this case, they are -X, -Y, and -Z + 5) is calculated and returned as 
a result. This process is repeated until all tuples satisfying the query are 
constructed. 

For operations such as insertions, deletions, and updates, the query processor 
employs a deferred update policy [12, 351. It first collects the tuples (together 
with tuple identifiers (TIDs)) to be inserted, deleted, or updated in a temporary 
relation and then updates the base relation in batch with the tuples in the 

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990. 



Query Optimization l 75 

temporary relation. This policy makes the update part in an operation indepen- 
dent of the query part. Since the update part is common in all access strategies, 
optimization involves only the query part. As a result, the optimizer treats all 
the operations on the database as (read-only) queries. 

Aggregations are also evaluated at the end; thus they are independent of 
optimization. Many DBMSs employ the same strategy. As an exception, System 
R keeps track of an interesting ordering [32] so that, in the best case, it can save 
a cost of sorting the result to evaluate the aggregation. Although it may be 
beneficial at times, it adds significant complexity to the optimization process. In 
our approach, we do not consider interesting ordering. 

We define a hypothetical result relation for node Nj in the join sequence 
(NI, Nz, - * * 3 Nj, . * * 9 Nd) as the result of joining nodes in the partial join 
sequence (NI, Nz, . . . , Nj). As we discuss in Section 4, a result relation is never 
materialized until the completion of the query. We define the result cardinality 
for a node as the cardinality of the hypothetical result relation for that node. 
Finally, we define access structures as the methods of accessing data that the 
optimizer can select in the process of optimization. 

4. STORAGE STRUCTURES 

In this section we briefly introduce the storage structures implemented by the 
low-level system component HRMS. More details on the storage structures can 
be found in Ammann et al. [l]. HRMS provides the data storage organization 
and primitive access functions. We introduce here only those features that are 
relevant for query optimization, that is, the representations of relations and 
indexes. 

4.1 Relations 

A relation is represented as a doubly linked list of tuples. Each tuple is an array 
of pointers to column values. Each column value is stored as a variable-length 
string with two bytes of information on its length. HRMS tries to store a unique 
column value only once; thus tuples having the same column value point to the 
same string. Unique values of a column can be easily detected if an index is 
maintained for that column. 

4.2 Indexes 

HRMS provides two types of indexes: the single-column index and the multiple- 
column index. A single-column index is an index defined for a column of a 
relation and can be permanently stored in the database. A multiple-column index 
is an index defined for a list of columns, but cannot be permanently stored in 
the database. 

A multiple-column index is created as follows: first, the tuples of the relation 
that satisfy the restriction predicates are selected; then, an index is constructed 
for the list of columns having bound equality join predicates. The lists of 
restriction and join columns are designated by the optimizer. Since a multiple- 
column index is always specific to a query, it is not relevant to store the index 
permanently in the database. The multiple-column index has an advantage of 
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reducing the size of the relation because it selects only those tuples that satisfy 
restriction predicates. Due to this reduction both the cost of creating the index 
and the cost of accessing tuples using this index can be reduced. 

Example 4. Consider constructing a multiple-column index for Node 3 in 
Figure 3. We assume that the join predicate Co11 = -X + -Z is bound by the 
time Node 3 becomes the current node. We create a multiple-column index by 
first finding the tuples satisfying the restriction predicate Co13 = 150 and then 
creating an index on Co11 (having a bound equality join predicate) only for these 
tuples. In general, there may be more than one bound equality join predicate; in 
such cases, we build an index on the list of all the join columns having bound 
equality join predicates. (Hence we have the name “multiple-column index.“) 
Suppose that Node 3 has 10,000 tuples and that 100 tuples satisfy the restriction 
predicate Co13 = 150. Since the index is created only for these 100 tuples, the 
costs of creating and accessing the index are reduced. In addition, we have an 
added advantage of indexing based on more than one column simultaneously. 

An index (of either type) is implemented as an array of tuple identifiers (TIDs) 
that are pointers to tuples. Accessing an index uses a binary search. To avoid 
arithmetic computation in the binary search as was used by Lehman and Carey 
[25], we use the shift instruction instead of the division operator. Lehman and 
Carey [25] point out that arithmetic operations are the major source of the cost 
in searching the array index. This scheme contrasts with the conventional method 
of implementing an index as a binary search tree such as the AVL tree [22]. 
Since the scheme does not store the tree structure explicitly, it requires less 
memory space for storing indexes. In our implementation it showed a six-to-one 
reduction in memory space as compared with the AVL tree. The scheme achieves 
further reduction in memory space by storing only pointers to TIDs in the index; 
the key values can be easily found (by two pointer references) from the tuples 
they point to. In comparison, in conventional disk-based database systems, the 
index storage cost is a major problem because original key values must be stored 
in the index. 

Updating an index is straightforward. For example, when an index entry is 
inserted, the upper half of the index is block-copied to a new memory location; a 
new entry is inserted; and then, the lower half of the index is block-copied next 
to the new entry. For block-copying we use the instruction MOVE LONG (C) 
(meaning move a long character string) defined in the IBM 370 architecture. 
This instruction is a very efficient operation in IBM mainframes. Experiments 
show that, in a 3081 processor, copying 1 Mbyte of memory using this instruction 
takes less than 0.1 second. For this reason, updating indexes is not a major 
problem in our system. We briefly present the performance of update operations 
in Section 6.2. 

5. QUERY OPTIMIZATION 

The query optimizer determines the optimal join sequence and specific access 
structures to be used in processing individual nodes. The results the optimizer 
produces are recorded in a data structure called the access plan. The information 
in these data structures is subsequently interpreted by the query processor to 
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evaluate the query. In this section we present the query optimizer’s algorithm, 
access structures, cost model, and data structures. 

Let us note that query optimization in OBE is quite simplified due to the 
nature of the language. Queries written in OBE are in the canonical form as 
defined by Kim [20]. In particular, queries have no substructures such as nested 
queries in SQL. The advantages of the canonical representation are well explained 
by Kim [20]. (Queries having aggregate operations in a condition box are 
exceptions; further details on these are beyond the scope of this paper.) 

In addition, the concept of example elements provides more flexibility in 
optimization compared with conventional query languages where the columns 
participating in a join are explicitly named. For example, consider the join 
predicate: Column A = Column B AND Column B = Column C. In conventional 
languages, the optimizer has to derive the fact Column A = Column C. (In many 
systems, this is not done.) In OBE, since all three columns are represented by 
the same example element, the information is readily available to the optimizer. 

5.1 Access Structures 

The optimizer defines the following access structures: 

(1) Relation Scan; 
(2) Single-Column Index (existing); 
(3) Single-Column Index (created); 
(4) Multiple-Column Index. 

Relation Scan specifies that each tuple in the relation be accessed sequentially. 
Single-Column Index (existing) specifies that tuples be accessed associatively 
through an existing single-column index. Single-Column Index (created) also 
specifies access through a single-column index, but requires that the index be 
created for each query and be dropped at the completion of the query. Lastly, 
Multiple-Column Index specifies that tuples be accessed through a multiple- 
column index. 

5.2 Cost Model 

We define the minimum query processing cost (response time) as the criterion 
for optimality. Since the cost of processing a query must be determined before 
actually executing it, we need a proper model for estimating this cost. Since we 
assume memory residency of data, we consider only the CPU computation cost. 

In many conventional database systems, the cost model has been constructed 
by simply counting the number of I/O accesses for processing a query. Modelling 
the CPU cost, however, is not as straightforward for the following reasons. 
(1) There are many parameters affecting the CPU computation cost; examples 
are the design of the software, the architecture of the hardware, and even the 
programming styles of the programmers. Moreover, as the system evolves, these 
parameters are subject to change. (2) Even if the parameters do not change, 
analyzing the overall computation cost for the entire program code is next to 
impossible. For example, the most straightforward method would be to add all 
the machine cycles of the machine instructions. In a large system program, 
however, counting machine cycles would be impossible. 
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As a solution to this problem we propose an approach using both experimental 
and analytic methods. First, we identify the system’s bottlenecks, that is, those 
sections of the program code that take most of the processing time. Then we 
model the CPU computation cost based on only these system bottlenecks. Next, 
we improve the bottlenecks to the extent that no tangible enhancement can be 
made. This step prevents the cost model from drifting frequently as a result of 
the changes in the program. Since usually there are only a small number of 
bottlenecks, they can be thoroughly examined. In fact, our experience shows that 
most bottlenecks include very small numbers of machine instructions. The next 
step is to find, by experiments, relative weights of different bottlenecks and to 
determine their unit costs. Finally, we develop comprehensive cost formulas based 
on these unit costs. 

In OBE the bottlenecks have been identified with the aid of PLEA8 execution 
analyzer [29]. The execution analyzer provides the statistics on the percentage 
of the time spent in individual procedures. Once a procedure is identified, it is 
relatively straightforward to locate the section of the code that causes the 
bottleneck. 

We have measured the following unit costs: 

(1) the cost of evaluating the expressions involved in predicates (unit cost = C, ); 
(2) the cost of comparison operations needed to finally determine the outcome 

of predicates (unit cost = C,); 
(3) the cost of retrieving a tuple from a (memory-resident) relation (unit 

cost = (25); 
(4) the cost of unit operation in creating an index (unit cost = C,; there are 

n logzn unit operations in creating an index, where n is the number of tuples 
in the relation); 

(5) the cost of unit operation in the sorting needed to prepare a multiple-column 
index (unit cost = C,). 

The five parameters, C, , CZ, C3, Cd, C, have been determined by experiments 
using the execution analyzer and have been stable for a long period of program 
development. 

An interesting result of our modeling effort has been to find that the evaluation 
of the predicates (especially, expressions in the predicates) is the costliest 
operation in our system. Among the five parameters, CZ, Cs, Cd, and C5 are of 
the same order, and C, is approximately ten times as large as the others. Basically, 
CZ, Cq, or C, represents a comparison operation. In many conventional database 
systems the major cost comes from tuple retrieval due to the I/O cost involved 
and the CPU cost for copying and manipulating the data structures for the 
tuples. In OBE, however, tuple retrieval (C,) is as simple as following a pointer. 
Since all the data are in main memory, we only have to locate the tuple without 
having to copy or manipulate the tuple data structure. On the other hand, 
predicate evaluation is much costlier because it requires traversing the expression 
tree that has a more general form in order to accommodate various forms of 
expressions. Although the complexity of expressions varies, we encounter the 
simplest forms (such as -X or 5 for column predicates and -X > 5 for condition 
boxes) most of the time. The measurement is based on these simple expressions. 
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The cost formulas are composed using the statistical parameters maintained 
by HRMS. There are two types of parameters. The relation cardinality is the 
number of tuples in a relation. The column cardinality is the number of unique 
values in a column. The cost formulas are constructed in three steps. First, using 
the statistical parameters, the selectivities of the predicates are calculated. Next 
the cardinalities of the hypothetical result relations are calculated. Based on the 
selectivities of the predicates and result cardinalities thus obtained, the total 
access cost for processing a query is finally calculated. 

Typically, two assumptions are used in many relational database implemen- 
tations: (1) uniform distribution of data and (2) independence among columns. 
The uniform distribution assumption states that the values in a column occur 
with an equal probability. The independence assumption states that a value in a 
column is in no way related to values in another column, that is, they are not 
correlated. Although in reality the distribution of data will not conform to these 
assumptions, we adopt them for practical implementation considerations. Re- 
cently, some papers discussed potential deviation of the cost caused by these 
assumptions. Christodoulakis [8] points out that the uniform distribution rep- 
resents the worst case in single-relation case (i.e., simple selection). Vander 
Zanden et al. [3’7] presents a mechanism to deal with correlation with the 
clustering column. Nevertheless, the proposed techniques require a significant 
amount of storage space and overhead to store and maintain the distributions of 
the data. We believe that the two assumptions, although not absolutely accurate, 
are sufficiently effective in eliminating any solutions that significantly deviate 
from the true optimal solution. Our experience with the OBE optimizer supports 
this belief. 

Before concluding this subsection, let us note an interesting consideration in 
constructing cost formulas. Counting the number of predicates that are to be 
evaluated is an important part of the cost model. We use the following function 
for this purpose. Suppose number,, is the number of bound predicates considered 
for a node. Then, the number of predicates to be evaluated for a tuple in that 
node is given by 

if number, = 0 
if number, = 1 
if number, 2 2. 

The function f is derived as follows. In OBE predicates specified in columns of a 
node or in condition boxes are implicitly ANDed. Hence, if the first predicate is 
false, the second predicate will not be evaluated. Accordingly, the probability 
that the second predicate is evaluated is the same as the selectivity of the first 
predicate. Likewise, the probability of the third predicate is evaluated is the 
product of the selectivities of the first and the second, and so forth. We assume 
that, in most cases, the selectivity of a predicate is less than one-third. Then, the 
number of predicates to be evaluated will be bound by 1 + 5 + $ + . . . = 1.5. 
Estimating the number of predicates based on the selectivities of individual 
predicates will complicate the optimization process substantially. By using the 
function f, we can obtain a reasonable estimate without overhead in most practical 
cases. 

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990. 



80 - K.-Y. Whang and R. Krishnamurthy 

For illustrative purposes, we present example cost formulas for the access 
structure Relation Scan in Appendix A. A complete set of cost formulas can be 
found in Whang [ 391. 

5.3 Optimization Strategies 

As we discussed in Section 5.2, predicate evaluation (especially, expression 
evaluation) is the costliest operation in processing a query. Thus, query optimi- 
zation is geared to minimizing the number of predicate evaluations. For this 
purpose, the optimizer employs the following strategies: 

(1) binding an example element as early as possible; 
(2) evaluating a predicate as early as possible; 
(3) avoiding useless evaluation of a predicate; 
(4) avoiding unnecessary evaluation of an expression. 

An example element appearing more than once in a query may have multiple 
places in the join sequence where it can be bound. In other words, it may appear 
in multiple bindable instances (predicates). For example, the example element 
-X in Figure 3 may be bound at either Node 1 or Node 4. Given a join sequence, 
however, an example element should be bound as early as possible for better 
performance. Early binding of an example element leads to early binding and 
evaluation of the predicates containing the example element. Early evaluation of 
predicates, in turn, results in a smaller cost by reducing the number of tuples to 
be considered in the rest of the join sequence. According to strategies 1 and 2, 
the optimizer finds the earliest point in the join sequence at which an example 
element can be bound. For instance, in Figure 3, the optimizer specifies that the 
example element -X be bound at Node 1 or Node 4, whichever comes earlier in 
the join sequence. We call such specification by the optimizer static binding. 
Static binding information is subsequently used by the query processor to bind 
the example elements at run time. We call this process dynamic binding. Let 
us note that these strategies are not heuristics since they always reduce the 
processing cost. 

A useless evaluation of a predicate is defined as an evaluation of an unbound 
(join) predicate. A useless evaluation will eventually be aborted when an unbound 
example element is encountered. We note that predicate evaluation is the costliest 
operation. Useless evaluation of a predicate is equally costly because the data 
structure for the expression has to be interpreted and the predicate partially 
evaluated until an unbound example element is found. According to strategy 3, 
the optimizer detects an unbound predicate at optimization time and sets 
an indicator. The query processor can avoid useless evaluation by simply 
looking up this indicator. In Example 3, the evaluation of the join predicate 
Node 3.Coll = -X + -Z at Node 3 is a useless evaluation, and so is the evaluation 
of the same predicate as a cross-reference predicate at Node 4. 

We use two types of indicators: the column-evaluation flag and the cross- 
reference-evaluation flag. The column-evaluation flag for a node is an array; each 
entry is associated with a column of the node. An entry is set to 1 if the 
corresponding column predicate can be evaluated successfully at the node, that 
is, if it is bound by the time the node becomes the current node. For instance, in 
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Example 5, column-evaluation flag for Node 3 is (0, 0, 1). The flag for Node 4 is 
(0, 0, 0) since both join predicates are not bound when Node 4 becomes the 
current node. 

The optimizer sets the column-evaluation flag of a node to 1 if the following 
conditions are met: 

(1) The predicate is bound (a restriction or bound join predicate) at the node 
(i.e., when the node is the current node). 

(2) The predicate is not used in indexing (with either a single-column index or 
a multiple-column index). This condition applies because the predicate is 
already evaluated through indexing. 

The cross-reference-evaluation flag is an array of (example element, join 
predicate) pair. Each entry in the flag is associated with an example element and 
a join predicate that contains it. An entry is set to 1 if the three conditions are 
met: 

(1) The join predicate is a cross-reference predicate for the node at which the 
example element gets bound. 

(2) The join predicate becomes bound as the example element gets bound. 
(3) The join predicate is not used to bind the example element. 

For instance, in Example 3, at Node 4, the cross-reference predicate Node 
3.Coll = -X + -Z (predicate[Node 3, Coll]) does not become bound when 
example element -X gets bound. Hence, cross-reference-evaluation flag[-X, 
predicate[Node 3, Coll]] is 0. At Node 1, however, predicate[Node 3, Co111 
becomes bound when -Z gets bound. Thus cross-reference-evaluation flag[-Z, 
predicate[Node 3, Coll]] is 1. Note that predicate[Node 1, Co111 is “not” a cross- 
reference predicate for Node 4 because Node 4 comes before Node 1 in the join 
sequence. Since the first condition is not satisfied, cross-reference-evaluation 
flag[-X, predicate[Node 1, Coll]] is 0 even if the predicate becomes bound when 
the example element -X gets bound at Node 4. Instead, this predicate is evaluated 
as a column predicate at Node 1 since it is bound by the time Node 1 becomes 
the current node. 

An interesting special case occurs when there are multiple binding instances 
of an example element in different columns of the same node. (Imagine there is 
an example element -X in Node 4, Co13.) In this case, if one is used for binding 
the example element, the other is treated as a cross-reference predicate. 

The query processor evaluates column predicates of a node whenever the node 
becomes current, but considers only those with their column-evaluation flag 
entries set to 1. Similarly, it evaluates the cross-reference predicates whenever 
an example element gets bound but considers only those for which the corre- 
sponding (example element, join predicate) entry is set to 1. This way, the query 
processor avoids useless evaluation completely. 

Column predicates are evaluated in two steps. First, the expression is evaluated, 
and then the result is compared with the value retrieved from the tuple. For 
instance, in Figure 3, -X + -Z is an expression that is evaluated and compared 
with the value of Coll. We regard even -X or 150 as an expression because it is 
stored in the expression structure in the same general form as more complex 
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expressions. As we discussed in Section 5.2, expression evaluation is the costliest 
operation, which should be avoided as much as possible. We note that there is 
no need for reevaluating the expression unless its value changes. 

There are two cases where reevaluation is not needed. First, for a restriction 
predicate, the expression (such as 150 in Node 3.Co13 in Figure 3) needs to be 
evaluated only once at the initial stage of processing the query. The result is 
stored in a program variable. Then, at run time, predicate evaluation simply 
becomes a comparison between the value of the column in the tuple and the one 
stored in the variable. 

Second, the expression for a bound join predicate (except for a cross-reference 
predicate) needs to be evaluated only once when the node containing the predicate 
is entered in the join loop (i.e., is made the current node). Once the node is 
entered, the value of the expression stays constant until the join loop backtracks 
to the previous ;mde in the join sequence after examining all the eligible tuples 
in the current node. Thus, the expression does not need reevaluation. For 
example, ihe expression in the predicate Node l.Coll = -X in Figure 3 is 
evaluated only when Node 1 is entered. It stays constant until all tuples of Node 
1 having the specific value of -X are processed. Cross-reference predicates are 
exceptions because their example elements are bound to different values every 
time a new tuple is retrieved from the current node. 

According to strategy 4, the optimizer identifies these two cases and set 
indicators, so that the query processor can avoid unnecessary evaluation by 
simply looking up the indicators. We use two types of indicators: the comparison- 
restriction-predicate flag and the comparison-bound-join-predicate flag. Both 
flags are arrays, each entry being associated with a column of a node. An entry 
in the comparison-restriction-predicate flag is set to 1 for any column having a 
restriction predicate. An entry in the comparison-bound-join-predicate flag is set 
to 1 for any column having a bound join predicate. Columns used for indexing 
are excepted since the predicates are already evaluated through indexing. 

The results of optimization are recorded in the access plan. The access plan 
contains the following information: (1) the optimal join sequence, (2) for each 
node, the access structure chosen for that node, (3) static binding for each 
example element, and (4) four predicate-evaluation indicators (the column- 
evaluation flag, cross-reference-evaluation flag, comparison-restriction-predicate 
flag, and comparison-bound-join-predicate flag). 

Example 5. Figure 4 shows an example of the optimization process. We 
assume that, initially, the database contains no index permanently defined. As 
we discuss in Section 5.4, the optimizer employs a systematic search technique 
called the brunch-and-bound algorithm [15]. In this example, however, we provide 
an “intuitive” explanation on the optimality of the solution in Figure 4. Both 
Node 2 and Node 3 have very selective restriction predicates involving the column 
DEPT. Since selective predicates reduce the number of tuples to be considered 
in the rest of the join sequence, it is very likely that the nodes they belong to are 
chosen to be the first in the join sequence. Here Node 2 is chosen first. Then 
example elements -X and -Z can be bound in Node 2 since the predicates are 
bindable instances. The next node in the join sequence is chosen to be Node 1. 
Since example element -X has been bound, Node 1 can be accessed efficiently 
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990. 



Query Optimization l 83 

EMP 

(NODE,) P. 

(NODE21 

(NODE31 

NAME SALARY D-HIRED MANAGER DEPT 

,Y -X >-z 

,X ,Z 511 

3 526 

I 

ACCESS PLAN AND OUTPUT INFORMATION . RELATION SCAN 

. BIND -X, -2 

. COLUMN-EVALUATION-FLAGIDEPT] = ‘I’ 

. COMPARISON-RESTRICTION-PREDICATE-FLAGIDEPT] = ‘I’ 

NODE, ---- 

-1;‘l 

. SINGLE-COLUMN INDEX (CREATED) 

. INDEXING ON ‘SALARY’ 

. BIND Y - 

. COLUMN-EVALUATION-FLAG[D-HIRED] = ‘I’ 

. COMPARISON-BOUND-JOIN-PREDICATE-FLAGID-HIRED] = ‘1’ 

&----{ : MULTIPLE-COLUMNINDEX 
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. LIST OF BOUND JOIN COLUMNS = <MANAGER> 

Fig. 4. An example of optimization. 

through an index for the column SALARY. Similarly, since example element -Z 
has been bound, the predicate D-HIRED > -Z can be evaluated. Example element 
-Y is bound here. The last is Node 3. Since it is the last node in the join sequence, 
tuples in this node are likely to be accessed repeatedly. Hence, it would be 
beneficial to reduce the size of the relation by selecting in advance only those 
tuples satisfying restriction predicates. Multiple-Column Index is chosen as the 
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access structure to serve this purpose. The list of restriction columns is (DEPT), 
and the list of bound join columns is (MANAGER). The optimizer’s decisions 
on predicate-evaluation flags and predicate-comparison flags are self-explanatory 
and are not further discussed. 

5.4 Searching Algorithm 

The optimizer finds the optimal solution by exploring the search tree using a 
branch-and-bound algorithm. At each node in the search tree, the optimizer 
performs the following tasks: 

(1) According to the optimization strategies 1 and 2, it statically binds all example 
elements that can be bound. 

(2) It chooses the most efficient access structure. For this purpose, single-column 
indexes for all the columns having restriction or bound join predicates are 
considered. If an index is not available, creating and using one is considered. 
The relation scan and the multiple-column index are also compared. 

At the same time, it calculates the total cost of processing the node considering 
optimization strategies 3 and 4. The cost is multiplied by the result cardinality 
from the previous node in the join sequence, which represents the number of 
entering the node in the join loop. 

Given a cost model, the branch-and-bound algorithm always produces the 
optimal solution. Although the branch-and-bound algorithm is functionally 
equivalent to an exhaustive search, it substantially reduces the search time by 
means of pruning. The pruning of a subtree occurs whenever there is a clue that 
the optimal solution cannot be found in the subtree. The clue can be obtained by 
comparing a lower bound of the cost associated with the subtree with the global 
upper bound, which is maintained as the minimum cost of alternative solutions 
that have been examined. If the lower bound exceeds or equals to the global 
upper bound, the subtree is pruned. 

A branch-and-bound algorithm can be characterized by three rules: (1) a rule 
for finding a lower bound for a subtree, (2) a branching rule, and (3) a rule for 
resolving a tie among candidate subtrees to be explored. For the query optimizer 
we use the following rules. First, we define the accumulated access cost for the 
current node as the lower bound for the subtrees to be explored. The accumulated 
access cost of a node is the cost of obtaining the hypothetical result relation for 
the node according to the join sequence. Second, we employ the newest bound 
branching rule, which selects the most recently created (or to be created) subtrees 
as the candidate subtrees. Third, we use a fixed priority scheme to resolve a tie 
among these candidate subtrees. Let us note that, due to the definition of the 
lower bound, the candidate subtrees always form a tie. 

We define the order of priority among nodes as follows: 

(1) An ordinary node with a bound equality predicate. 
(2) A negated node with all its predicates bound. 
(3) An ordinary node with a bound inequality predicate (i.e., a range or not- 

equal predicate). 
(4) An ordinary node without any bound predicate. 
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A negated node having an unbound join predicate should never be given a priority 
because it can be evaluated only when all the predicates are bound. 

This priority scheme seems to work reasonably well. In retrospect, however, 
the authors believe that the priority should not be based on the type of the node; 
instead, it should be based on combined selectivity of the predicates in the node. 
In fact, if a range predicate has a better selectivity than an equality predicate, 
the former should be given a higher priority. 

The accumulated access cost for a node is obtained by adding the cost of 
processing the node to the accumulated access cost for the previous node in the 
join sequence. The cost of processing a node is calculated as the cost of processing 
the tuples of the node through the most efficient access structure. The result 
cardinality for the previous node in the join sequence is implicitly multiplied 
since it represents the frequency of entering the current node in the join loop. 

6. PERFORMANCE 

The OBE database manager has been designed with the assumption that data 
reside in main memory. Naturally, one important question is to what extent this 
assumption would be satisfied in a real environment. Obviously, a steady tendency 
toward cheaper memory hardware is encouraging. Yet this will not solve all the 
problems because the cheaper the memory becomes, the larger the data require- 
ment becomes. Thus we need other means of satisfying the memory-residency 
assumption. 

In OBE the memory-residency assumption is approximated by virtual memory 
and the working-set scheduling algorithm. We argue that the operating system’s 
scheduling algorithm has a vital effect on the memory-residency assumption. In 
particular, pure demand paging is not suitable for this assumption because it 
would suffer from thrashing if the total memory requirement from many users 
far exceeds the size of the physical memory of the system. However, when coupled 
with the working-set algorithm, virtual memory provides an excellent approxi- 
mation of real memory. 

6.1 Operating System Environment 

In this subsection we describe a very simplified version of VMf370’s scheduling 
algorithm [ 171 to investigate its effect on the memory-residency assumption. The 
scheduling algorithm uses two types of time units: time slice and dispatch time 
slice. For convenience, let us call them long time slice and short time slice. In 
addition, there are two types of queues for virtual machines: dispatch list and 
eligible list. The short time slice is the unit time for allocating CPU among 
members in the dispatch list. A long time slice is a fixed multiple of short time 
slices, during which a virtual machine is entitled to stay in the dispatch list. If 
there are other virtual machines with higher priorities when the long time slice 
expires, a virtual machine may be relocated to the eligible list waiting for another 
long time slice to be assigned to it. 

The scheduler puts virtual machines in the dispatch list only to the extent 
that the total memory requirement of the virtual machines does not exceed the 
size of real memory. The memory requirement of a virtual machine (working set) 
is first estimated as the average number of memory-resident pages for that virtual 
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machine while in the dispatch list. The number thus obtained is adjusted 
according to some formula that provides a feedback mechanism to stabilize the 
performance toward the system’s global goal for paging activities. Once the set 
of virtual machines on the dispatch list is determined, paging is controlled on a 
demand basis. This way, ideally, if access patterns of the virtual machines are 
constant, the virtual machines must get sufficient real memory with which to 
work. 

Let us summarize the ramifications of the scheduling algorithm. 

(1) As long as a query is evaluated within one long time slice, there will be no 
additional I/O’s except for the initial loading of data (one access for each page). 

(2) Even when a query spans multiple long time slices, provided that a long 
time slice is long enough to dominate the cost of initial loading, the I/O time will 
be negligible compared with the CPU time. 

(3) There will be no significant thrashing because the memory requirement of 
a virtual machine is satisfied while the machine is on the dispatch list. 

(4) The system’s feedback mechanism, imbedded in the estimation of the 
working set, stabilizes the overall paging activity (e.g., 15 percent). 

We have informally discussed the advantages of the working-set scheduling 
algorithm, the detailed analysis of which is beyond the scope of this paper. They 
support our claim that virtual memory, in conjunction with the working-set 
algorithm, serves as a reasonable approximation to real memory in practical 
environments. Here we address the problem of the total size of the physical 
memory (of the entire system, not per user) being less than the size of the data 
of a single user. Experiments indicate that performance is gradually degraded as 
the size of data crosses over the physical memory size. This shows that as the 
data size/physical memory size ratio doubles, the degradation approximately 
quadruples [4]. Note that, as long as the system’s total memory is greater than 
the data requirement of a single user, there is no significant degradation due to 
thrashing. Of course, the response time would be increased (approximately 
linearly) as the number of users increases. In a system adopting pure demand 
paging, the degradation would be far more significant in a multiuser environment 
due to thrashing. 

6.2 Test Results 

Extensive tests were made on the performance of OBE; some of the results are 
presented here. These tests were made on IBM’s 3090 processor with the total 
system’s physical memory of 32 Mbytes. They were also tested with SQL/D& 
and those results are presented in Table II. For comparison, we also provide a 
conservative estimation of the performance of a hypothetical I/O bound database 
system, which will result in an environment adopting demand paging when the 
system’s total memory does not satisfy the total data requirement of all the users. 

Table I shows the results of the tests. The tests were made under the following 
conditions. The machine was lightly loaded. (The tests were made at lunch time, 
when a large virtual machine size is allowed.) Each relation in the queries 
contained 10,000 tuples occupying 1.91 Mbytes of storage space. Each relation 
had indexes on all columns. (The indexes occupied approximately 12 percent of 
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Table I. Performance Results for OBE on an IBM 3090 
Processor 

Degree Data volume Virtual CPU time Elapsed time 
of join (Mbytes) (seconds) (seconds) 

1 1.91 1.5 3.7 
2 3.82 1.7 5.3 
3 5.73 2.0 5.7 
4 7.64 11.7 32.0 
5 9.56 13.7 42.0 

the total space.) The queries were designed as joins with one restriction (range) 
predicate. The column values of the relations were generated by a random number 
generator. The intermediate results of the queries ranged from 3,000 to 15,000 
tuples before duplicate elimination. (Duplicate elimination is done only at the 
completion of the query.) Each query was run three times, and the average 
elapsed time was obtained. Since the virtual CPU time stayed fairly stable over 
different executions of the same query, only one representative value is shown in 
Table I. 

In Table I, the degree of join is the number of relations joined in a query, the 
virtual CPU time is the total CPU time the virtual machine (a user process) 
consumed in processing a query, and the elapsed time is the real time measured 
from the start of a query to its end. 

We tested the same queries with the same data in a disk-resident database 
management system, SQL/DS, running on the same 3090 processor. Indexes 
were created only on the join columns and the restriction columns for space 
considerations. Indexes on the other columns would not have affected the test 
results since they were not used in processing the test queries. The results of the 
tests are presented in Table II together with the performance of a hypothetical 
I/O bound system using the nested-loop join. In this system, we assumed two 
pages are accessed to retrieve one tuple (one for the index and one for the data) 
[31,44]. An average seek and rotation time of 30 ms was used. Since intermediate 
results were always more than 3,000, we used this figure as a conservative estimate 
of tuples retrieved from each node. Thus the time to evaluate a query in this 
system was estimated as 3,000 x 2 x degree of join x 30 ms. 

From the results summarized in Tables I and II, we conclude that the perfor- 
mance of OBE justifies memory residency of data. The performance estimation 
of the I/O bound system indicates that a demand paging should not be used in a 
memory-resident database system. Formal benchmarking has been done inde- 
pendently of the tests presented in this paper, and the results can be found in 
Bitton et al. [3] and Bitton and Turbyfill [4]. We briefly summarize the results 
here. 

(1) OBE does very well with selections and joins, as indicated in Tables I 
and II. 

(2) OBE is slow in update, insertion, and deletion. For update of nonkey 
columns and deletion, maintenance of indexes causes the major cost. However, 
this problem does not come from our index update algorithm; instead, it comes 
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Table II. Performance Results for SQL/DS 
and a Hypothetical I/O Bound System 

Degree 
of join 

Elapsed time Elapsed time 
(seconds) (seconds) 
SQL/DS I/O Bound system 

1 10 180 

2 39 360 
3 58 540 
4 155 720 

5 482" 900 

“The figures were extrapolated using the SQL/DS optim- 
izer’s estimation. The queries were not actually run due to 
space problems. 

from our decision to provide indexes for all columns by default, although there 
is a provision for selective indexing. Experiments indicate that the cost of 
updating all indexes is comparable to (somewhat slower than) that of updating 
one index in conventional disk-based DBMSs. Insertion and update of key 
columns are quite slow; the reason is duplicate elimination by default. Note that 
many other DBMSs, such as SQL/DS or INGRES do not provide this feature; 
instead, they allow duplicate records to be stored. Also note that duplicate 
elimination in a permanent relation is different than that in a temporary relation, 
for which we use an efficient hash-based method. 

(3) OBE is slow for certain types of projections in which our efficient, hash- 
based duplicate elimination is not used. Nevertheless, this problem is not inher- 
ently related to the memory-residency assumption. We believe that this problem 
can be fixed by more careful design of data structures for these operations. 

(4) The test data we provided (Table I) are based on the fact that the relations 
are already in main memory. If they are not, they have to be brought into main 
memory at the first reference. Nevertheless, reading a relation into main memory 
is very fast in our system because we store a relation as one record in a file. The 
file system has a built-in mechanism to try to store a contiguous virtual file 
address space in contiguous physical disk pages as much as possible. Typically, 
the system takes 0.67 second to read in 1 Mbyte of data. 

6.3 Optimization Cost 

While the purpose of the optimizer is to minimize the cost for processing queries, 
optimization itself accompanies computation cost. Clearly, efficiency of optimi- 
zation is essential for good overall performance. 

We measured the optimization cost in terms of virtual CPU time using the 
same set of tests as in Table I. The results are summarized in Table III and 
indicate that the optimization cost is not significant even for the join queries 
involving as many as five nodes. Join queries of degree five or higher are fairly 
complex in practice and must be issued very rarely. For this reason, we conclude 
that the optimization cost can be ignored in our system for most practical 
situations. 
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Table III. The Cost of Optimization 

Degree of join 
Virtual CPU time 

(milliseconds) 

1 3 

2 7 
3 12 

4 22 

5 60 

6.4 Limitations 

OBE’s database manager was designed primarily for small databases that are 
suitable for office application environments. In Section 6.2 we tested the system 
to its limit by using a volume of data that was close to the system’s maximum 
capability. The conventional IBM 370 architecture without extended addressing 
provides only 24 bits for addresses-equivalently, 16 Mbytes of address space. 
The results of the tests indicate that the system performs well with a fairly large 
volume of data. Nevertheless, we note that, in our system, the amount of data 
that the system can accommodate is inherently limited by the maximum size of 
virtual memory. We also note that the performance degrades more than linearly 
if the memory requirement of a single user exceeds the system’s physical memory 
size. This is caused by increased paging activity, which is beyond the control of 
the operating system’s working-set scheduling algorithm. 

7. SUMMARY AND CONCLUSIONS 

We have presented the design of a query optimizer for a memory-resident 
database system and have implemented the database system in the context of 
the OBE project. A single-user version of the system is fully operational at the 
time of this writing. 

The major contribution of this paper is to show that the memory-residency of 
data is a viable idea in realistic environments. We have proved this claim through 
a concrete implementation and performance measurement. The results in Table 
I show that OBE can process a large volume of data with excellent performance 
concurrently with other transactions in a time-shared system. 

We have emphasized that the techniques for query optimization in memory- 
resident database systems differ significantly from those in conventional disk- 
based database systems. In particular, we have addressed the following aspects 
of query optimization: 

(1) a CPU-intensive cost model, 
(2) optimization strategies, 
(3) join algorithms and access structures, 
(4) the scheduling algorithm of the operating system. 

We summarize our findings on these issues below. 
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We have presented a new approach to developing a cost model suitable for 
memory-resident database systems. In such systems CPU computation consti- 
tutes the major part of the processing cost. Our technique is based on the system’s 
bottlenecks and their unit costs. The complete cost formulas are constructed 
analytically using these unit costs. We have found an interesting result that the 
dominant cost in memory-resident database systems is incurred by evaluation of 
predicates. Thus, in its simplest form, the cost model should reflect the number 
of predicate evaluations necessary to process a query. This contrasts with the 
case of disk-based database systems, in which the cost of I/O accesses dominates. 
A critical aspect of a CPU-intensive cost model is stability. We have proposed a 
technique for achieving stability of such a model. 

We have formalized four optimization strategies for processing queries in 
memory-resident database systems. They are (1) binding an example element as 
early as possible, (2) evaluating a predicate as early as possible, (3) avoiding 
useless evaluation of a predicate, and (4) avoiding unnecessary evaluation of an 
expression. These strategies are geared to minimizing predicate evaluations, 
which are the costliest operations. We have presented detailed data structures to 
implement such strategies. Based on these strategies, the optimizer uses a branch- 
and-bound algorithm with a fixed priority to search for the optimal access plan. 

The four optimization strategies are closely tied to the notion of example- 
element binding (a simpler version of unification in the predicate logic), which 
is a unique concept in domain relational calculus languages such as QBE. In 
Section 3 we presented a complete technique for processing domain relational 
calculus queries based on example-element binding. The technique differs signif- 
icantly from those for tuple relational calculus or relational algebra systems, 
where only the notion of the column value exists. Example-element binding is 
not done in such systems. We have introduced the notion of a cross-reference 
predicate, whose evaluation is delayed until it becomes evaluable. This notion is 
an enhancement over many Prolog implementations, in which premature evalu- 
ation of such a predicate is considered an error. Query processing in domain 
relational calculus systems has not been well addressed in the literature. Our 
approach should provide new insight into these problems. 

We have argued that the nested-loop join method is a prevalent technique in 
memory-resident database systems. Specifically, the benefit of the sort-merge 
join method disappears in such systems because there is no concept of blocking 
when the data reside in main memory. 

We have presented a simple index data structure suitable for a memory- 
resident database. The index is implemented as a flat array of TIDs that are 
pointers to tuples. This structure saves the storage space significantly compared 
with conventional index structures. The reduction of the storage space allows us 
to have more indexes with less storage overhead. In fact, in OBE, it is possible 
to implement the strategy of having indexes for all the attributes in the database. 
This strategy obviates physical database design problem, which is a nuisance for 
novice users. 

We have emphasized that a proper scheduling algorithm of the operating 
system is crucial for realizing a memory-resident database system. In particular, 
we have shown that the working-set scheduling algorithm provides an excellent 
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approximation for memory-residency of data. By using this algorithm, the system 
prevents potential thrashing due to heavy usage of virtual memory. In contrast, 
a pure demand paging scheme would not work in a practical time-shared envi- 
ronment (even with a physical memory size sufficient for a single user) because 
of potential thrashing. 

Finally, we believe that a database system based on the memory-residency 
assumption is suitable for efficient main-memory applications including many 
aspects of artificial intelligence and logic programming (such as Prolog [9]). In 
particular, nonrecursive queries expressed in function-free Horn-clause logic can 
be directly processed by the techniques proposed in this paper [40]. 

APPENDIX A 

We present cost formulas for the access structure Relation Scan. We first define 
some notation and introduce a function that is used in calculating the result 
cardinalities. 

Notation 

Nrpreds 
NbndJpreds 
NbndXpreds 

Rsel 
Jsel 
Xsel 

RXsel 
Se1 
Rcard 
Rsltcard(N) 
Tuplesperaccess 

Number of restriction predicates in Curr-Node. 
Number of bound join predicates in Curr-Node. 
Number of cross-reference predicates that are bound at Curr- 
Node. 
Joint selectivity of all restriction predicates in Curr-Node. 
Joint selectivity of bound join predicates in Curr-Node. 
Joint selectivity of cross-reference predicates that are bound 
at Curr-Node. 
Rsel x Xsel. 
Joint selectivity of all bound predicates for Curr-Node. 
Number of tuples in the base relation of Curr-Node. 
Result cardinality for node N. 
Number of tuples retrieved in one access through an access 
structure. 

Function b 

Let tuples be partitioned into m groups (1 5 m zz n), each containing p = n/m 
tuples. If k tuples are randomly selected from the n tuples, the expected number 
of groups hit (blocks with at least one tuple selected) is given by 

bh P, k) 
m 

Details of the derivation of this function can be found in Whang et al. [41]. 
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Result Cardinality 

We now construct the formulas for the result cardinality. These formulas are 
independent of the specific access-structures chosen, but dependent on the partial 
join sequence. 

IF Curr-Node is a negated node THEN 
Rsltcard(Curr-Node) = Rsltcard(Prev-Node) x (1 - b(l/Jsel, Jsel x Rcard, 

RXsel x Rcard) X Jsel)) 
ELSE IF Curr-Node is an ordinary node THEN 

Rsltcard(Curr-Node) = Rsltcard(Prev-Node) X (Rcard X Sel). 

For a negated node, function b gives the number of groups selected according 
to the restriction predicates and cross-reference predicates. A group is a set of 
tuples having the same join column value. A group is selected if one or more of 
the tuples in the group satisfies these predicates. The value of function b is 
multiplied by Jsel (or, equivalently, divided by l/Jsel) to obtain the probability 
that a specific group is selected. Since the negation specifies nonexistence of such 
a group, this probability must be subtracted from 1 to produce the probability 
that the group is not selected. The result is finally multiplied by Rsltcard(Prev- 
Node) to obtain Rsltcard(Curr-Node) since the selection process for Curr-Node 
is repeated as many times as Rsltcard(Prev-Node). 

For an ordinary node the number of tuples selected according to the predicates 
is given by Rcard x Sel. Again, this number is multiplied by Rsltcard(Prev-Node) 
to produce Rsltcard(Curr-Node). 

Cost Formulas for Relation Scan 

Using the result cardinality, we construct the cost formula for the access structure 
Relation Scan as follows: 

IF Curr-Node is a negated node THEN 
Tuplesperaccess = MIN( l/Sel, Rcard) 

ELSE IF Curr-Node is an ordinary node THEN 
Tuplesperaccess = Rcard. 

COStRelation Scan = 
C, X Nrpreds !expression evaluation for restriction predicates 
+ Rsltcard(Prev-Node) 

x (C, x Nbndjpreds 
+ C, X Tuplesperaccess !expression evaluation for join predicates 
x (f(Nrpreds + NbndJpreds + NbndXpreds) 
- f(Nrpreds + NbndJpreds)) cross-reference predicate evaluation 

C5 X Tuplesperaccess tuple retrieval 
+ C, x Tuplesperaccess X f(Nrpreds + Nbndjpreds)) 

!comparison operations 

For an ordinary node the search goes through all the tuples in the relation. 
Therefore, Tuplesperaccess, the average number of tuples to be searched until 
termination, must be Rcard. For a negated node, however, the search stops as 
soon as a tuple satisfying the predicates is found (hence, rendering the negated 
predicate false). Thus, Tuplesperaccess is l/Se1 with the restriction that it cannot 
be larger than Rcard. 

The cost of Relation Scan is the summation of the costs for (1) expression 
evaluation for restriction predicates, (2) expression evaluation for bound join 
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predicates, (3) evaluation of cross-reference predicates, (4) tuple retrieval, and 
(5) comparison operations. 

Expressions in restriction predicates are evaluated only once for a given query 
(according to the comparison-restriction-predicate flags, as explained in Section 
5.3). On the other hand, those in bound join predicates must be evaluated every 
time Curr-Node is entered in the join loop (according to the comparison-bound- 
join-predicate flags, as explained in Section 5.3). Thus, the number of bound join 
predicates is multiplied by Rsltcard(Prev-Node). Cross-reference predicates are 
evaluated for every tuple because example elements in these predicates are bound 
to different values for different tuples. Thus, for them, the number of predicate 
evaluations is multiplied by Tuplesperaccess as well as Rsltcard(Prev-Node). 
Note that the function f is used to calculate the number of evaluations of cross- 
reference predicates because they are evaluated only “after” all restriction and 
bound join predicates prove to be true. The next term accounts for the tuple 
retrieval cost. Finally, the last term is the number of comparison operations for 
both restriction and bound join predicates. 
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